PAIRWISE COMPARISON AND RANKING: OPTIMUM PROPERTIES
OF THE ROW SUM PROCEDURE

By Perer J. HusEr'
University of California, Berkeley

1. Introduction and summary. The present paper is concerned with those
pairwise comparison experiments for which ranking in descending order of the
“row sums” is the appropriate ranking procedure.

More precisely, assume that n items are compared pairwise, omitting no pairs,
and that the result of the comparison between item ¢ and j is expressed as a real
number z;; satisfying

(1) Tij + x50 =0 for all 4, 5.

x;; might be some measured difference between 7 and j, or it might take the values
1, 0, —1 according as item ¢ is judged to be superior, equal or inferior to item j,
or it might be a statistic summarizing the results of several comparisons between

the two items, etc.
It will be shown that ranking in descending order of the scores

(2) si= 2 Ty

J=1
(row sum procedure) uniformly minimizes the risk among all permutation in-
variant procedures, and for all ‘“reasonable” loss functions, provided the z;;
(¢ < j) are independent random variables distributed according to an exponen-

tial distribution of the type
t
(3) Plag S 1) = o0 — 05) [ é*"Pu(an),

where u is a symmetric probability measure on the real line. Then s =
(81, **+, 8a) is a sufficient statistic for the joint distribution of the z;; . Under
suitable regularity conditions, the converse also holds: if the distributions of the
x;; are not of this form, then s is not sufficient, and the row sum procedure is not
optimal.

Thus, the model just described seems to constitute the natural domain of the
row sum ranking procedure. Fortunately, this domain contains the important
case where the z;; (¢ < j) are independent normal variables with mean ¢; — &;
and equal variance o*. Another particular case—the case of tournaments without
draws—where the z;; can take only two values, has been treated in the joint
paper [1]. Incidentally, the present paper grew out of an attempt to cover the
case of tournaments with draws (see example (iv) in Section 4 below).
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Although one cannot expect strict optimality properties, one may still ask
whether the row sum procedure has “nice” (e.g., minimax) properties even out-
side the above model. A modest result in this direction is the following. Take a
particular joint distribution of the z;; belonging to the above model, and con-
sider the class of all joint distributions of the z,; that lead (up to permutations)
to the same joint distribution of the s; as this particular one. Then this latter
will be least favorable for the ranking problem, and the row sum procedure will
have minimax properties in each such class (modified minimax principle of
Wesler [2]). For instance, if the z;; (¢ < j) are independent normal variables
with mean¢,; and equal variance, then the joint distribution of the s; depends
only on thed; = (1/n) D71 @, and the linear model 9, =& — 9, is least
favorable, if the ¢; are kept fixed (up to permutations).

There is an immediate generalization of the results to the case of comparison
in k-tuples instead of in pairs, as indicated in the last section of this paper.

2. Setup of the decision problem. We have to specify a sample space, a set of
theories, a set of decisions and a loss function:

The sample space & is the n(n — 1)/2-dimensional Euclidean space with
coordinates z;; (¢ < 7); we agree to put x;; = —x;; and x;; = 0 according to (1).
Let the group &, of all permutations of # items act on & such that the permuta-
tion ¢ £ &, transforms a point x £ X into the point z° having coordinates

(4) T3 = Tona(h -

In the sequel, invariance always means invariance with respect to this
group &, .

Let 9y be the space of the statistic s; Y is the (n — 1)-dimensional hyperplane
in n-space defined by D s; = 0. Put 7 = s, -

If the x;; (i < j) are independent and distributed according to (3), and if
v = ]]i<j » is the product probability measure on &, then the joint distribution
of the z;; is of the form

(5) dPs = ¢(9) exp (2 d:s:) dv

as a straightforward computation shows. Define &7 = &, , then the norming
factor c¢(8) = Hi<i c(¢#; — ¢;) is invariant, since » is.

As set of theories we take the family © consisting of the n! joint distributions
on & generated by applying &, to a particular distribution (5). Obviously,
s= (&, -+, s») constitutes a sufficient statistic for © (as well as for the whole
parametric family of distributions depending on the parameter ¢#). Denote by
Qs the joint distribution of s.

