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A NEW RESULT ON THE DISTRIBUTION OF QUADRATIC FORMS
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1. Introduction and summary. The distribution of the non-homogeneous’
quadratic form @ = Z{‘ a;(x; — b,-)z, where the z; are independent standardized
normal variables and the a; and b; are real constants with a; > 0, has recently
[1] been obtained as an infinite linear combination in scaled central and non-
central x” distribution functions in the form

L) PRS4= 3 e Fust/p) = 3 dip)Gusssnlt/p).

Here p is an arbitrary positive constant, F,i2;(-) is the distribution function
of x* with n + 2; degrees of freedom and Gyz2;.(-) is the distribution function
of x* with n 4+ 2j degrees of freedom and.non-centrality parameter

Kk = (;n bH

The main purpose of the present paper is to rederive the first of the two expan-
sions in (1.1), for the special case p < min; a; when the expansion is a proper
mixture representation, by a simple conditional probability argument which
may be of some general interest. At the same time the ¢;(p) will be expressed
in simpler and more appealing form® than in [1]. In essence, the distribution of
Q (including that of >_¢ a.z}) is found to be almost a direct consequence of the
distribution of the special non-homogeneous form » ¢ (z; — b;)°, that is, of
non-central x* with n degrees of freedom and non-centrality parameter

(li b9l

Specifically, the distribution of @ can be expressed as a weighted non-central
chi-square in the sense that the non-centrality parameter is not fixed but is
rather a random variable with a given distribution depending on the a@; and b; .

2. The distribution of §) in terms of x* distributions. On setting
e = (p/a)’zi — (1 — p/a)y:, i=1,2 -, m,
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1 Now at University of Minnesota.

2 The homogeneous quadratic form Zl" a; 7- is, of course, a special case obtained by
setting b: = 0.

3 It appears to be difficult to prove the equivalence of the two forms of {c;(p)} directly,
though this follows from the equality of the generating functions of the two sets of coeffi-
cients.
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where p is an arbitrary positive constant < min; a; and the z; and y; are inde-
pendent standardized normal variates, we obtain

PO s =P[5 (= (a/p = D' = a/p)'oi* < t/p .
Now, for fized y = (y1, -+, Yn), the variate

; {z: — (ai/p — Dyi — (ai/p)'0d’
is a non-central x° with n degrees of freedom and non-centrality parameter
k = x(y) defined by ¥ = 2.¢{(a/p — DYy: + (a:/p)hy>. However, it is
well-known that the distribution of non-central x” can be expressed as a mixture
of central x* distributions in which the weights form a Poisson series (see, e.g.,
[2], p. 247). Thus P[Q < t]y] = X5 ¢ [(4¢)”/j1Fns2;(t/p), from which we
obtain

0

(2.1) PQ =8 = 2 ¢(p)Fusas(t/p);

where

2 © , 1 2 i ) -,

- U (2‘; P ("é ‘IV: bf) 117 [: [3Q* (VY- (2m) ™™ v,

after substituting for x(y) and setting v; = (a:/p)'y: + (ai/p — 1)%; . Here
Q*(v) = 2t {(1 — p/adhvs + (p/ag)by?, and the last line of (2.2) shows
that ¢;(p) can be expressed in terms of the jth moment of a non-homogeneous
quadratic form in » independent standardized normal variables. Thus

(23) PIQ=<1= III (fl—’y exp( Z b) > _&M Foisi(t/p),

7

(22)

where 0 < p < min; a;,
(230) Q*(x) = (1 — p/adn + (p/a'v?

and the z; are (as before) independent N (0, 1) variables. In particular, we
may choose p = 1 if it is assumed, without loss of generality, that a; = 1.
It should be noted, from the first line of (2.2), that

0

(2:4) ¢i(p) 20(G=0,1,---),  Dep) =1

4 Justification of the interchange of the expectation and summation operators (i.e.,
term by term integration), implied in the derivation of (2.1) from the preceding equation,
is trivial.
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for 0 < p =< min;a;, ie., the ¢;(p) form a probability series for each p in the
stated range. (This confirms a result stated previously in (5.8) of [1].) Thus,
(2.3) is a representation of the distribution of Q as a mixture of scaled x* dis-
tributions. Furthermore, the series in (2.3) is uniformly convergent over the
extended t-axis —w <t < 4.

In [1], the ¢;(p) were expressed, for all p > 0, as expectations of polynomials
in linear and (homogeneous) quadratic functions of the z;. The present form
of the ¢;(p), for 0 < p = min; a;, namely,

o) = T1(v/a)! exp (—33 8- EIGQ ()i

is simpler and more suggestive. A convenient recursion formula for the c;(p) is
given in [1].
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