INVARIANT PRIOR DISTRIBUTIONS'

By J. HARTIGAN?

Princeton University

0. Summary. The paper is mainly concerned with determining prior distribu-
tions on ignorance over parameter spaces, using invariance techniques similar
to those of decision theory. Prior distributions are rarely determined exactly
by such techniques and a number of less compelling methods for exact deter-

mination are given.

1. Introduction. Suppose we are observing a random variable X, with proba-
bility density f(x | 8), 6 € 2, and we wish to make inferences about 6 on the basis
of the observed value z of X.

The Bayesian method is to assume some density A(8) over € to represent our
prior knowledge of 8. The posterior distribution of 8 given z, obtained by apply-
ing Bayes’ product formula, has density g(8 | z), where

9(8]) = f(z | 0)h(0).

A traditional difficulty is deciding on a density A(6) to represent our prior
knowledge. If we could decide on a prior density to represent ignorance of 0,
we could suppose our prior knowledge to be equivalent to some specific set of
observations of X, and obtain a density representing the prior knowledge using
Bayes’ formula.

Our object here is to obtain prior densities on ignorance using invariance
techniques.

Jeffreys [1], 1946, appears to have been the first to base selection of a prior
density on ignorance on properties of the family f(z | ). We will follow Jeffreys’
practices of allowing prior densities to have [oh(8) d§ = =, of leaving all prior
densities unnormed, and of identifying prior densities which differ by a constant
multiplier. [We will also allow posterior densities the same freedom.]

2. Inversions. Let X be a random variable with density f(z | 8), « £ S, an open
subset in R”, and 6 £ Q, an open subset in R*. Let f(x | ) have a continuous
f-derivative for all &S, 0¢Q. Let F denote the family of densities
f(z|6), e

The posterior density g(6 | z) is fundamental; our interest in prior densities
is so that we can determine the posterior densities by the equation
g(82) =« f(z|0)h(6).

We wish to find reasonable posterior densities gr(6 | ) for each family F.
An ¢nversion g is any function which assigns a posterior density gr(8|z) to
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each F. An inversion kernel h is the associated function which assigns a prior
density kr(6) to each F and which determines an inversion g through the relation
gr(8|z) = f(z|6)he(6).

Essentially an inversion kernel is a method of assigning prior distributions.
It is necessary to consider a method of assigning prior distributions to a class of
F’s rather than to a single F, because our basic technique is to relate prior dis-
tributions for different F’s.

3. Desirable properties for inversions.
I. S-labelling invariance. Suppose that F and F* are two families of densities
such that there exists a differentiable 1-1 transformation z of S onto S*, z — zz,

such that
f*(2x | 0) (dzz/dz) = f(x | 0) forall z¢8,0eQ.

We say that g is S-labelling invariant if for each such transformation z,
gr(8] ) « g(0]2).

If we let X* = TX denote the transformed random variable, Property I
ensures that the observation X = z has the same relevance to 6 as the observa-
tion TX = Tz.

I1. Q-labelling invariance. Suppose F and F* are two families of densities such
that there exists a differentiable 1-1 transformation 7' from @ onto * such that

(x| To) = f(z|0), all z¢8,0eQ.

We say that g is Q-labelling invariant if gp+(T6 | 2) (dT6/d0) « ge(6 | z).

Essentially F and F™ are the same family of distributions, identified by the
transformation § — T'6. Property II ensures that the posterior distributions for
F and F* are also identified by § — 7.

II1. Q-restriction tnvariance. Suppose that F is the family of densities
f(z]6), 0 &Q, and F* is the family f(x | 6), 6 £ @*, where Q* is an open subset of
Q. We say an inversion g is Q-restriction tnwariant if for each such F.
F*, gr(0]2) = gr(0]2), 09

Essentially this means that the discrimination among 6 in @* provided by x
is not affected by what values of 6 outside Q* are possible.

IV. Sufficiency. Let f(x|6), z ¢S, 02 and f*(z|6), 2 ¢ 8% 62 be two
families F', F* of densities; let T be a differentiable but possibly non 1-1 trans-
formation from S to 8% and X* = TX be such that the conditional distribution
of X given X™ is independent of 9. We say X™ is sufficient for 6; once we know
X™* it is irrelevant to 6 which particular X gave rise to this value of X * since
these values of X are distributed, conditionally on X*, independently of 4.

