ON PRE-EMPTIVE RESUME PRIORITY QUEUES!

By Perer D. WELCH

IBM Corporation, Yorktown Heights, N.Y.

0. Summary. The following queueing problem is considered. Customers arrive
at a service facility at r priority levels. At each priority level the input process
is Poisson and these processes are mutually independent. The service times
have an arbitrary distribution function which depends upon the priority level.
A single server serves under a pre-emptive resume discipline. Results are ob-
tained which characterize the transient and asymptotic distribution of the
queue sizes and the waiting times. The analysis proceeds through reductions of
the processes of interest to corresponding processes in a simple generalization
of an M/G/1 queue.

1. Introduction. This paper discusses the problem of pre-emptive resume
priority queues with Poisson inputs, general service times, and a single server.
Such queues have previously been studied by Miller [5], Jaiswal [3], Gaver [2],
and Keilson [4]. This treatment differs from previous analyses in that it is based
upon discrete parameter imbedded Markov processes. These imbedded proc-
esses turn out to be equivalent to corresponding processes in simple generaliza-
tions of M/G/1 queues.

We assume that customers arrive at a service facility from r different sources
which are assigned priority levels 1, - -- | r. Level 1 has the highest priority and
level r, the lowest. Those customers arriving at priority level & will be called
k-customers. From each source, or equivalently at each priority level, the ar-
rivals form a Poisson process with parameter A, and these processes are mutually
independent. Formally, let

Te.n = arrival time of the nth arriving k-customer,
70 =0, and 6pn = Ten — Tino1.

Then, for fixed &, {6, : m = 1,2, --- } is a sequence of identically distributed,
independent random variables with

PlbpnSa} =1—¢ ™ x
=0 z

and the processes {6x,,} for &k = 1, - - -, r are mutually independent.
We assume that the service times have an arbitrary distribution which is a
function of the priority level. Formally, let

1%

A

Xk.n = service time of the nth departing k-customer.
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Then, for fixed &, {xx,» :n = 1,2, --- } is a sequence of identically distributed,
independent, positive random variables. We let Gr(z) = P{xx,» < z}. Further
we assume that the processes {xz.} £ = 1, ---, r are mutually independent
and are independent of the interarrival times. We define

ou(s) = foco ¢ “dGi(s),Re(s) =0, and a = '[oxde(x).

We will be considering a single server system subject to a pre-emptive resume
priority service discipline. In the study of priority queues three service disci-
plines have received major attention: the head-of-the-line, pre-emptive resume,
and pre-emptive repeat. In the head-of-the-line discipline, the initiation of
service is determined by priority, but once the service of a customer has begun,
it is continued to completion without interruption. In the pre-emptive resume
discipline, the initiation of service is exactly as with the head-of-the line dis-
cipline; however, if a k-customer is being served, any customer arriving at
priority levels 1 through & — 1 will pre-empt the server. That is, for the leading
k-customer the absence of customers at priority levels 1 through £ — 1 is a
necessary and sufficient condition for both the initiation and continuation of
service. The pre-emptive resume discipline is further characterized by the re-
sumption of service at the point it was interrupted; that is, the total time the
server is involved with the nth departing k-customer is his service time, xx,, .
The pre-emptive repeat discipline differs from the pre-emptive resume in that,
if a customer’s service is interrupted, it must be started anew. In all three dis-
ciplines the service within the priority level is on an order of arrival basis.

It will be convenient to think of our process as a multiple queue process with
the customers at each priority level waiting in separate queues. Hence, we de-
fine

&.(t) = size of the kth queue at time ¢
= number of k-customers waiting or being served at time ¢,
departure time of the nth departing k-customer,
b = &(1in + 0).
We further define
. n(¢) = virtual waiting time of the kth priority level

g
S
I

= amount of time a k-customer arriving at time ¢ would
have to wait before his service begins,

Mem = M(7en — 0) = waiting time of the nth arriving k-customer.