The decision space D is the set of all possible rankings. Let ©, act on D as
follows: if, under ranking d, item 7 has rank d;, then, under ranking d’, it will
have rank di = do .

It will be assumed that the “true” ranking is in descending order of the ¢;,
and that departures from the true ranking are punished by some real-valued loss;
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denote by L(&, d) the loss incurred when # is the true value of the parameter
and decision d is taken.

DEerFINITION. A loss function L is called acceptable if it satisfies the following
two conditions:

(1) L is invariant: for all ¢, d and ¢

L(#°,d°) = L(d, d).
(ii) L does not decrease if the ranking is made worse by interchanging two

items. More precisely, assume that ¢; = ¢; and let a be the transposition
that interchanges 7 and j. If d ranks item ¢ before item j, d; < d;, then

L(¢,d) = L(8, d%).

Property (ii) implies in particular that ranking in descending order of the &;
minimizes the loss, as it should do. (Starting from any ranking, one may decrease
the loss by successively interchanging two items, until they are ranked in descend-
ing order of the &;.)

3. Solution of the decision problem. The following theorem is stated in a
slightly more general form than we would really need:

TreEOREM 1. Assume that the joint distribution of the s; is of the form Qs(ds) =
c(3)f (&, s)\(ds), where \ is some permutation invariant measure on Y, and f is a
denstity function satisfying:

(i) (&, §") = f(3,s),

(i) f(&, s) = f(% s) whenever &; = &;, 8; = s; and « is the transposition

interchanging items ¢ and j.
If L is an acceptable loss function, then ranking in descending order of the s,,
breaking ties at random, has minimal risk among all invariant ranking procedures
that depend on x only through s.

ReMARK 1. The assumptions of the above theorem are in particular satisfied
if the z;; (¢ < j) are independent random variables distributed according to (3):
Qs can then be written as Qs(ds) = ¢(&) exp { > s 9s:)N(ds). Invariance of A
follows from invariance of », (i) is obvious, and (ii) follows from the identity
(s%; + 8;8;) — (s8; + si%) = (s; — 8;) (% — ¥;), and monotonicity of exp.
Since s then is sufficient, we have the

COROLLARY. If the xz;; (¢ < j) are independent random variables distributed
according to (3), and the loss function L is acceptable, then the row sum ranking
procedure has minimal risk among all invariant procedures. (Since S, s finite,
this implies also admissibility among all procedures.)

RemARk 2. The definition of acceptable loss functions is broad enough to
cover cases where one is not interested in a complete ranking, but only, say, in
selecting the item ¢ with the highest ¢; . For instance, take the loss L(#, d) to be
0 or 1 according as the item with the highest ¢; is ranked first or not, then L
is acceptable, and Theorem 1 implies that selecting (= ranking first) the item ¢
with the highest s; minimizes the risk (in other words, maximizes the probability

of selecting the best ).
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Proor or THEOREM 1. Let ¢ be a randomized decision procedure, that is, a
family of nonnegative measurable functions ¢4 on Y indexed by d ¢ D, such that
> 4epwa = 1. The risk then is

R(9,0) = [ 3 L(3, deu(s)Qo(ds).

Instead of minimizing B(#, ¢) among all permutation invariant procedures, it is
more convenient to minimize the Bayes risk B(&, ¢) corresponding to the uni-
form a priori distribution on the orbit &,(¢) = {¢" | ¢ ¢ &,} = ©. Since, for
invariant procedures, the risk R is constant on orbits, this will lead to the same
results. This Bayes risk computes as

BO,0) = (/n) T [ T 10, Dea()@o(ds) = [ T ul)as(s)r(ds)

where aa(s) = [c(8)/nl]1 2. L(8°, d)f (5, s).

Let @min(s) = infs aa(s). Then a procedure ¢ will minimize R (&, ¢) iff ¢a(s) = 0
whenever a4(s) > @min(s). Now I shall show that the minimum is reached,
04(8) = Gmin(8), if d corresponds to ranking in descending order of the s; . More
precisely, let o be the transposition that interchanges 7 and j, then I shall show
that as(s) = as(s) whenever s; = s; and d; < d;. This implies (similarly as
above for L) that the minimum of a4(s) is reached for ranking in descending
order of the s; , and that it does not matter how ties between the s, are dealt with.

