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0. Summary. For various but sound practical reasons it has become desirable
to approximate to previously tabulated mathematical functions by polynomials
or rational fractions. In this paper Chebyshev polynomials are used to approxi-
mate Mills’ Ratio over two separate ranges [0, 1], [1, «] of the argument. Some
new asymptotic expansions for this ratio are also obtained by an extended use
of the symbolic operator method, revealing incidentally that Ruben’s (1962)
expansion is a special but not necessarily superior case.

1. Introduction. Following accepted notation we define Mills’ Ratio to be
R(t) = f°° p(z)dz/p(t), where p(x) = (2r) % . Shenton (1954) defined
another ratio R(t), related to Mills’ Ratio, as R(t) = [¢ p(x)dx/p(t) and noted
that B(¢) + R(¢) = [2p(¢)]™". Inequalities for R(t) have been given by Gordon
(1941), Birnbaum (1950), Murty (1952), Sampford (1953), Boyd (1959),
and indirectly through the normal probability integral by Williams (1946),
Pélya (1949), Tate (1953), Chu (1955), and Haldane (1961).

Shenton (1954 ) has given continued fraction expansions and hence inequalities
for B(t). Ruben (1962) produced a new asymptotic expansion for R(¢) based on
some results of Franklin and Friedman (1957).

For large values of ¢ the usual approximating form for R(t) has been the
asymptotic series due to Laplace (1812):

Rt)=1/t— 1/ +13/ —1-3-5/{ ---, t>0.

This form is of limited use except when ¢ is fairly large. However certain con-
tinued fraction forms have been found to be better, for example, the original
Laplace form

and Shenton’s (1954)

t & 2t 3¢ 482 5
— 3+ 5— 7+ 9— 11+

The Laplace C.F. is fairly accurate when ¢ is moderate to large, but the rate of
convergence falls off rapidly as ¢ becomes small. The Shenton C.F. on the other
hand converges rapidly for small ¢, the rate of convergence falling off slowly as ¢
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increases. Thus, depending on the value of ¢, there appears to be a variety of
different approximating forms from which to choose.

Clenshaw (1957, 1962) has, ¢nter alia, developed the use of Chebyshev poly-
nomials as series approximations to many mathematical functions which satisfy
linear differential equations. Among the many advantages claimed for using
such series are that they are convergent (subject to weak restrictions), are
readily calculable, and that bounds for the error are immediately known when
truncating at any term of the series. The succeeding terms of the series are easily
determined from the preceding terms by means of a recurrence relation. Further,
by applying simple rules it is possible to manipulate such series approximations
as with an explicit mathematical function, for example, differentiating or inte-
grating it, an advantage not shared by continued fraction forms.

2. Chebyshev polynomial expansion for R(f) in the range [0, 1]. We shall
find it convenient first of all to give an account of Clenshaw’s method for finding
the Chebyshev series representation in [—1, 1] of a function f(¢) satisfying an
ordinary linear differential equation, before applying it to the present problem.
In terms of accepted notation 7'.(¢t) denotes the rth degree, Chebyshev poly-
nomial, and the first seven such polynomials are T,o(¢) =1, Ti(t) =,
To(t) = 26 — 1, Ts(t) = 4 — 3t, Tu(t) = 8¢ — 8 + 1, Ts(t) = 16t° —
208° + 5t, Ts(t) = 32¢° — 48t + 18 — 1.

Now Clenshaw’s (1957, 1962) procedure assumes that the prescribed function
f(%) is continuous and of bounded variation in the range [—1, 1]. This being so
the function and its derivatives can separately be expressed as series of Chebyshev

Polynomials as follows:

(@) = }aTo(t) + aiT1(t) + aaTa(2) --- , = Zo & (%)
FO) = 3a§”To(t) + of”Ta(t) + as”Ta(t) --- , = ‘fo, ai T (¢),

§=1,2,3 ¢

where £ (t) is the sth derivative of f(¢) with respect to ¢, and f?(¢) is the highest
order derivative of f(¢) which appears in the linear differential equation. From
a property of the T.(¢) it can easily be shown that