An inversion ¢ is sufficiency tnvariant if ge+(6 | Txz) < gr(0|z). This ensures
that the observation X* = Tz has exactly the same relevance to 6 as X = z.

V. Direct product. Suppose X and Y are independent random variables with .
densities fi(z | 8) and fa(y |¢), respectively, so that the product variable
Z = (X, Y) has density f(z, y | 6,¢) = fi(z| 0)fe(y | ).
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Let F; be the family of densities fi(z | 6), 8 € Q1 , let F, be the family of densities
fo(y| o), d @, and let F = F; X F, be the family of densities f(z, y | 6, ¢),
6¢ Ql y ¢ & 92 .

An inversion g is direct product invariant if gr(8, ¢ | 2, y) < gr, (0| 2)gr,(¢ | ¥)-

VI. Repeated product. Suppose that X, , X, , - -+, X,, are m independent ran-
dom variables with the same distribution as X, so that the product random vari-
able X* = (X;, Xz, -+, X,) has density f* (21,25, - -+, Tm | 0) = [[f(z: ] 6).

Let F be the family f(z | 6), 6 ¢ @ and let F* be the family f*(z;, - , zn | 6),
0eQ.

An inversion g is repetition tnvariant if

gyt(Ole,xz, "';xm) ocf(x2,-w )xmlg)gF(lel);

i.e., if g obeys the Bayesian product formula.

Whereas the previous desiderata do not require that g have the form
gr(0 | x) < f(z|6)hr(0), and can reasonably be applied to non-Bayesian in-
verting methods (e.g. the fiducial method), the repetition invariance property
implies that g be determined by ¢-(6 | z) « f(z | 0)hr(8) for some A (and is then
equivalent to requiring that 2z(8) « hg«(68) in the above terminology).

4. Relatively invariant prior densities. Suppose that & is the kernel of an inver-
sion which is S-labelling, Q-labelling, and Q-restriction invariant. Let F' be a
family of densities f(z | 0), 8 £, let Q;, 2, be open subsets of 2 and let z be.a
1-1 differentiable transformation of S onto S and of Q; onto Q, such that

f(zz | 20) (dex/dz) = f(z | 6) forallze S, 6.
Then Properties I, IT, ITI, imply that for some c,
he(20) (dz6/d6) = chr(8) forall 09, .

Any density which satisfies this relation for all z is a relatively invariant prior
density. In general there are not enough transformations restraining Ar to de-
termine it uniquely.

The simplest example is the case of symmetric location where F consists of
densities f(z | 0) = k[(z — 6)’], —0 <z < 0, —0 < § < .

Here transformations iz = 2 +¢,270 = 0 +c,2;0 = —x +¢,2:0 = —0 + c,
leave F invariant and so the prior density kr(6) satisfies hr(8 + ¢) = K¥hr(9),
he(—80 + ¢) = K hz(8). In this case 0 is uniformly distributed.

Further examples of relatively invariant densities are given in Table 1.

6. Left and right invariant densities. Let F be the family of densities
fx|8), ze 8, 0 eQ. Consider the set Z of differentiable 1-1 transformations
z of S onto S and 2 onto 2 such that

flzx | 20) (dex/dx) = f(z | 6).

The set Z forms a group under function product. We can say that for z ¢ Z,
2z is to 20 as x is to 6; therefore 26 is to zx as 6 is to x. This argument has been
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used explicitly in estimation and testing theory by various authors since 1945
(see Lehmann [5]).

Barnard [1] appears to have been the first to use such an argument in deter-
mining prior densities on ignorance. Suppose that Z is simply transitive, i.e.,
for each 6, 6% £ Q there is a unique z ¢ Z such that 26 = 6*; this means that if we
choose some 6, € 2, there is a 1-1 mapping from Z onto Q given by z — 26, , and
there is a unique group on @, with identity 6,, isomorphic to Z under the
mapping.

Barnard suggests that in this case an appropriate prior density on © would be
the left Haar measure with respect to the group; in our notation he would require
that for each z leaving F invariant,

hp(20)(d26/d0) = hr(0) forall #eQ.