In order to prove this, compute
aa(s) — a(s) = [e(9)/nI 2 f(¥, §)(L(¥, d) — L(¥,d))

= [c(ﬂ)/nll;fw"“, $)(L(8°%, d) — L(8%, d*))
= [cw)/nll;f(d’“, §)(L(8°, d*) — L(&, d)).

By taking the arithmetic mean of the first and the last of these three sums, one
obtains

a4(8) — aas(s) = [%6(0)/7'&!]; (L(&", d) — L(,d)) (f(&, 8) — F(8°%9)).

Now assume that s; = s; and d; <, d;. Then the assumptions made about L
and f imply that the two factors inside the sum have opposite signs, hence
aa(s) — ag(s) £ 0.

Thus, ranking in descending order of the s; minimizes R(#, ¢) among all pro-
cedures which depend on z only through s. Ties between the s; may be treated
in an arbitrary way, but if they are broken up at random (with equal probahili-
ties), the corresponding ¢ is invariant. This terminates the proof.

Now I shall establish the curious fact that for independent x;; the exponential
distributions (3) are essentially the only distributions for which s is sufficient.

THEOREM 2. Assume that there are at least 3 items, that the x;; (7 < j) are inde-
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pendent random variables taking values in a fized symmetric interval I (possibly the
whole real line), whose distributions have strictly positive densities fi; in I, either

(A) with respect to Lebesgue measure, or

(B) with respect to counting measure on a symmetric lattice.

Let F(z) = [Ji<; fii(zi;) be the joint density of the z.; , and let @ be the class con-
susting of the n! densities related to F by a permutation of the n items.

If s = (s1, -+, 8) s sufficient for @, i.e., if F(z) = G(s)H (), a.e. in I where
G depends on x only through s and H is invariant under S, , then the fi; must have
the form f;;(t) = ci;h(8) exp { (3 — &;)8}, a.e. in I where c;; = cj; and &; are some
constants, and h is even: h(—t) = h(t).

Proor. Let I be the interval (—m, m) and denote by I,, the translated interval
(=m — u, m — u). According to (1), define f;;(t) = fi;(—t). Let z be a generic
point of & (a lattice point in case (B)), let , j, k be a fixed triple of items, let
u be a fixed real number (in case (B), 4 (and v below) must be lattice transla-
tlons), and denote by z’ the pomt having the same coordinates as z except for
Ti; = Ti; + U, Tje = Zp + u, Tr; = 7k + u. To avoid an overabundance of
indices, we shall write ¢, y, z instead of z; , x , and zx; , respectively.

We have s(z) = s(x'), and hence

(6) F(2) _ fij(tl)fjk(y’)fki(zl) _ H(z) ae.
F(z) FiiO)fin(y)fii(2) H(z)
fort,y,2eIN I,. H(z')/H(z) is invariant under permutations. Hence, if we
divide (6) by the corresponding expression with 7 and j interchanged, we obtain
0 fis(t + w)fis (@) fay + wfaly) frslz + wfis(2) _ 1 ae.
Fis(t + w)fis(®) fu(y + Wfaly) frs(z + wfuie)

The variable ¢ does not occur outside the first factor in (7), hence this factor
is equivalent to a constant depending on ¢, j and u:

fii(t + u)fji(t) o
(@) TaG + Wil vii(u) a.e. for teINI,.

If one replaces » by v and ¢ by ¢ + u in the above expression, one obtains

fit + u +0)fut + ).
9) A CE SR O vii(v) a.e. for telINI,NI4,.
Multiplying (8) and (9) yields the furnctional equation

(10) Yii(u + v) = vei(u)ysi(v)

valid for those pairs u, » for which I N I, N I, has strictly positive measure.
It may be concluded from (8) that v,; is a measurable function of w, thus (10)
yields that it is exponential v;;(u) = exp (28;;u) for some constant ¢;; . More-
over, it follows that

(11) f:i(8)/f;:(¢8) = const. exp (285t) a.e.
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If we replace ¢ by —t¢, the left side of (11) is turned into its reciprocal, hence
const. = 1, and similarly, it follows that ¢;; = —¢;;.

