OPTIMUM STRATIFICATION WITH TWO CHARACTERS!

By S. P. GHosH?
University of California, Berkeley

1. Introduction. An attempt will be made here to extend Dalenius’ (1950)
theory for univariate stratification to more than one variate. Here we shall be
concerned with the most general theory for stratification with bivariates. The
generalized variance of the sample means will be taken as a measure of precision
for the bivariate characters. We shall call a system of stratification the optimum
stratification, if it minimizes the generalized variance of the sample means.

In this paper we shall confine ourselves only to rectilinear stratification, i.e.,
stratification by lines parallel to the axes; and within this class, we shall look
for the stratification points for which the optimum stratification is achieved.
We shall assume that the number of strata are predetermined and the sampling
allocation shall be taken to be proportional allocation. To start with we shall
assume that the stratification variables are identical with the variables under
analysis, but afterward we shall dispense with this restriction.

2. Mathematical formulation. We shall make the following assumptions.

(i) The bivariates (z, y) have a continuous probability density function
f(z,y) in the finiterange xo S * S T, Yo = Y = ¥i -

(ii) The population is infinite.

Though these assumptions will not, in general, be satisfied, yet in practice
they will be approximately satisfied. Our problem is to divide this population,
defined over the rectangle [zo, zx] X [yo, ¥i], into & X I strata by dividing =
at points x; , @, - -+ , Z%—1 and y at the points y1, y2, -+, ¥ such that the
generalized variance of the means of the characters of a stratified sample with
proportional allocation is minimum with respect to choice of these cut-off points.
As our system of stratification of 2’s and y’s will be cutting across each other,
i.e., a two-way rectilinear stratification, our solution to the problem would be
optimum stratification among rectilinear stratifications. We shall need a set of
notation which we shall define below:

z5 Y
pi; = f f f(z,y) dz dy = proportion in the (%, j)th cell,

Ti-1 Y¥Yj-1

vj
feii = f f(z:,y) dy = marginal density of the jth cell of y evaluated

Yj-1

at the point z;,

Received March 14, 1962; revised March 12, 1963.

1 This paper was prepared with the partial support of the Office of Ordnance Research,
U. S. A., Grant (DA-ARO(D)-31-124-G183).

2 Now at Thomas J. Watson Research Center, Yorktown Heights, New York.

866

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éfr J%
The Annals of Mathematical Statistics. BINORN

www.jstor.org



OPTIMUM STRATIFICATION WITH TWO CHARACTERS 867

Ji; = f ' f(x,y;) dx = marginal density of the ¢th cell of z evaluated

Ti—1
at the point y;.
Hence it follows that

Zy Y5
Uzij = 1 f [ zf(z, y) dz dy = mean of z in the (7, 7)th cell,
Dij V=i g Yyja
z; y;
ohi; = z—)—l— f f ’ (% — pai)’f(z, y) dx dy = variance of z in the (3, j)th cell.
ij VZi—1 Y¥j—1

Similarly, we can define p,;; and o2,

Maiy; = 7 f ‘ zf(x, y;) dr = conditional mean of z in the sth cell of =

Wi Y1

evaluated at the point y; ,

i
Myzi = 1 f ' yf(z: ,y) dy = conditional mean of y in the jth cell of y

fzsj Yj-1
evaluated at the point z;,

g Y5
Ooyij = L f (% — paij) (Y — myis)f(2, y) do dy = convariance of x

ij VZi -1 YYj-1

and y in the (¢, 7)th cell,

Suppose we draw a stratified sample of size n, with n;; observations from the
(%, 7)th cell of this population, and calculate the following sample statistics.
Let

(%ijx , Yisx) = kth observation from the (7, 7)th cell in the sample,

k=12 - n;
) nij
Zi; = (1/n) 2 i = sample mean of z in the (7, j)th cell,
k=1
& = D D piif:;; = mean of  for the stratified sample.
]