(1) 2ral” = a{4P — oSV, (r 2 1).
Let C,(g) denote the coefficient of T,(¢) in the expansion of g(¢) when r > 0,
and twice this coefficient when » = 0, so that C,(f) = a, . Then from the relation
(2) Tr+1(t) - 2tTr(t) + Tr—l(t) = 0:

it can be shown that C.(tf®) = %(alsy + ah), r = 0,1, 2, 3 ---;
§=0,1,2 .. g and hence

(3) Cr(tpf(s)) =277 io <€) a|(:)—p+2j| .

)=
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Now from the definition of R(¢) we have
(4) R'(t) —tR(t) +1 =0, R(0) = (x/2)*.

Operating with C, on the differential Equation (4) we have C,(R’) — C,(tR) = 0,
r=1,23---,0r

(5) ar — 3(@r1 + @r31) = 0.

’ ’ . . 7 ’
Now 2ra, = a;—1 — @r41, and (5) implies a;—1 — @r41 — 3(@r—2 + a» — @, —
a,42) = 0, hence 4ra, = a,—2 — a,42 . Re-arrangement of this recurrence relation
for the coefficients gives

(6) ar—2=4rar+ar+2, r= 2,3,4"' .

Choosing an integer N large enough to suppose a, = 0 for » > N, the precision
of the series expansion can be controlled at any level. Having chosen N we can
utilise the recurrence relation (6) to determine the coefficients in two sets, the
first in terms of the last non-zero coefficient ay , and the other in terms of ax_; .

We have chosen N = 11, and utilised the initial condition R(0) = 1a¢ — a2 +
as — a5 + as — a = (w/2)%, and (6) to obtain ay, . Also from (4) we can write
1Co(R") — 3Co(tR) + 1 = 0 and Ca(R') — Cy(tR) = 0 from which it follows
using (1) and (3), 3a; + a3 = —4. Thus we can determine ay; .

The final values of the coefficients so obtained are given in Table 1. As a check
we can determine R(1) from R(l) =fa+ai+ a4+ -+ + a0+ ay =
.655680, which agrees with the true R(1) up to the sixth decimal place.

Finally then we have

(A) R(t) = 1.6345308 Ty(t) — 1.2974425 T(t)
+ 4054731 Ty(t) - -+ — 0000001 Ty (2).

It is now a simple matter to determine R(¢) for any ¢ in [0, 1], knowing T'o(¢),
T.(t), and using (2) to calculate the remaining values of the polynomials for the
prescribed &.

Table 2 shows the number of terms of the series required to obtain specified
decimal precision in the range [0, 1] of .

TABLE 1

r ar r a,
0 3.2690 615 1 —1.2074 425
2 .4054 731 3 —.1076 724
4 .0252 763 5 —.0053 740
6 .0010 518 7 —.0001 917
8 .0000 328 9 —.0000 053
10 ©.0000 008 1 —.0000 001
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TABLE 2
Number of terms required to achieve specified precision in range [0, 1}

decimal places

3 4 5 6

2 6 8 10 11
4 7 8 10 1
.6 7 8 9 1
.8 7 8 10 11
1.0 7 8 9 1

3. In range [1, «]. In this case we seek a representation for R(¢) of the form
R(t) = (1/t)[3bo + 0. T2 (1/8) + -+ 1= (1/t)23' bT,(1/t),1 St < .
It will be convenient to put w = 1/t and consider the function y(u) where

y(u) = (1/u)R(1/u) = [3bo + biT1(u) + boTa(u) + -+ 1,0 S u < 1.