Put ¢:;;(t) = [fi;(t)fis(t)],} then we have () = ¢;i(t) = ¢i;(—t) and
fii() = ¢i;(t) exp (4,t) a.e. Insert this into (7) to obtain

5 ‘ . 2ty + Wealy) ealz + wenlz) _
(12) DA+ G+ B ei(y + wen(y) ea(z+ wou(z) !

ae fory,zelINI,.

I assert now that all three factors of (12) are separately a.e. equal to 1. Proof:
y and 2z do not occur outside the second and third factor, respectively. Hence
these factors do not really depend on y and 2, and are a.e. reciprocal to each
other. But, replacing 2 by —z — w and using the symmetry properties of the
¢’s, one obtains that the second and the third factor are also a.e. equal, which
proves the assertion.

Hence, the first factor yields ¢;; + ¢ + % = 0. If we put, e.g., %; = 0,
& = ¢4 (2 # 1), we may conclude that ¢;; = ¢, — &, for all 4, 5.

Furthermore, the second factor of (12) yields

eu(y + u)/ea(y) = eu(y + w)/en(y) a.e.

This implies that the function ¢a(y + u)/ea(y) is a.e. the same for all pairs
(¢, k) of indices. Hence, ¢;; must have the form ¢;;(t) = c;;h(¢) a.e. for some
constants ¢;; = ¢;; and some function A satisfying h(t) = h(—t).

Putting things together, we obtain the final result

fii(8) = cih(t) exp {(8: — 9;)1} a.e.

It may be convenient to make this representation of f;; unique by norming » and
S such that [h = 1and > ;& = 0.

Now I want to show that the row sum procedure is not optimal, if s is not
sufficient, under the following regularity conditions slightly stronger than those
of Theorem 2: The z;; (¢ < j) are independent, and have (A) strictly positive
continuous densities with respect to Lebesgue measure on the real line, or (B)
strictly positive densities with respect to counting measure on a symmetric
lattice containing 0. There are at least four items, and the loss is 0 for a unique
“correct” and 1 for all “incorrect’” rankings. In the case of exponential families
of the type (3) we take, of course, ‘“‘correct”’ ranking to be in descending order
of the #; , but otherwise it might be defined in an arbitrary permutation invariant
fashion.

The ““correct’” ranking then sets up a 1-1 correspondence between D and the
set ® (see Theorem 2) of joint distributions of the z;;, and one may conclude
from the first few steps of the proof of Theorem 1, that a ranking procedure is
optimal among invariant procedures if and only if it selects with probability 1 a

_ distribution P ¢ ® having maximal a posteriori probability (for the uniform a
priori distribution on ®).
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ProrosiTioN. Under the above assumptions, the following four statements are
equivalent:

(1) s s sufficient for ®.

(ii) For every 4 itemst,j, k, L and every t, y, 2 we have: fi;(£)fin(y)frei(2)fu(z — 8) -
Fi(t — Yfuly — 2) is symmetricin 1, j, k, L.

(iii) The row sum procedure is optimal among invariant procedures.

(iv) There is an oplimal invariant procedure that depends only on s.

Proor. We shall establish the following implications:

(i) & (i) = (iii) = (iv) = (ii).

(i) = (ii): follows immediately from Theorem 2.

(ii) = (i): (ii) implies (7), hence the conclusion of Theorem 2 holds, which
implies sufficiency.

(1) = (iii): is an immediate consequence of Theorem 2 and Théorem 1.

(iii) = (iv): is obvious.

(iv) = (ii): Assume that (ii) does not hold for some 4, j, k, [, t, y, z. Consider
the following sample point z: z;; = {, Zjp = ¥, Tk = 2, Ta =2 — L,z =t — ¥,
Ty = Y — 2, Zrs = 0 for all other indepéndent comparisons. Then s = 0. But
the a posteriori distribution on @®. (for the uniform a priori distribution) is not
uniform, since (ii) does not hold, hence some P, ¢ ® will have an a posteriori
probability strictly inferior to the maximal a posteriori, probability. Since the
fi; are continuous, this will hold in some neighborhood

U={a'|zij— 2| <e forall 5,5} of =z

Hence, in U, an optimal procedure will almost never select the ranking d, cor-
responding to P, . But this is impossible: let ¢ be an invariant procedure depend-
ing only on s, and let V' = {s| s;| < e for all 4}. Because of invariance,
{s € V| ¢q(s) > 0} cannot be a null set, hence also its counter image in U is
not a null set, which establishes the contradiction.