For the pre-emptive resume discipline under consideration the following results
have been reported: Miller [5] characterized the transient and asymptotic
behavior of {n;(¢)} for k = 1, ---, r; Jaiswal [3] studied the case r = 2 and
characterized the transient and asymptotic behavior of the bivariate process
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{(&(), &(2))} (Keilson [4] also discussed this case), and Gaver [2] characterized
the transient and asymptotic behavior of {£,(¢)} for & = 1, -- - , 7. In this paper
we determine the transient and asymptotic behavior of the sequences {£.,} and
{men} for k = 1, .-+, r and point out a new argument yielding Miller’s results
on the virtual waiting times. Our arguments take the form of reductions of the
above processes to comparable processes in simple generalizations of M/G/1
queues.

2. Some preliminary results and observations. We will find it useful to con-
sider an alternative description of the input process. Consider the process of all
arrivals. Assume this process is Poisson with parameter A, = 3.7, \;. Now
let {do:n = 1,2, ---} be a sequence of identically distributed, independent
random variables taking on the values {1, 2, ---, 7} and let Prob {d, = ¢} =
Ni/Ar, 7 =1, -, r. If we assign the nth arriving customer to a priority level
according to the value assumed by the random variable d, , we have an input
process equivalent to that described earlier. That this is true follows from the
fact that in both cases

Prob {exactly j1 1-customers arrive, - - - , j, r-customers arrive in an
interval of length #§ = JTie (Nit)?5e /5 1

and that for any set of nonoverlapping intervals these arrival events are in-
dependent. By the same token, we can consider the arrivals at the first % priority
levels (k = 2, ---, r — 1) as either the superposition of % independent Poisson
processes with parameters A, ---, A\, or as a single Poisson process with
parameter A, = 2 s\ and with priority determined by probabilities \;/A ,
oo, M/

We will have occasion below to consider the sequence of service times of
customers of the first & priority levels (¥ = 1, ---, r) taken in their order of
arrival. That is, we will be interested in the quantities

Xx.n = service time of the nth arriving customer of priority level < k.

From the above remarks on the input process, it follows that, for fixed &, {%x.» :
n = 1,2, ---} is a sequence of identically distributed, independent random
variables with P{Xe, < @} = 251 NiGi(2) /A . We define

Hy(2) = Pl S 2} = 5 MG /A,
Pi(s) = /0» e dHi(s) = ; Nii(8) /As,

@© k
ap = f x de(x) = Z)\iai/Ak.
0 =1

We now make an observation, in the form of a lemma, on the occupation
time of the server and the busy periods of a G/G/1 queueing system. The oc-
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cupation time of the server at time ¢ is the sum of the remaining service time
of the customer being served at time ¢ and the service times of all customers in
the queue at time ¢ It is identical to the virtual waiting time if the service is
in order of arrival. The busy periods are the periods during which the server is
continuously occupied.

LemMma 1. Consider a G/G/1 queueing process subject to the following conditions:

(a) the server is busy whenever there are customers in the queue,

(b) the total time any customer is in contact with the server is his service time.
For such a process, the occupation time of the server at time t(t = 0) and the lengths
of the busy periods are independent of the service discipline. In fact, they are the
same even if customers are not served continuously but have their service broken up
tnto parts.

Proor. Forn = 1,2, --- let 7, = arrival time of the nth arriving customer,
X» = service time of the nth arriving customer, and 5(¢f) = occupation time
of the server at time ¢. The lemma is obvious if we consider a sample time func-
tion of the process {7(¢): ¢ = 0}. Regardless of the service discipline, 7(¢) has
jumps at the points 7, of size x, and in between the jumps it either decreases
with slope —1 if it is greater than zero or remains unchanged if it equals zero.
The lengths of the busy periods are determined by 5(¢); hence, their independ-
ence of the service discipline follows immediately.