Similarly, we can define 7,; and .
The sampling is independent among the strata. Hence

o= V() = Z ,Z D2 i3/ i
o= V(@) = Z ; D j0yii/nis

0o = Cov(&, §) = 22 D piioeyis/mij .
I



868 S. P. GHOSH

Hence the generalized variance (G) of the means of a stratified sample will be
given by the determinant

2
Oz Ozy

G =

Ozy Oy
3. Solution for proportional allocation. For proportional allocation with fixed
total sample size, the allocations are given by n;; = p;m. Hence we have
0 = D05 D Disoaii/ T 0 = Doi D DisOyii/ Ty oy = Dok Doj Diiayiil/ M.
THEOREM. The optimum stratification points (x:, ¥;), 1 = 1,2, -+, k — 1;
J=12,---,1— 1, among the class of rectilinear stratification, of a bivariate
p.df. f(z, y) with proportional allocation is given by

(3.1) z; = Dy(xi, y) + Dy(zs, y) fori=1,2, -+, k—1,
where
Zj fz.‘j(ﬂﬁ o+l — It:ij) Oy
2 Zj Jeiibzivti — poij) L

Dy(z: ’ y) = Zifz,‘j{(ﬂyz;j - I‘yi-}lj)(mi - #zi+1j)
— (”ya:;j - I‘yij)(xi - Ilt:cij)} 1

2 ZI fz;i(ﬂz +1j — Mzij)
\ 2 Foiil (ymg — by in1 i) (B — pa i)

Oz = (Byzis — Myis) (@ — poij) }
D4(xi, y) = a;‘} 2 fozif(”’zi+1j - ﬂzij)
Tay 2 Foii by it s — i) Gy i1 + Bis — Zbiyes)
6‘2’ 2 Zi fzij(”z i+l = #m‘j)
and
(3.2) Yi = Du(z, y;) + Ds(z, y;) Jorj=1,2,---,1—1,
where
2 f sy (i 1 — toij) (o 1+ oij — 2ibaiy;) Tay
2) Jiv; (i 1 — Byig) ol

Di(z, ;) = Zi fil[j{(”@illj — i 1) (Y5 — Myijp1) 2
- (Il':ciyj - ﬂzij)(yj - ”ﬂ'ij)} E!
2 Zi fiy,-(#yijﬂ - Mzn’i) Tz
2 Fugbaiv; — peiinn) (Y5 — byi 1)
- (I-‘:m’yj - ”zij)(yi — ”m’j)}

1

Ds(z, y;) = 2 .Z‘ Fiv; (g 41 — bawis)
Iay D i Fi(iyi 1 — Myis)
oz 2 Zi fiuj(ﬂuii+1 - #m’j)

The details of the proof are given in the appendix.
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RemaARk 1. As in the univariate case, the algebraic determination of the
optimum stratification points is a very difficult task, however, they can be
evaluated numerically by applying the method of bivariate iteration to Equa-
tions (3.1) and (3.2) with Dalenius’ solution (1950) for univariate as the starting
point for each variable.

CoROLLARY 1. Dalenius’ solution for univariate stratification with proportional
allocation follows as a special case.

Proor. In order to pass from the bivariate situation to the univariate case, we
shall consider the following type of limiting situation. We shall suppose that the
variable y degenerates on the z-axis, i.e., pyij = My it1; = Myey; = 0 and fo,;,
Kaii s Moot ; are independent of j. Hence Dy(x;, y) = 0 and (3.1) becomes
i = D3(xi, Y) = 3(koit1 + Mai).

CoROLLARY 2. The optimum double dichotomy point for a symmetric bivariate
dustribution s the center of gravity of the distribution.