If 66" denotes the product of § and 6" in the group induced on € by Z he would
require

he(6°9) (d6°6/d6) = hp(6) forall ¢, 0¢eQ.

Fraser [2], [3], has shown in this case where the group Z is simply transitive,
that the fiducial method, with invariant pivotal function, is equivalent to taking
a prior density on © to be right Haar measure with respect to the induced group
and using the Bayesian product formula to obtain the fiducial distribution of
6 given z. (In general the fiducial method is not Bayesian.) Specifically he would
require

he(06")(d66°/d0) = hp() 6,0 Q.

In general these left and right invariant prior densities will be different members
of the family of invariant prior densities, satisfying, for each z leaving F in-
variant, for some constant c,

he(26) (d20/d0) = chr(0) all feQ.

6. Locally invariant prior distributions. For general families F' there are no
transformations z leaving F invariant; even if some transformations exist they
rarely determine the prior distribution uniquely. The next three paragraphs intro-
duce a method of assigning prior distributions to families of densities f(z | ),
0 £ Q, @ an open subset of R, the real line, such that

(8"/067) logf(x | 0), r <2, existforall zeS, 0eQ

and have finite second moments.

The Q-restriction property ensures that the value of hz(6) in the neighborhood
of 8, depends only on the values of f(z | 8) in the same neighborhood of 6. .z(6)
is determined only up to a constant multiplier so it is appropriate to find the
value of (8/86) log h(6) at & = 6, . This value should depend only on the deriva-
tives (8/96") log f(x | ) forr = 0,1,2, --- .

In fact if we could find a transformation 7' on a neighborhood of 6, to another
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neighborhood of 6, such that 76, = 6, , and from S onto S, such that
f(Tz | T6)(dTz/dzx) = f(z | 6), zeS,0 near 6,

we would have

h(T6)(dT6/d8) = ch(6), 6 mnear 6o,
and so at 6y, (8/860) log h(8) is given by
aTe i) a daTe a
(1) [Eﬂ_]o l:é—é log h(e):lo + % log - = [(—9—0 log h(0):|0.

(We are here using (9/96) as a symbol for ordinary differentiation; (dT'6/d)
means the Jacobian of the transformation § — T40; in this case (dT'6/df) =

|aT6/36).)
If we could find a transformation x — Tz so that the first three derivatives at
6y , including the 0th, of the equation

f(Tz | T6)(dTz/dx) = f(x|6), xe&8, 6 near 6, namely,
f(Tz | 60) (dTx/dx) = f(x | 60),
(3) [0T6/36)[(9/96) log f(Tx | 6)]o = [(3/36) log f(x | 6)]o
2 [9°T6/36°1s[(3/96) log (T | 6)]o + [0T6/00]c[(°/06%) log f(T= | 6)1o
= [(°/06%) log f(x | 0))o

were satisfied for some [970/86], and [9°T6/86"],, we could use the values of
[9T6/36), and [6°T6/36%)y determined by the equations, to determine
(8/86) log h(8) at 6 = 6, , using (1).

It now seems plausible to define a locally invariant prior density h to be deter-
mined at 8 = 6, by the solution of (1); namely,

(9/006) log h(6) = To/T1(1 — T1)
if T, and T, are such that there exists a transformation x — T’z with
[f(Tz | 6)lo(dTx/dx) = [f(z |0
T1[(8/86) log f(Tz | 6)]o = [(3/99) log f(z | 6)]o
| T3[(8/96) log f(Tx | 6)]o + Ti[(8°/86") log f(T | 6))o
= [(8°/06") log f(T | 6)].

Essentially we are saying that (9/960) log 2(8) depends only on properties of
(3/36) log f(x | 6) and (8*/86%) log f(x | 6).

7. Asymptotically locally invariant prior densities. Even if we assume that
(8/96) log h(8) depends only on (3/99) log f(x | 6) and (8%/96") log f(x | 6), in
general we cannot expect to find T'; and T such that there is a transformation
z — Tz satisfying (5) and (6).