Finally we note that, because of the pre-emptive nature of the service dis-
cipline, the behavior of quantities concerning the kth queue depends only on
the first £ queues and not in any way upon the (k¥ + 1)st through rth queues.
With respect to the kth queue, the situation is the same as if it were the last
or rth queue. It is only with respect to the server that there is a difference, for
in the one case he would be idle when the 1st through kth queues were empty,
while in the other case, he might be busy serving a (¢ 4+ 1)st through rth cus-
tomer.

3. The queue sizes. We will assume initial departure points 4,0 for k& = 1,

-, r and study the sequences {£., : m = 0, 1, 2, - -+ }. We first observe that,
because of the last remark of Section 2, {£,,:n = 0, 1, --- } behaves exactly
as the comparable process of an M/G/1 queueing system with input parameter
M and with a service time distribution function Gy(z). Its behavior has been
extensively studied; see, for example, Takécs [6].

Let us consider then {&,,:7 = 0, 1,2, ---} for k = 2. We will show that
this process is a homogeneous Markov chain identical to the comparable process
in a simple generalization of an M/G/1 queue. Consider some fixed pair k, n
and suppose that %, > 0; that is, suppose that the nth departing k-customer
leaves someone in the kth queue. Since a k-customer is departing, because of the
pre-emptive nature of the discipline, it must be that the 1st through (¢ — 1)st
queues are empty. Hence, the service of the next or (n 4+ 1)st k-customer will
begin immediately. The time from the beginning of his service until he departs
we will call his service-plus-interruption time (this duration was called the
“completion time’ by Gaver [2]). This service-plus-interruption time is equal
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to his service time, plus the service times of all 1-through (¢ — 1)-customers
arriving while he is being served, plus the service times of all 1-through (k¥ — 1)-
customers arriving while they are being served, etc. Hence, it is a busy period
of the combined first £ — 1 queues with his service time as the initial waiting
time. Now from the remarks of Section 2, we know that the input to the first
k — 1 queues is Poisson with parameter A;_; . We also know that if the 1-through
(k — 1)-customers are served in order of arrival, they have a service time dis-
tribution function Hy_;(z). Now, Lemma 1 of Section 2 states that the busy
period of an M/G/1 system is independent of the order in which the customers
are served and also is unchanged if a particular service time is broken up into
parts. Hence, his service-plus-interruption time is equal to the initial busy period
of an M/G/1 system with input parameter Az , service time distribution func-
tion H;_;(z), and an initial waiting time with distribution function Gi(z). Thus,
from Takdcs [6] (remark 4, page 63) we have that this service-plus-interrup-
tion time has a distribution function with Laplace-Stieltjes transform
orls + Ara(1 — ve_1(s))} where v:(s) is the unique root with minimum absolute
value of the equation z = ®,(s + Ax(1 — 2)). Hence we have, for &, > 0,

&ms1 = &k,n — 1 -+ [number of k-customers arriving during a
(3.1) random length of time whose distribution function has
Laplace-Stieltjes transform ¢i{s + Ar_1(1 — yr—(s))}].

This is the same relationship as that for an M/G/1 process with input parameter
M and with a service time distribution whose Laplace-Stieltjes transform is
#r(s + Aea(1 — vea(s))).

Next, suppose that &, = 0. This means that the nth departing %-customer
leaves the first & queues empty. Now, during the time from i, t0 7,41, the
time of the next arrival of a k-customer, the occupation time of the server with
respect to the first ¥ — 1 queues will build up. (By the occupation time of the
server with respect to the first ¥ — 1 queues we mean the length of time required
to complete the service of all the customers in the first ¥ — 1 queues.) In other
words, when the next k-customer arrives, the server will have a certain occupa-
tion time with respect to the first £ — 1 queues. We will define

pr.ne1 = Occupation time of the server with respect to the first
k — 1 queues at the time 74 441, given &, = 0.

Tu(z) = Plowan < 3},  Eu(s) = f’ e dTy(z), Re (s) = 0.