From (4) we can make the transformation and write down the differential
equation for y(u) as

(7) uy + (W4 1y =1

Boundary conditions for y(u) are y(1) = .655680 and y(0) = 1. Inspection of
the boundary conditions and (7) show that y(u) can be represented as a series
in even powers of u. Proceeding as in Section 2 we have C,.(u%') +
Cl(W?+ 1)yl = C(1), r =0,1,2, ---, then using (4) there follows

27%lbr—s + 3br—1 + 3b;41 + bris] + 27 b2 + 2b, + brys] + b, = 0,
r=24 .-,
which implies
2(r — 3)br—s + 6(r — 1)byy + 6(r + 1)brys + 2(r + 3)brys
+ 2[b—g = b,y + 2(br—s — bry1) + bryz — bryz] + 8(broy — byy1) =0
or
(8) (r—2)b—s + (3 +2)ba + (8r — 2)brya + (r + 2)brys = 0.

In this case we have chosen N = 26 and by using (8) obtained the coefficients
bz,- in terms of bzs . '

Now y(1) = 2by+ by + by -+ + by, and since y(1) = .655680 we can
obtain b, . These are tabulated in Table 3.

As a check we have y(0) = by — b2 + by — bg + --- — by = 1.0000003
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TABLE 3
r b, r b,
0 1.5792 832 14 —.0001 771
2 —.1611 570 16 .0000 754
4 .0345 335 18 —.0000 331
6 —.0096 581 20 .0000 149
8 .0031 367 22 —.0000 070
10 —.0011 253 24 .0000 038
12 .0004 341 26 —.0000 027
TABLE 4

Number of terms required to achieve specified precision in range [1, »]

decimal places

3 4 5 6

2 5 7 10 14
3 5 6 1 13
4 3 7 9 12
5 4 8 10 1
10 4 5 7 12

whereas the true value is unity, an error of three units in the seventh place of
decimals.

Finally then we have
(B) R(t) = (1/t)[.7896416 T\(1/t) — .1611570 T'2(1/t)

+ .0345335 T4(1/t) - -- — .0000027 To(1/2)].

Once again one can determine R(¢) for any ¢in [1, «] knowing To(1/t), T2(1/t),
and the recurrence relation (42> — 2)T,(z) = Tro(z) + Tra(z).

Table 4 gives some information on the number of terms of the series to be
included to give specified decimal precision in the range [1, «] of .

4. Some new asymptotic expansions, I. A heuristic derivation of Ruben’s
expansion. It was noted in the introduction that Ruben (1962) had produced an
asymptotic expansion for R(¢) using Shenton’s integral form

(9) R@) = [o R

and a theorem due to Franklin and Friedman (1957) concerned with asymptotic
expansions of Laplace Transforms.
Ruben’s expansion is as follows:

R(t) = fo(1/)/t + f(2/8) /€ + 21 £:(8/8) /T
+ -+ (N = DIfea(N/) /87 + 0™, 8> 0,
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where

g _d fema(x) — fooa(k/t) _
fo(x)_e%’ fk(x)—%{ x—k/t }) k_1)2’ .

We shall obtain this expansion by using the method of operators and go on in
Section 5 to obtain other expansions by a similar procedure.

Before proceeding it may be advantageous to restate some relationships be-
tween finite difference operators.
For example,

Ef(z) = f(z + 1), Df(z) = (d/dx)f(z), E = 1 + A, u = 3B} +E7),

(10 s=E'—FEYE=¢,
hence

(11) po = 3E — E" = 4(¢® — ¢®) = sinh D

or D = sinh™ pa.

It is clear that by integrating by parts the integral in Equation (9), we have
formally

fow e "f(z) dz = f(0)/t + f'(0)/8 + f7(0)/ + ---

t7(1 + D/t + D*/¢ + ---)f(0)
(1 — D/t)7f(0),

(12)

_ where f(z) = ¢ ¥

Carrying out the differentiation we have that
R(t) = ¢t7(1 — 1/ + 1-3/t* — 1.3-5/8 + --.),

which is the well-known Laplace asymptotic expansion. Now we may re-write
the right hand side of (12) as

1/t 1/t
a (ﬁ) 10) = ' o = 1O
(18) = (B"/DlL + (1 + E"(D/t — 1))
+ (1 + E"(D/t — 1))* + ---1f(0) --- .
The first term of this expansion is
(EV'/Df0) = fQa/m)/t = 7,
the second term is
(1 + BV(D/t — ))E(0) = £[f(1/t) + (D)t — 1)f(2/1)],
= (/) = @/OFER) — f2/)]
/) — (2 4+ B/,
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and similarly the third term is
(2/O)BEF(1/t) — (28 + £)f(2/t) + 3(9 + 58 + £)f(3/t)].