Proor. Without loss of generality we can take the center of gravity of the
distribution to be (0, 0). The marginal distributions will also be symmetric
about zero, hence by application of Dalenius’ method to each variable separately
it follows that we may take the starting point of our iteration method as (0, 0).
Hence from symmetry it follows that ue i1 j41 = —lwij, Mo i1 § = —Mzi j41,
foii = fogim and pyey; = —pysip at 2, = 0, which implies Ds(z;, y) =
Dy(z;,y) = 0. Hence from (3.1) it follows that z; = 0. Similarly, from symmetry
it follows that uy i41 j1 = —myij, by ir1 5 = —iyi s, fi; = firro; a0 poy;s =

— May;s41 @t y; = 0 which implies Dy(z, y;) = Ds(z, y;) = 0. Hence from (3.2)
it follows that y, = 0. Hence the corollary is proved.

REmARK 2. Thus for well-known bivariate distributions as bivariate normal,
bivariate rectangular distribution, etc., the optimum double dichotomy point
is the center of gravity.

4. Optimum stratification when stratification is carried on a specific stratifi-
cation variable. As before, we shall assume the variables under analysis are
(z, y) and the stratification variables shall be denoted by (u, ») and they are
related in the following manner,

z=¢(u,v) + ¢
y='p(u,1’)+’7

where ¢ and y are such that ¢ *(z) and ¥ '(y) are defined. ¢ and 7 are random
variables with E(e) = E(n) = 0and p(e, ) = p(e, ¢) = p(e, ¥) = p(n, ¥) =
p(17, ¢) = 0 but p(¢, ¥) 5~ 0. The varlances of ¢, ¥, ¢, and 7 shall be denoted by
o ; oy, 0, and oy , respectively. o> and o are assumed to be known. In general
¢ '(z) and ¢ (y) will be multiple-valued functions, the only restriction that will
be imposed is that for a fixed value x = zo, y = %o ;dfl(xo), and ¢ (yo) intersect
one another only at a single point on the (u, »)-plane. In a very special case,
when ¢ is taken to be a function of only 4 and ¥ a function of only », then an
important invariant property is preserved, namely, a system of rectilinear
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stratification in the (¢, ¥)-plane will remain a rectilinear stratification in the
(u, v)-plane.

Now we can go through the same type of algebra as in Section 3 and the cut-off
points will be given by the same type of equations as (3.1) and (3.2) with the
following changes: ¢(u:, »;) will be obtained from (3.1) and¢(u;, »;) from (3.2)
replacing z by ¢, y by ¢, o2 by o5 + o> , and o2 by o5 + o> . Here also the method
of iteration has to be applied to find the values of ¢(u;, v;) and ¥(u;, »;). In
order to find the exact cut-off points we have to solve the simultaneous equations,

(4'1) ¢(ui7 VJ') = Qo, '/’(ui’ Vf) = bo

where ao and by are the right-hand side of (8.1) and (3.2), respectively, with the
substitutions mentioned above and ¢ = ¢'™ and ¢ = ‘™ where ™ and ‘™
are the mth iterated value of ¢ and ¢, respectively, and m is the number of steps
at which the iteration process stops.

By our assumptions, these equations (4.1) have only one pair of solutions,
which gives us our cut-off points.

Special case (I). When ¢ and ¢ are linear functions. Suppose ¢(u, v) =
au + gy, Y(u, v) = Biu + Bov. Hence in order that the condition of unique solu-
tion be satisfied, we should have ay8; — a8, # 0. Thus the solutions will be
u;i = (@B — boar)/(e1fe — 2f1) and v; = (arbo — Bia0)/ (B — azfr).

Special case (1I). When ¢ = ¢(u), i.e., @ function of u only and ¢ = Y(»),
i.e., a function of v only. In this case the condition for uniqueness of the solution
reduces to the condition that ¢ and ¢ are one-to-one functions of « and », re-
spectively. Hence the solutions are u; = ¢ (o) and v; = ¢ " (bo).