Ti(x) is independent of n because of the Poisson nature of the arrivals and the
fact that at time 71, the first & — 1 queues are empty. Now the (n + 1)st
k-customer will have to wait until the first £ — 1 queues are empty before his
service can begin. Consequently, by an argument exactly parallel to one given
earlier, he will have to wait a length of time equal to the initial busy period of
an M/G/1 system with input parameter A;_; , service time distribution function
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H;_1(z), and an initial waiting time distribution function T%(x). From Takécs
[6], (remark 4, page 63) we have that this “waiting” time has a distribution
function with Laplace-Stieltjes transform Ei{s + Ara(1 — vi-1(s))}. We will
call this “waiting’” time his delay time.

We will now determine =,(s). Applying Lemma 1 of Section 2, we know that
the occupation time of the server with respect to the first £ — 1 queues at time
Tka -+ ©is the same as the occupation time of server at time ¢ in an M/G/1
queueing process with input parameter A;—; and a service time distribution
function Hyx_1(z) when at time zero the occupation time of the server is identi-
cally zero. Hence, we have from Takécs [6] (Theorem 1, page 51) that

E{e—pk’"+lslTk'n+1 —_ T]lc,n = t} = exp {St — [1 it @k_l(s)]Ak_lt}
(3.2) ¢
{1 — sf exp {—su + [1 — &_1(s)]Ar1u}Po(u) du}

where [T e *'Po(t) dt = 1/{s + Asa[l — vx-1(s)]}. Removing the condition
in (3.2), Ex(s) is given by
Ek(S) — E{e—mc,n-us}
(3.3) ° ' , _
= )\kf E{e Pk,n+18|7_k’n+1 — Tkn = t}e Mt dt.
0

Now, (3.2) and (3.3) determine =;(s), but in a very awkward manner. Fortu-
nately, through (3.3), Zi(s) can be determined directly. In fact, Takécs [6],
in his determination of (3.2), obtained and used the following result

(.
f B{6™m+ 1 1y — i = the " dt
0

(3.4) ° —st
_ 1= §f0 ¢ "Polt) di N ¢/{s + Al — viea(9)]}
s — &+ Apall — Ppa($)) s — ¢+ Al — Pa($)]

If we make the substitutions s = A and ¢ = s in (3.4), we have from (3.3)
and (3.4) that

Ne — )\ks/{)\k + Ak_l[l - 'Yk—1(>\k)]}
Ne — S + Ak_l[]. —_ ‘I’k—l(s)]

_ MAr — s — Ay (W]
Ar — M v O)][Ax — 8 — Ap—1 Pr—a(8)]

Er(s) =

and hence that

(35) Ei{s + Aa(l — wa(s))} = Melhs E&ksj—ﬁcl:lj,z_lcl_(l)\(;%[); Zk_sl]()\k)}] .

Now we are assuming that &, = 0. In this case we have shown that the
(n + 1)st arriving k-customer will have to wait a delay time until his service
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begins and that the distribution function of this delay time has Laplace-Stieltjes
transform Ei{s + As—1(1 — vz—1(s))}. Once his service begins, his service-plus-
interruption time is the same as that obtained in the case &, > 0 for again
at the time his service begins, the first ¥ — 1 queues are empty. Further, the
waiting time and service-plus-interruption time are independent. Hence, we
have, for &, = 0,

£;,n41 = number of k-customers arriving during a random length
of time whose distribution function has Laplace-Stieltjes

transform
Eids + A1 (1 — via(8))}uls + Apa(1 — via(8))},

Equation (3.1) for &, > 0 and Equation (3.6) for &, = 0 plusindependence
conditions which follow trivially from the Poisson nature of the arrivals show
that {&.,, :m = 0,1,2, --- } for £ = 2 behaves as the queue size of the following
generalized M/G/1 system. Customers arriving when the server is busy are
served immediately after the departure of the customer ahead of them. How-
ever, customers arriving when the server is idle must wait a random ‘delay
time’’ until their service begins. The transient and asymptotic behavior of the
queue size and the waiting time for this system is characterized in Appendix B
of Welch [7], and the results are summarized in the Appendix of this paper.
The asymptotic results were obtained earlier by Finch [1]. The specific equiva-
lence to {&.,.} occurs when the service time and delay time distribution func-
tions have Laplace-Stieltjes transforms ¢i{s + Ar(1 — vi(s))} and
Eils + Ar1(1 — vea(s))}, respectively.