These three terms are identically equal to the first three terms of Ruben’s ex-
pansion. Each term in the expansion (13) is obtained from the preceding term
by operating with the operator [I 4+ E"*(D/t — 1)]. This operator appears to be
directly related to the recurrence form that Ruben (following Franklin and
Friedman) employs to obtain successive terms in his expansion.

6. Some new asymptotic expansions, II. The ué- and A-operator expansions.
We shall now consider symbolic operator expansions for an integral which is a
transform of the integral in Equation (9).

Let = z/t: then Equation (9) becomes

R(t) = 1[ ¢ exp(—2°/2t")dz.
tJo
Proceeding as before, we have

fo " h(z) de = h(0) + K'(0) + K7 (0) -+ -

(14) = (1 + D+ D* + - )h(0)
= (1 - D)—lh(o)’
where h(z) = exp(—2°/2¢"). Using relation (11) we may write
@ . B 1
[ ene de = e h(0)

1+ w + (w)* + (5/6)(ud)* + (2/3)(ud)*
+ (23/40) (u8)® + (23/45) (ud)° + (241/560) (u5)’
+ (87/105) (u8)® - - -1n(0).

Since h(z) is an even function of z it follows that (w8)**'R(0) = 0,
r=20,1,2, ---. Hence (15) becomes [7 ¢ *h(z)dz = [1 + (u8)* + (2/3)(ud)*
+ (23/45) (u8)® + (37/105) (u3)® + - - -11(0). Finally then

R(t) = 1 + 3" — 1) + (1/12)(¢™" — 467" + 3)
(D) + (28/1440) (7" — 6" + 15677 — 10)
+ (37/13,440) (67" — 867" 4 2867 — 5667 + 35) ...}.

No attempt will be made at this stage to investigate the asymptotic nature or
precision of this series but a table of estimates term by term will be obtained
over a fairly wide range of £. (See Table 5).

As an adjunct to the previous approach a different expansion may be obtained
using the forward difference operator A.

(15)
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Using relation (10) we have ¢ = E = 1 + Aor D = In(1 4+ A). We may
now express (14) in a slightly different form
(1 — D)7h(0) = [1 — In(1 4+ A)]7'A(0)
=[1 4+ A+ A%2 4 &°/3 + A6 + (7/60) A" + ---]h(0).
Carrying out the differentiation on h(z) = exp(—2z°/2¢") and putting z = 0,
we have
R(t) = £1 4 (¢ — 1) + 37" — 27" + 1)
(E) 4 B — 36 4 3 — 1)
+ 2@ — 467" 4 667" — 467 + 1) .-}
It is perhaps worth noting that the first two terms of this expansion taken to-
gether produce the first term of Ruben’s expansion. However it will be shown
that the first two terms of the expansion (D) using the operator (ud) gives a

better ‘first’ approximation to R(t), at least over the range of ¢ considered.
(See Table 5).

One advantage of the expressions (D), (E), and the succeeding one of the
next section is that the terms contain only exponentials. There are no products
of polynomials and exponentials as there are in Ruben’s expansions.

