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1. Summary and introduction. The problem of two-sample rank order tests
is examined from the point of view of I. R. Savage (1956, 1957, 1959, 1962).
Under suitable restriction of the class of alternatives some rank orderings are
always more probable than (dominated by) others. Hence, if the rejection region
of a test contains the ordering ¢ it must also contain all orderings dominated by
c if the test is to be admissible. Thus, by counting the number of orderings
dominated by ¢ we arrive at a lower bound for the size of an admissible test
which rejects when c¢ is observed. Similar reasoning leads to an upper bound.
The counting is achieved by putting all orderings in one-one correspondence
with paths on a grid; all paths lying below or along the observed path corre-
spond to the orderings dominated by the observed ordering. An expression for
this number of paths is obtained. This expression is used to compute signifi-
cance bounds for a pair of illustrative examples. Finally, the main result for
the two-sample problem is extended to obtain upper and lower bounds for a
one-sample problem.

2. Two-sample case. Let X;, ---, X, be a sample from the distribution
with density f(z), and let Yy, - -+, Y, be an independent sample from the dis-
tribution with density g(y). We wish to test the hypothesis f = g against alterna-
tives for which the likelihood ratio g(u)/f(u) is monotone, say increasing.

Now, let the vector of ranks of the X’s in the pooled sample be denoted by
¢ = (c1, -+, cm) whose elements are in increasing order. If ¢’ = (¢1, - - - , )
is any vector in the sample space of ¢, we will say that ¢ dominates ¢’ (written
¢’ < ¢) provided ¢; < ¢; for all j. For example, in the case m = 3, ¢ = (134),
the ¢’ dominated by ¢ are [(134), (124), (123)]. 1. R. Savage (1956) has shown
that if ¢’ < ¢ (¢’ # ¢), then P(c’) > P(c) under alternatives with increasing
likelihood ratio.

Let @ be a rejection region for a non-randomized admissible test such that
¢ £ Q. Since Q is admissible, ¢’ ¢ @ whenever P(c') > P(c), hence ¢’ ¢ @ whenever
¢’ < c. Therefore, the size of @ cannot be less than T,(c)/T = L(c), where
T.(c) is the number of ¢’ < ¢, and T = (™}"). In other words, if ¢ is the ob-
served ordering then no admissible test can reject the hypothesis at levels less
than L(c). Alternatively, if any admissible test has size less than L(c), then ¢
is not in the rejection region for that test.

The number T, (c) may be computed by representing ¢ as a path on a grid
from the point (0, 0) to the point (m, ¢, — m), thus: Starting from (0, 0) take
the jth step to the right if j is an element of ¢, otherwise take a step up. Then
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(5,5)

(0,0)
Fig. 1.

the number of ¢ < ¢ may be found by counting the paths which lie entirely
below or along the path representing c. Now we observe that if a path does not
satisfy this condition, then it must pass through at least one of the points ¢; =
(j—1,¢;—j+1),7=1---,m — 1. Thecase m = 5,n = 6,¢c = (2, 3,
5,7, 10) is illustrated in Figure 1. The heavy line is the path corresponding to
the observed ordering ¢, and the circled points are the g;’s.

Therefore, the number of distinet paths from (0, 0) to (m, ¢, — m) which
cross the path ¢ is equal to > f;h; , where

h; = total number of paths from g; to (m,cn —m) = <mc'i;j_j 1) , and

f; = number of paths from (0, 0) to ¢; which do not pass through ¢ ,
k=1 ---,7—1
= (total number of paths from (0, 0) to g;)

j—1

— > (number of paths from (0, 0) to g;—) - (number of paths from ¢;- to i)
k=1
That is
. i1 C— e

Hence, T..(¢) = number of paths which do not cross path ¢

m—1
_ Cm _ Cn — Cj r
® - () -E i)
where the f; are given by (1). Finally, T»(c)/T gives the desired lower bound,
L(c).

Similarly, we can find an upper bound U(c) such that every nonrandomized
admissible test of size greater than U(c) will have the ordering ¢ in its rejection
region. This can be obtained by interchanging the roles of the X’s and Y’s,
thus: Let ¢ denote the vector of Y-ranks corresponding to the vector of X-ranks,
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c. For example, if m = 3,n = 4, ¢ = (134), then ¢ = (2567). Then the desired
upper bound is U(¢) = 1 — T.(é)/T.

3. Examples. Suppose we have observed 7 X’s and 10 Y’s and we are inter-
ested in significance levels of 10 % or less.

(a) The ordered ranks of the X’s in the pooled sample are ¢ = (2, 5, 6, 9,
10, 11, 16). Then, using (1) we get

h=1  fi=2, fi=7  fi=16, fi =62,  fo = 158;

and using (2) we get

0= () ()1 ()2 ()~ Q- (s =100

T = <177> = 19,448.

Hence the hypothesis will not be rejected by any admissible test which has
significance level less than L(c) = 1,940/19,448 = 10.0%-. For this example,
Ue) = 77.3%.

(b) The ordered ranks of the X’s in the pooled sample are ¢ = (1, 2, 4, 5, 6,
10, 13). Then ¢ = (3,7, 8, 9, 11, 12, 14, 15, 16, 17) and T1(¢) = 17,461. Hence
the hypothesis will be rejected by every admissible test which has significance
level greater than U(c) = 1 — 17,461/19,448 = 10.2%. For this example,
L(c) = 04%.

4. One sample case. Let X;, ---, Xy be a sample from a distribution with
density f(z). We wish to test the hypothesis that f(z) is symmetric about zero.
Now let the observations be ranked according to magnitude and let the vector

of ranks of the positive observations be denoted by ¢ = (¢1, -+, €m), m < N.
Further, let .¢ = (¢m—t41, - , Cn) be the rank vector of the & largest positive
observations, k = 0,1, --- , m.

Ifc = (e1, -+ ,c), r < N, is any vector in the range of ¢, we will say that

¢ < cprovided r £ m and ¢’ < ,¢, as defined in Section 2. For example, in the
case N = 6, ¢ = (134), the ¢’ < ¢ are [(134), (124), (123), (34), (24), (14),
(23), (13), (12), (4), (3), (2), (1), (none)].

It is easy to show that if ¢’ < ¢ (¢ # ¢), then P(¢') > P(c) provided we
consider only those alternatives for which, whenever 2 > 0, f(—z)/f(x) is
greater than one and increases with 2. [In this regard we have Theorems 2.1
and 3.1 of Savage (1959).] Within this context, the significance level of an ad-
missible test which rejects when the observed vector is ¢ cannot be less than
(number of ¢’ < ¢)/2".

However, we have that (number of ¢’ < ¢) = D _m (number of ¢’ < i¢) =
> wo Ti(xe), where Ty is given by (2). Hence the desired lower bound is
> wo Tw(xe)/2". The corresponding upper bound is easily found to be 1 —
D iz Ti(xe) /2 .
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