2)

(3)
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However the repeatability condition says that the prior density should be the
same for the random variable X = (X;, X,, ---, X,) with family of densities
II#(x:|6), 69 as for the random variable X; with density f(z:|6). As
n — o, the asymptotic distribution of the variables (9/99) log f(z | 9),
(8%/96") log f(z | 6) is determined up to O(n™?) by the first and second moments
of these variables.

Accordingly let us require Equations (5) and (6) to be satisfied up to first and
second moments of the variables (8/36) log f(z | 6), (8°/36) log f(x | 6).

Then we have, writing f, = [(8/36) log f(x | 6)]sand f; = [(8°/86%) log f(z | 6)]o,

7 TE(f)) = E(f1)
(8) T.E(f,) + TiE(f:) = E(f)
9) TiE(f}) = E(f?)
(10) T\TLE(f1) + TiE(fif:) = E(fifs)
(11) TIE(f1) + 2TTiE(fif) + TiE(f3) = E(f3).

These equations lead to the unique density (8/96) log h(0) = —E(fifs)/E(f2)
provided that E(f;) = 0. We call this density asymptotically locally invariant
(ALI).

8. ALI densities for general parameter spaces. Analogous considerations in the
case Q is an open subset of R* lead to the following general definition of an ALI
density.

DEFINITION. Suppose f(z | 6), £ 2, an open subset of R*, is a family of proba-
bility densities, and that at 6§ = 6, the variables (8/96.) log f(x | 6), 7 = 1, -k,
and (8/96;)(8/d6;) log f(x | 8),7 = 1, -k,j = 1, -k, have finite first and second
moments with

E[(0/960:) logf(z | 6)] = 0,7 = 1, -k,
E[(3/30:) log f(x | 6)(8/80;) log f(z | 6)] + E[(8°/36:96;) log f(= | )] = 0,

=1, -k, j = 1, -k. Let g;; be the 7, jth element of the inverse of the matrix
with 1, jth element E[(9/90;)(9/30;) log f(z | 6)]. Then the ALI (asymptotically
locally invariant) prior density h is defined at § = 6, by

——Iogh(a) ZZE(

36, —-log f

log f) Giis

80; 90, a0,

if a solution to these equations exists.

Routine algebra shows that an inversion kernel which assigns to each family
of probability densities an ALI prior density generates an inversion which has
Properties I, IT, ITI, IV, V, VL.

ALI prior densities have a particularly simple form for the case when f(x | )
is a member of an exponential family. If



842 J. HARTIGAN

#(@16) = exp (Z 1(8)bi(x) + L(6) + B<x>),

0 £ Q, an open subset of R, is such that § — (1,(8), &(6), - - - , 1(9)) is a differ-
entiable 1-1 transformation of @ onto I(22) say, and if the family f(x | §), 6 £ @
satisfies for all § ¢ @ the regularity conditions detailed in the above definition,
the ALI prior density is determined by requiring (4;(9), --- , 1(8)) to be uni-
formly distributed over 1(2). This simplifies the determination of the prior
density in many cases. This prior density for the exponential family was first
suggested by Huzurbazar (Jeffreys [5], p. 189).
Examples of ALI densities are given in Table 1.

9. Jeffreys’ Prior Density. Jeffreys [4], 1946, first suggested a number of tech-
niques for basing prior distributions on ignorance on properties of the family of
densities f(x | 8), 0 £ 2. (Perks [7] independently suggested a technique for ob-
taining prior densities when the parameter space is 1-dimensional, which is
equivalent to Jeffreys’ principal technique.)

If we let fi; = E((8/36;)(3/36;) log f), then Jeffreys’ main suggestion was for
a priority density h(8) = |f;|*. This assignment of prior densities generates an
inversion which satisfies Properties I, I, III, IV, V, V1. In order to point up the
difference between Jeffreys’ density and ALI, let us consider the case of a family
of densities F' such that there exists a 1-1 differentiable transformation z of S
onto S, z — zr and of 2 onto 2, § — 26, such that

f(zx | 20) (dzx/dx) = f(z | 6) for ze8,0eQ.