A similar but simpler proof works also in the discrete case (B), provided 0
is contained in the symmetric lattice of possible values of z;; . If 0 is not con-
tained in the lattice, or if I is not the whole real line, the proposition is probably
still true, although it has been proved so far only for the case where z;; can take

only two values (cf. [1]).

4. Examples.
(i) Normal case. Assume that the x;; (¢ < j) are independent normal random

variables with mean &; — ¢; and equal variance ¢”. This corresponds to the follow-
ing model: each item has a performance y; that is normal with mean ¢; and
variance o°/2, and the z;; are independent observations of y; — y,. The proba-
bility density of x,-j with respect to Lebesgue measure then is

40 = o, e"p{_ Q;zziﬂ}eXp{ 2t:}e"p {(f‘@ ‘}'

Thus row sum ranking is optimal.
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(ii) A case of dependent x;; . Assume that the z;; (¢ < j) are multivariate
normal with mean &; — &;, variance o°, cov (zi;, zx;) = O if all 4 indices are
distinet, cov (z;;, za) = = for j # l. Here s is sufficient and Theorem 1 still
applies. Instead of computing the joint distribution of the z;;, it is probably
simpler to prove this in the following way: if the constant k is chosen suitably,
the variables y;; '= z;; + k(s; — s;) are independent normal with mean
(1 4+ kn)(8; — ¥;) and equal variance. Hence (cf. (i)) ranking in descending
order of X ,;y:; = (1 + kn)s; is optimal. Now use the fact that z;; and y;;
determine each other uniquely, and thus constitute equivalent experiments.

(iii) Tournaments. Assume that z;; can take only the two values 4+1 and —1
with probabilities p;; and p;; = 1 — ps; , respectively; row sum ranking is optimal
for the Bradley-Terry model p;; = p:;/(p: + p;), because if &, = (%) log p: , then

pi; = 1/[1 + exp — 2(d: — ¢;)] = exp (& — &;)/[2 cosh (¥; — &)].

This case was treated in [1] under a slightly different notation.

(iv) Tournaments with draws. Assume that xz;; can take the values 1, 0, —1
with probabilities p;;, ¢:;, and pj;;, respectively, p;; + ¢:; + pi = 1. If
PiitQiiiPii = exp (& — &;):kiexp (#; — ;) for some fixed ¥ = 0 (in other
words, p:;/p;; = Ppi/p; and the probability of a draw is k times the geometric
mean of p;; and p;;), then row sum ranking is optimal.

(v) Binomial and stmilar cases. More generally, assume that z;; can take the
valuest = 0, 1, - - - | &m, with probabilities

P(zi = 1) = c(d: — 9;)h(t) exp (8: — 9,)t, h(—1) = h(?),

(Case (iv) corresponds to h(1) = h(—1) = 1, h(0) = k). For instance, if x;; is
binomial:

PGy =0 =(,27 )oma o = - (20 ) (125)

then row sum ranking is optimal, if p = 1/(1 + exp { — (¢ —¢;)}).

6. Minimax properties. In the preceding sections, no general definition of the
“true” ranking was given that would be applicable to any arbitrary underlying
probability model for the z;; ; of course, any such definition would include some
arbitrariness. For instance, if only two items are compared, should one consider
item 1 to be better than item 2, if (a) the expectation, or if (b) the median of
Zy2 is greater than 0?

For the situation considered in Theorem 1 however, ranking in descending
(or ascending) order of the ¢; seems to constitute the natural true ranking.
Another situation, where one has a natural true ranking, occurs if every two
items are comparable in the sense that item 7 is considered to be better than item
J, if for all & # 1, j, x4 is stochastically greater than zj , and z;; is stochastically
greater than z;; .