6. Appendix. We shall present here the details of finding the optimum strati-
fication points. We have to minimize G with respect to the points z.’s (¢ =
1,2, .-+, k—1)and y/’s(j =1,2,---,1 — 1). Now

2/ 2 ’
oG Oz Ogzy Oz Ogy
(5 .0) a—— = ’ a7
T Oz o, Ozy O
Y Y Y Y

where the primes refer to derivatives with respect to z; . Let us consider
(5.1)  (8/02:) (22 22 pujonss) = (8/0w:) (22 pijonss + z]: Dit1 9% i41 5)-
% 7 7

The other terms are independent of x; and hence vanish. Now

9Ps; v
&=]. F@iy) &Y = fuuis

ax’i Yj—-1

OPir1i _ _f”’ . - 1.
EY it f(xny) dy fzu )

and
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2 1 i vi 2. 2
o =_f. f (2, y) de dy — uli;,

Pij Jziy Yyj

1 Ti41

2
Oz i4lj =
Dit1j Y= Yj-1

Differentiating with respect to z; and simplifying, we get,

Pint 1(80% i1 i/0%:) = —Fu il (T — po 141 )’ — 0% i1 3}

Di(80%:5/8%:) = foiill (B — pass)” — o2is}

Therefore (5.1) becomes

(8/0%:) (Z: Ej;piﬂf:ii) = ; 02:1(8pii/9%:5) + ; Pii(80%:;/ ;)

Hence

(4]
f oz, y) dvdy — pzin; -

871

+ Z o2 i1 §(8Piys i/02:) + Z Dir1 (805 iy1 5/ 0%:)
J J

= 2 feii(@i = Mais)” = 2 Faii(@i — B i1 )’
J 2

= 2Zj fzij(uz L2 O M #m'j){xi — (kg ir1 5 + Mm)}-

(5.2) a‘:/ = (2113,/"1) ]Zfzei(l‘z i+l Ffzij) + (l/n) ;fz;i(ﬂiii - I‘: i+1 J')'

Using exactly the same technique we get

azi . 7
Pigt j L HLI —f. (@ — i) — o a1 i f(mi, y) dy.

Hence

2=

9x; :

vj
= Z,: (Byis — My is17) /; (iyii + my or1 5 — 29)f (s, y) dy.
i—1

; Dij f’zzn'i) =

a 2i' vi
Tyii _ f {(y — p,,,ij)2 - U'Zij}f(xi ) y) d?/;

ij
Bxf Yj—1

ox; Yj—1

J Yj-1

Using the definitions of f,,;; and py.,; finally we get

(5.3) U:I = (2/n) ;fzei(l‘u 2 S I"vij){l‘vzij -

Proceeding exactly similarly and on simplifying we get

(54)

a'ﬂlm = (1/n) zj:fz.'j{ (Myzii — I‘w;)(xi — Maij)

Fuyii + myin )}

2 f”i (= i) — (Y — g )W (s, y) dy

- (ﬂmi — My ip1 ,-)(x,- — Mz i+l j)}~
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Substituting (5.2), (5.3), and (5.4) in (5.0) and making use of the well-
known property of a determinant

a+b a @ oa b a
as + b, Cz_az Cs b e
we get
oG 1|2% ;fz;i(l‘z 41§ = Maij) Oz
9ar; n 0 ol
;fz.-j(ﬂfnj — M) Ozy
+ }z ;fiij{(p‘yz;i — byii) (B — bois)
(5.5) = (bywis — My ir1 1) (T — o i i} 05
b z]:fz,-i{(ﬂuz;j — byis) (T — paij)
+ % = (tyzii — My i1 1) (T — po s i}
Ty 2 ;fz;;’(uy w17 = pyii) {yis — 3Qyss + by i1))

= (2z:/n) Zj:fx;j(l-‘-z 17— Meij)oy + (Di/n) + (Dao/n)  (say),

where D; and D; are the second and third determinants without the factor 1/n.

Equating (5.5) to zero and dividing both sides by the coefficient of x; we
finally get
(5.6) z; = Dy(z:, y) + Da(zs, y)
where D;(z;, y) and Ds(z;, y) have been defined in Section 3.

As G is symmetric in 2 and y, hence dG/dy; can be written directly and on
simplifying we get (3.2)
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