Then Jeffreys’ density satisfies h(26) (d28/d8) = h(8) whereas an ALI density
satisfies 1 (20) (dz6/d8) = ch(6) for some constant c. The difference therefore is
between left invariance and relative invariance. In fact if we pursue the heuristic
arguments of Sections 6 and 7 requiring that the prior density be left invariant,
we will obtain that the existence of a transformation x — T’z such that

T T
sTolo) UF = falo), %7 Lolow s(Ta|T0) = Flog f(a0),

suggests h(76)(dT0/d0) = h(6), where 0 and T6 are any two values of 6 and
dT6/d6 is any constant.
Asymptotically this reduces to

(dT8/d9)’E[((8/3T6) log f)*] = E[((3/36) log)’]
implies
h(T6)(dT6/de) = h(8), or h(0) = {E[((8/6) logf)}}}

which is Jeffreys’ form. An easy generalization extends the argument to general

parameter spaces.
If J(6) denotes Jeffreys’ prior density and H(6) the ALI prior density,
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J(0)*H(8)?, where o + 8 = 1, is an assignment of prior densities satisfying all
the usual properties.
10. Suggestions for use. If we use the family f(z | 6) to determine the prior

density on ignorance, h(8), we must restrict the circumstances under which we
can use the usual Bayesian product law. An attractive property of the Bayesian

technique is that the posterior distribution of 6 given the observations z;, -+ , Ta
summarizes the information about 6 given by the observations; if we make some
further observations 1, 42, - -+ , ym We can calculate the posterior distribution
of givena;, s, -, &n, Y1, - , Ym Dy using Bayes’ product law

g(0] =z, y) « fly|0)g(8]2),
with prior distribution equal to the posterior distribution of § givenzy, -+, Tn.

If we base the prior density on ignorance on the form of f(z | 6) we can no longer
consistently use the product rule in this way unless the z and y have the same
family of probability densities. To illustrate suppose we obtain r successes in n
trials from a binomial distribution with parameter 6; the ALI prior density is
1/(8(1 — 6)). We then sample from the binomial distribution until 7" successes
are obtained; suppose n’ trials are necessary; the ALI prior is 1/(1 — 0). If
we find the posterior distribution for 6 given r, n first we get g(0|r, n) «
(1 — 6)""" and using the product formula g¢(6 [r, n, v, n') «
g1 (1 — )", If we find the posterior distribution for 6 given 7', n' first we
getg(0]r,n') « (1 — 9)" " tandsog(8|rn,r,n) « g (1 — g)mt T
In particular the posterior distribution obtained using these techniques may de-
pend on the “sampling rule”.

The referee has pointed out an apparently undesirable property of the rule
ALI Suppose X;, X;, - -+ , X, are observations from N (0, a’); then

fwle) = ((2m)™H"exp (=} 22 47/d")

leads to an ALI prior h(s) = 1/4°, and the posterior distribution of o given
Ty, - , &, is such that > 2%/d" is x* with (n + 2) degrees of freedom.
If X, -+ , X, are observations from N (g, a”), then

f@lm o) = (@m) ™ exp{—3 2 [(z — w)/ol}

leads to an ALI prior h(o, p) = 1/¢°, and the posterior distribution of ¢ given
&1, -, Ta is such that S (z — £)°/d"is x* with (n 4+ 3) degrees of freedom
(where n¥ = >~ «). This is contrary to the ordinary association of degrees of
freedom with information; for we lose a degree of freedom if we have information
that u = 0. '

Jeffreys’ prior yields a posterior distribution of o given z;, < -+ , T, such that
S 2*/o% is X with n degrees of freedom in the case N (0, o), and > (z — %)*/d"
is x> with n degrees of freedom in the case N (&, ") ; Jeffreys has himself expressed
dissatisfaction with his rule in this case.
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The composite prior density J°H * would yield D #*/¢” is x* with (n — 2)
degrees of freedom in the case N(0, ¢°) and > (z — £)*/¢” is x* with (n — 3)
degrees of freedom in case N (u, ¢°); this is simply a makeshift device to deal
with this particular anomaly.

In conclusion, there seem compelling reasons for requiring a prior density to be
relatively invariant. This will frequently not restrain it much. In selecting a
specific prior density there are less compelling heuristic reasons to use ALI; any
member of the family J*H®, a« + 8 = 1, has Properties I, II, - - - , VI and is
therefore worthwhile considering.
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