One of the major difficulties encountered in establishing properties of our rank-
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ing procedure outside the situation of Theorem 1 lies just in the lack of a uni-
versally acceptable definition of “true” ranking.

However, one small but nevertheless important extension is readily accessible.
Whenever we have the situation envisaged in Theorem 1, it seems reasonable to
define “correct ranking” to be in descending order of the &;, even if s is not
sufficient. Of course, there might be also some other reasonable true rankings
(especially as we have left undefined the term ‘“‘reasonable”), if s is not sufficient.

After having agreed upon this, we consider the class of all joint distributions
of the z;; that lead, up to a permutation, to the same fixed joint distribution of
the s; of the above form. If this class contains a distribution of the z;; for which s
is sufficient, then this distribution must be least favorable for the ranking prob-
lem, since our ranking procedure leads to a constant risk over the whole class and
for this particular distribution the risk cannot be improved by utilizing the full
information contained in the z;; . Hence, ranking in descending order of the
s; has minimax properties for this class of distributions. The importance of this
seemingly trivial remark may be inferred from the following example.

Assume that the z;; (¢ < j) are independent normal random variables with
mean ¢;; and common variance 1. Put z;; = —z;; and 8;; = —d&;; ; furthermore,
putd; = (1/n) D ;8;; . I assert now: The joint distribution of s depends on the
345 only through the &; .

Proor. Since s is multivariate normal, it suffices to compute expectations:
Es; = nd;, and covariance matrix: var (s;) = n — 1, cov (s;, s;) = —1 for
7 #% j. Both depend only on the ¢; .

Hence, if the &; = (1/n) X ; 3, are kept fixed up to permutations, then the
row sum procedure leads to a fixed risk for all values of the #;;, and this risk
cannot be improved by using the full information contained in the z,; in case
we have the linear model #;; = ¢; — ¢, . In other words, the linear model is a
least favorable configuration.

6. Performance of the row sum procedure. Once one has decided to use the
row sum procedure, the expression for the risk as given in Section 3 can be
simplified.

Define, for any n-tuple { = (&, « -+, ¢,) of real numbers L(¥, t) = L(%, d)
where d is ranking in descending order of the ¢;. If there are ties between the
t; such that different rankings are possible, then define L(#, t) to be the arith-
metic mean of the corresponding losses. Then, the risk of the row sum procedure
is R(¢#) = EsL(4,s).

In the particular case where the z;; (¢ < j) are independent normal variables
with mean#; — &; and equal variance, say 1, one can simplify further, because
then the risk can be computed as R(#) = EsL(d, s) = EsL(¥, t) where thet; are
independent normal random variables with mean nd; , and variance n.

Proor. Let? = (1/n)t;, and put s, = #; — {. Then s and s” have the same ex-
pectations and the same covariance matrix, hence they have the same joint
distribution. Since L(#, s') = L(#, t), the assertion follows.
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7. Comparison in k-tuples. Assume that some judge looks at every k-tuple
T = {41, ---, & of items and determines a ‘“local’’ score zr, ; of item ¢ inside
the k-tuple T, such that Dz zr,; = 0. For convenience, put Zr,; = 0 whenever
2 2 T, so we have the analogue of (1):

(1" D xri=0, for all T.
=1
Put
(2,) 8; = Z Tr,i.
T

We are concerned with the optimality properties of ranking in descending order
of the s;.

Let Z be the (k — 1)-dimensional hyperplane Z};l 2; = 0 in k-space, and let
M\ be a permutation invariant measure on Z. Assume that the local scores
Tr = (Tr,iy, **° , Tr,y) € Z have densities of the form

3" fr(zr) =-cr(&) exp { ;T dixr,d)

with respect to A, and are independent of each other. Then, s = (81, - -, s4)
forms a sufficient statistic. In fact, the joint distribution of the zr,; is of the form
¢(8) exp { Qs s} dv where ¢(8) = [Jrcr(#) and » is the product measure
Iz Az on []r Zr (Where A\r = X and Zr = Z for all T). Both ¢(#) and » are
permutation invariant, the operation of &, being defined in the obvious way.
Hence, Theorem 1 applies, and ranking in descending order of the s; is optimal.
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