ON THE INTEGRABILITY, CONTINUITY AND DIFFERENTIABILITY
OF A FAMILY OF FUNCTIONS INTRODUCED BY L. TAKACS

By A. M. HASOFER
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1. Introduction. L. Takacs has shown [5] that a single-server queue with
non-homogeneous Poisson input of density A(¢), where A(Z) is a bounded and

continuous function of ¢, and service time x whose distribution function is.

P{x = z} = H(x) can be described by a Markov stochastic process n(¢) with
continuous parameter and continuous state space, representing the total length
of time required to serve the customers queueing at time ¢, but not including the-
customer who arrives at time ¢, if any.

Moreover, Takécs has stated that the transition probability

W(t, 2) = P{x(t) = z|2(0) = 0}
is continuous in z for x > 0 and all ¢, and that it has a right-hand derivative
in z for x = 0 and a left-hand derivative for £ > 0. Takécs has used F(¢, z)
where I have used W (¢, ), but I shall define a slightly more general version of
F(t, x) later.

On page 108 of [5], Takécs has presented an argument for the continuity of
W (t, ). However, I believe the argument to be incomplete on two counts:

(a) Formula (11) (see [5], p. 108), contains an integral in ¢ whose integrand
depends on W (i, z), and no argument has been produced to justify the integra-
bility of W (¢, ) with respect to ¢. A rigorous proof of the integrability of W (¢, x)
in ¢ is given in this paper. (See Lemma 2.)

(b) Assuming Takdcs’ formula (11) to be true, it does not seem to follow
that W (¢, z) is continuous in either ¢ or z.

Further, as pointed out by E. Reich (see [4] p. 143, Footnote 2), the existence
of the right-hand and the left-hand derivatives of W (¢, z) with respect to x has
been assumed by Takécs without justification.

The purpose of this paper is to establish conditions on the service-time dis-
tribution for the continuity and differentiability of W (¢, ). These conditions
will be established for the more general absolute probability distribution

(1) F,2) = [ 1(54,2) d.F(0,2)

where f(t; y, z) = P{n(t) < x| 7(0) = y} and F(0, z) is the probability dis-
tribution of (0). It will also be shown that F (i, x) satisfies the integro-differ-
ential equation

2 p(te) = 2R a) 70 [ (Fl,z — 3) — P4 )] dH()
o 3 ot 3 o y ; 3

when it is continuous and differentiable.
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It is to be noted that the conditions given do not cover the important:case of
constant service time. On the other hand, it has been shown directly by Takacs
([6], p. 53) under no restrictions on the service time that the Laplace transform
of F(t, 2): (8, 8) = [¢2 e *° dF(4, x) satisfies the differential equation:

— qS(t, 8) = [s — MO{1 — Y(s)}] — sF(t,0)

where ¥(s) = f+°° " dH (x).
Since it is proved in Lemma 2 that F(Z, 0) is integrable in ¢, is follows that
the differential equation has the unique solution:

¢(t, S) = est—ll—W(a)]A(t) {4)(0’ S) —s ft e—su+ll—dl(a)]A(u)F(u, 0) du}
0

where A(f) = [§\(u) du, without any restriction on the service time.

Since most of the results on the queue with constant service time have been
obtained, not from the integro-differential equation, but from the Laplace
transform formula, the above argument provides a justification of these results.

2. Basic formulae and properties. Tak4cs has shown ([5] p. 106) that F(z, )
satisfies the following difference equation: -

(2) F(t+ h,x) — F(t, z + h) = N(@)Rh[G(t, ) — F(t,z)] + o(h)

where
z+ z+ <
(o) = [ H@ -y d,Fy) = [ Fiz—y) dH@),

fort 2 0,2 = 0,4 > 0. .
Writing now ¢ — h for ¢ and x — h for x, we obtain
F{t — h,z) — F(t,x — h)
= —N¢ — Rh)R[G(t — h,x — h) — F(t — h, z — h)] + o(h).
This formula is valid for b > 0, z = h,t = h.

(3)

Lemma 1.
(4) F(t+0,z) =F(, x)
(5) F(t—0,z) = F(t,z — 0).
Proor. Leth téjxid to zero in formulae (2) and (3) and use the right continuity
of F(¢, z) in z.

LemMa 2. F(i, x) is Rzemann-zntegmble mt.

Proor. It follows from Lemma 1 that all the discontinuities of F(¢, z) as a
function of ¢ are ordinary and this implies Riemann-integrability (c.f. [1] p.
439).

Lemma 3. F(t — u, ¢ + u) is & continuous function of u for x = 0, ¢ = 0,
—zrz=u=st .
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Proor. In formula (2) replace ¢ by ¢t — u and z by x + u — h. We obtain:
Ft—u+hz+u—h)—F@t—uz+u)
=Mt —uhlGt —u,z+u—h) — F(t —u,z + u — h)] + o(h)

for —z4+h=u=st
Similarly, writing ¢ — u — h for ¢ and 4+ u for z in (2), we obtain

FG—u—hx+u+h) —F(—uz+ u)
= ANt —uwhlGt —u—hz+u) — F(t~u— h,z+ u)] + 0o(h)

for —z =u=t—h

The result follows by letting & tend to zero.