Now by implicit differentiation of yi(s) = ®:(s 4+ Ax(1 — vi(s))), one can
easily show that

(3.7) Tim, o 27:(8) _ —<Zk) M ""‘) <1 - g"" a,->_l.

ds =1 Az

Using (3.7) we have that the expectation of the service-plus-interruption time
is given by

’ k—1 -1
—lim,,o dor{s + Ax1(1 — y2a(s))}/ds = o <1 - Z )\iai> ,

=1

(3.6)

and, using (3.5) and (3.7), that the expectation of the delay time is given by
—lim,,o dE{s + Axa(1 — yra(s))}/ds

_ {[Ak A O] [1 - k}; A a,-]}_l e

Further, if we let ¢(s) = éwf{s + Ar—1(1 — v5-1(s))} and let g(w) for |w| < 1

be the unique root with minimum absolute value of the equation z =
wp(M(1 — z)), which in this case is the equation

z2 = whr{M(l — 2) + Apa[l — v (1 — 2))]},
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then it is shown in Welch [7] (page 105) that g(w) = wer{Ar(1 — 6r(w))},
where 6;,:(w) is the unique root with minimum absolute value of the equation

2 = (M/AB(A(L — 2) + 3 (W/AB(Ar(1 = 2)).

A series expansion for 6;:(w) is also given in Welch [7].

If we apply the above remarks, we obtain the following two theorems by
substitution into Lemmas 2 and 3 of the Appendix.

TaeorEM 1. Fork = 2, 4f D =i Nja; < 1, then {&m:n =0,1,2,---} isa
homogeneous Markov chain. The generating functzons Lin(2) = D im0 Plben = j}2,
l2| < 1, are given by

ZLk,o(Z)

nz-m Lia(2)w" = — wp(\(1 — 2))

wly o(g(w))qb(?\k(l — )1 — 2)) — I | <
[z — wp(M(1 — 2)I[L — g(w)n{M(l — g(w)) 17

+ 1, |w <1

where
#(s8) = ¢fs + Aa(1 — 712a(s))},

u(s) = M — s 4+ Aea(vr-1(8) — i1 (W))]
[Ar — Ae—rvea ()] [N — ] ’

g(w) = wer{Ar(l — i x(w))},

O x(Ww) s the root with minsmum absolute value of the equation

k—1 .
2= (uw/M)aAn(1 = 2)) + 2 (M/8e)gi(A(1 — 2)),

and vi(s) is the root with minimum absolute value of the equation z = &.(s +
A(1 — 2)).

If 21 Na; > 1, then there is a nonzero probability that the service-plus-in-
terruption times and the delay times never terminate.

TaEOREM 2. For k = 2, if D o1 Nja; < 1, then the Markov chain {£n : 1 =
0, 1, 2, ---} s ergodic and, independent of the initial distribution, we have
limn_.w P{ Ek,,, = j} = Py(j) where {Pr(7)} 7s a probability distribution whose
generating function s given by

= g 3wl = 2)ez — Ar + Ay (1 — 2L — DA Ml
2 P(j)e = Mz — o(u(l — 2))]

where ¢(s) = ¢u{s + Axa(1 — v21(8))} and yi(s) is the root with minimum
absolute value of the equation z = ®,(s + A(1 — 2)).
If 2% he; = 1and D %1 Ma; < 1, then independent of the initial distribu-

tion limuse P& = 7} = 0, for all 5.
If 27500 Na; > 1, then lim,.., P {nth k departure occurs} = 0.
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It is interesting to note that the limiting distributions {P:(7):j5 = 0, 1, --- }
given by Theorem 2 are the same as the limiting distributions {lim;.., P(&.(¢) =
Jj):7 =0,1,2, ---} obtained by Gaver [2]. The generating functions of the
limiting distributions {lim;.,. P(&(t) = 7): 7 = 0, 1, ---} are given by his
equation (8.4) with the substitutions p = Meog(1 — D imi hiai) ™, v = Aws,
A=, B(D) = (285 Naa)Ai2i(1 — 20050 has) T, (=) = @, Uls) = duls +
Aia(1 — v1(s))} and L(s) = yia(s).