6. Some new asymptotic expansions, ITI. Laguerre-Gauss expansion. An
alternative expansion may be obtained, again from the integral form (9) by
using a Laguerre-Gauss quadrature formula as described in Hildebrand (1956,

p. 325).
1) [ @) do = 3 Hum farm) + (mD (2m)L 1),

where the Hy,m , T,m are known functions of k£, m, and 0 < ¢ < . Transforming
(16) by putting z = tx we have

(F) R@®) =¢" ~/o‘ e gy = 1 [Z H;, . exp (—2k m/285) -I-error]
k=1

Now as has been stated, the error term involves a certain order derivative of
f(2), where f(z) = exp(2’/2t).
Let v = z/t, then

f(z) = ¢(v) = "
Successive differentiation of this function gives
(@"/dv™M)é(v) = (—1)"Ha(v)9(v),

where H,(v) is the Hermite polynomial of degree » in v». Note that Ho(v) = 1.
Since (d"/dv™)¢(v) = t"(d"/dz")f(z), we have

(d"/de")f(z) = (—=1)"(1/")Hn(2/t)f(2).
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Thus the error term in (F) becomes

a7) [(m!)Y/ (2m) (1/£™) Hom(/8)e 22,

Now it is a property of the Hermite polynomials that
max; [Ham(§/0)e 7% = (2m)Y/27m),

hence (17) is numerically less than 2 "m! ¢*", and the error in R(¢) is less
than 27™m! " ‘

It is perhaps worth pointing out that both Ruben’s and the Laguerre-Gauss
expansions have the same order of precision, i.e. O(1/t"""). However in the
latter case we have an exact numerical bound to the error involved. In all cases
the amount of calculation involved in the evaluation of Ruben’s expansion is
considerably greater than that using the Laguerre-Gauss form for the same
precision.

TABLE 5

A numerical comparison of the various expansions

t Expansion a(®) g2(t) -~ gs(0) g4(t) g5(t) True
C .441249 .42760 .41559

2 D .5 .401633 .431183 .417583 .424105 .421369
E .5 .441249 .401633 .427058 .422551
F .441249 .425912 .420105 .421260 .421450
C .315320 .30441 .30424

3, D .333333 .300126 .305884 .304202 .304767 . 304590
E .333333 .315320 .300126 .304684 .305085
F .315320 .304690 .304450 .304608 .304591
C .242308 .23641 .23663 .

4 D .25 .235312 .236907 .236599 . 236668 . 236652
E .25 .242308 .235312 .236566 .236784
F .242308 .236546 .236638 . 236655 .236652
C .196040 .19269 .19281

5 D .2 .192312 .192873 .192798 .192810 .192808
E .2 .196040 .192312 .192746 .192845
F .196040 .192741 .192807 .192808 .192808
C .099501 .099022 .099029

10 D 1 .099010 .099029 .099029 .099029 .099029

E .1 2099501 .099010 .099025 .099029
F .099501 .099025 .099029 .099029 .099029

C) Ruben; D) ud-series; E) A-series; F') Laguerre-Gauss. ¢1(f) denotes the sum of the
first ¢ terms in each series.
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The expansions for R(¢) when m is 1, 2, 3, 4, 5 are as follows:

. . Error

m Approximation to R(t) less than
1 t—ie—uzt’ 1/2¢3
2 t71[.853553 exp(—.171573/¢%) + .146447 exp(—5.828429/t%] 1/2t8

3 ¢1[.711093 exp(—.086434/4%) + .278518 exp(—2.631860/¢%) + .010389 3/417
exp(—19.78170/¢?]
t1[.603154 exp(—.052019/¢%) + .357419 exp(—1.523841/t2) + .038888 3/28
exp(—10.2905/t2) + .000539 exp(—44.1337/¢%]
5 t1[.521756 exp(—.034732/t%) + .398667 exp(—.998854/t?) + .075942 15/4¢11
exp(—6.46714/2) + .003612 exp(—25.1044/£) -+ .000023 exp
(—79.8949/¢2]

The Laguerre-Gauss expansion for m = 1 is the same as the first term of
Ruben’s expansion.

In order to compare the precision of the Ruben, ud, A, and Laguerre-Gauss
expansions, we have tabulated in Table 5 the various estimates, term by term,
for a specimen set of values of .

In overall terms the most precise series to use in approximating to E(¢) would
appear to be the Laguerre-Gauss’ expansion, but in terms of simplicity of form
the ud-series would be reasonable. Ranking in terms of a combination of these
criteria, Ruben’s form might be placed third and the A-series a poor fourth.
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