Lemma 4. G(t — w, z + ) s a continuous function of u.

Proor. This follows from the continuity of F(t — u, £ 4+ u) in u by letting
h tend to zero in the equation

+00
(6) G(t—u—h,x+u+h)=[ F(t—u—hz+u+h—y)dH®)

and using Lebesgue’s dominated convergence theorem, (c.f. [2] p. 125).
Lemma 5. The transition probability f(i; y, x) satisfies the equation

f(ty,2) = e [U(w —y—t)
(7) ¢
+ j; At — w)e*g(t — u;y,x + ) du]

where A(t) = [oN(u) du, g(t; y, ) = [eXf(t; y, £ — 2) dH(2), and U(z) s
the Heaviside unit function, i.e., U(z) = 1if x = 0, and U(z) = 04fz < 0.

Proor. We first note that the function f(¢; y, =) is a special form of the func-
tion F(t, =), obtained when F(0, z) = U(z — y), and that ¢g(¢; y, =) is also a
special form of G(¢, z). If follows that Lemma4 applies and that g(¢ — u;y,z + u)
is an integrable function of u for —z = u =< ¢.

We now note that given that 7(0) = y, the event {#(¢) = z} can occur in
two exhaustive and mutually exclusive ways: (a) There is no arrival in (0, £)
and y —.t < z. The probability of this event is e *?U(z — y + t). (b) The
last arrival occurs at ¢ — u and »({ — u) + x — ¢ < z! The probability of
this event is

t
f gt — u;y, 2 + wN(E — u)e AOTAC g,
0

Adding these two probabilities, we obtain the result.
Lemma 6. F(i, x) satisfies the equdtion

(8) F(tz) = et [F(O, z+1t)+ j: Nt — w)et Y@t — u,z + u) du] .
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Proor. This follows easily from the relations

00
F,2) = [ ft3,2) d,F0,9)

+00
6t a) = [ gt5,9) 4, F(0,9)

00
FOo+0=[ Ul —y+0dF0y).

The required interchange of integrals is easily justified by using Fubini’s
theorem as all integrands are positive and bounded.

CororrLarY. F(t, 0) = ¢ *“F(0, t).

This shows that F(Z, £) has in general a discontinuity at the origin.

3. Continuity of F(¢, z).

TuroreM 1. If H(x) is absolutely continuous and F(0, z) s continuous for all
x > y, then F(t, x) s a continuous function of both t and x for all x = 0, ¢ = 0,
z+t>y.

Proor. We first notice that if H(z) is absolutely continuous, G(¢, z) is con-
tinuous in z for all ¢ and . :

This follows from standard properties of the convolution operation (c.f. [3]

p. 45, Th. 3.3.2).
Let now I(¢, z) = ff, Gt — u, z + wA(E — u)e* ™ du. Then
(9) F(t,z) = e*V[F(0, 2 + t) + I(¢, 2)]

and I(t, z + h) = [§G(t — u, z + u + RN(t — u)e* ™ du. The integrand
obviously satisfies the conditions of Lebesgue’s dominated convergence theorem,
and we conclude limy-o I(Z, z + h) = I(t, z). I(¢, ) is therefore continuous
in z. The continuity of F (¢, ) in z follows from (9) and its continuity in ¢ from
Lemma 1.

4. Differentiability of F (i, z).

TueoreM 2. If H(z) has a bounded derivative for all x and if F(0, x) has a
bounded derivative for x > v, then F(i, z) has a bounded derivative tn both x and
tforx > 0,¢> 0,z 4 ¢t > y, and satisfies the equation

(8/08)F (¢, x) = (8/9z)F (¢, ) + MG, z) — F(4, z)].

Proor. Applying Lebesgue’s dominated convergence theorem successively to
+o0
[G(t,x + k) — G(¢, 2)]/h = f_ {[H(x +h — y) — H(x — y)I/h} &, F(t,y)

and

- ‘/0“ ([G(t — uyz + u + k) — Gt — u, z + w)l/AIN(E — w)e" ™ du,
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we conclude that first G(¢, ) and then I(¢, ) have bounded derivatives in z.
The existence of 0F/dz follows from (9).
From formulae (1) and (3) we now deduce, for A > 0

[F(t 4+ h,z) — F(t,z)l/h = [F(t,x + h) — F(t, z)l/h
+ MG, 2) — F(t, z)] + O(h),
[F(t — hyz) — F(t, z))/(—h) = [F(t,x — h) — F(t, 2)]/(—P)
+ At — B)IG({E — b,z — h) — F(t — b,z — h)] + O(h).
Letting h | 0, we find
limp o [F(¢ + h, ) — F(t, x)l/h = lima o [F(¢ — h, z) — F(8, x)]/(—h)
= (8/9z)F (8, ) + A(O)IG(, x) — F(¢, z)],

the continuity of G(Z, ) in ¢ following from the application of Lebesgue’s domi-
nated convergence theorem to G(t + h, z) = [f2 F(t + h,x — y) dH(y). This
completes the proof of the theorem.
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