4. Waiting times. We define

Win(z) = Prob {nes < 2},  Qua(s) = f " dWin(z) Re(s) Z 0.
0

Because of the pre-emptive nature of the service discipline, the process
{mnm:n = 1,2, ---} behaves exactly as the waiting time process of an M/G/1
queueing system with input parameter A; and with a service time distribution
function Gi(x). The transient and asymptotic behavior of such processes have
been extensively studied; see, e.g., Takécs [6].

For k = 2, 3, ---, r from the remarks of Section 3, we know the following.
The service-plus-interruption times (that is, the times from the beginning of
service to departure) are independent, identically distributed random variables
whose distribution function has Laplace-Stieltjes transform ¢i{s + Ay_i(1 —
vi—1(s))}. If an arriving k-customer finds the kth queue nonempty, his service
begins immediately after the departure of the k-customer ahead of him. If an
arriving k-customer finds the kth queue empty, he must wait a delay time until
his service begins. This sequence of delay times is a sequence of identically
distributed, independent random variables whose distribution function has
Laplace-Stieltjes transform Ei{s 4+ Ara(1 — vi_1(s))}, defined by Equation
(3.5). Further, these delay times are independent of the service-plus-interrup-
tion times.

Hence, the waiting time processes {n., :n = 1,2, --- }, for £ = 2, are special
cases of the situation discussed in the Appendix, and with the proper substitu-
tions, we obtain the following two theorems from Lemmas 4 and 5.

THEOREM 3. For k = 2, if 2 o1 hia; < 1, then the Q..(s) are given by

- ’w()\k — S)Qk,l(s)
lﬂk,n(s)w = Ne — 8§ — ’w)\kd)(s)

wg (W), 1 {M(1 — g(w)) (M — $)u(s) — N
e — s —whep(s)][1 — g(w)u{(l — g(w))}]

Re (s) = 0, lw] <1

M

n

+

where ¢(s), u(s), and g(w) are as defined in Theorem 1.

If D% Naw > 1, then there is a nonzero probability that the delay and service-
plus-interruption times never terminate.

THEOREM 4. For k = 2, 4f 2 vq hiow < 1, then Wi n(x) converges as n — o,
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to a distribution function Wi(x) which has Laplace-Stieltjes transform

[s + Aka(1 — v ()L — ZI;=1 Ao
8 — M+ Medrls + Apa(l — yi—a(s))}
where vi(s) s the root with minimum absolute value of the equation z = di(s +
Ax(1 — 2)).
If D% i hie = 1and D_t21 hiow £ 1, then limy,e Win(z) = 0, for all z.

D (s) =

If D% hiow > 1, then limy. P{nth k& departure occurs} = 0.

It should be remembered that the above theorems concern the time a k-
customer must wait until his service begins and that the time from the beginning
of service until he departs is a service-plus-interruption time with a distribu-
tion function whose Laplace-Stieltjes transform is ¢x(s + Ap—1(1 — vz—1(8))).

It is interesting to note that the limiting distribution Wy(z) is identical to
the limiting distribution of the virtual waiting time obtained by Miller [5].

The relationship of the waiting time and the queue size is such that
D20 Pi(5)2’ and Qi(s) should satisfy the equation

jgo: P57 = ¢((1 — 2)%(M(1 — 2))

where ¢(s) = é{s + Ara(l — vz-1(s))}. Comparison of Theorems 2 and 4
show that our results do satisfy this check.

6. The virtual waiting times. The transient and asymptotic behavior of the
virtual waiting times {n:(¢)} £ = 1, -- - , r was characterized by Miller [5]. We
will, in this section, show how these processes can also be reduced to the com-
parable process in a simple generalization of an M/G/1 system.

Because of the pre-emptive nature of the service discipline {m(¢): ¢ = 0}
behaves exactly as the virtual waiting time of an M/G/1 queueing system with
input parameter A\; and service time distribution function Gi(z). The transient
and asymptotic behavior of this process has been extensively studied; see, e.g.,
Takécs [6]. _

Hence, we will consider {:(¢): ¢ = 0} for £ = 2. Let us first suppose that
() > 0. In this case 7:(¢) equals the remaining service time of all those waiting
and being served in the first & queues plus the service times of all those 1-through
(k — 1)-customers arriving while they are being served plus the service times
of all those 1-through (k£ — 1)-customers arriving while these arrivals are being
served, etc. In other words, 7;(¢) has the distribution function of a busy period
of the first £ — 1 queues with an initial waiting time equal to the remaining
service time of all the customers in the first & queues. Hence, if 7:(f) > 0, the
arrival of a 1-through (¥ — 1)-customer will not affect it since we have already
accounted for the time required to service all such customers. However, the
arrival of a k-customer will increase 7;(¢) by the service-plus-interruption time
of a k-customer. We saw in Section 3 that this service-plus-interruption time
has a distribution function with Laplace-Stieltjes transform ¢i{s + Ai—1(1 —

vi-1(8))}
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Next, suppose that 7;(¢) = 0. In this case, the arrival of any 1-through k-
customer will increase 7:(¢) by a busy period of the first ¥ — 1 queues with the
service time of the arriving customer as the initial waiting time of the busy
period. Now, if we consider the arrival process of 1-through k-customers, we
know from the remarks of Section 2 that it is a Poisson process with parameter
A and that the service times, taken in the order of arrival, constitute a sequence
of independent, identically distributed, random variables with a distribution
function H,(x). Hence, by an argument parallel to those given in Section 3, if
m(t) = 0, it is affected by a Poisson arrival process with parameter A; and an
arrival of this process will increase it by a random time whose distribution
function has Laplace-Stieltjes transform ®{s + Ax—1(1 — ¥e—1(s))}.

Now, from the remarks of Section 2, k-customers arrive in the process of all
1-through k-arrivals independently and with probability A./A;. Hence, the
process {n:() : t = 0} behaves exactly as the virtual waiting time in the following
single queue, single server system. The input is Poisson with parameter A; . If
the queue is empty, an arriving customer always joins it and has a service time
whose distribution function has Laplace-Stieltjes transform ®{s + Aza(1 —
vi—1(8))}. If the queue is not empty, an arriving customer joins it with probability
/A and departs without service with probability 1 — \./A; . If he joins the
queue, his service time distribution function has Laplace-Stieltjes transform
ois + Aea(l — vaa(s))}

The above single queue, single server system is a special case of the following
generalized M/G/1 system with the addition of balking. There are two service
time distribution functions, G.(z) and Gy(z). If a customer arrives and finds
the server idle, his service time has distribution function G.(z) while if he ar-
rives and finds the server busy, his service time has distribution function Gs(z).
The virtual waiting time of this process with the addition of balking is charac-
terized in Appendix B of Welch [7].
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APPENDIX

In the body of the paper we reduce the queue size processes and the waiting
time processes of pre-emptive resume priority queues to comparable processes
in the following generalized M/G/1 system. If a customer arrives and finds the
server busy, he is served immediately after the departure of the customer ahead
of him; however, if he arrives and finds the server idle, he must wait a random
delay time before his service begins. These additional delay times constitute
a sequence of independent, identically distributed random variables, independent
of the service times. This process was previously studied by Finch [1].
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We will now give results which characterize the transient and asymptotic
behavior of the queue size and waiting times for this process. Proofs of the re-
sults on the asymptotic behavior can be found in Finch [1]. Welch [7] (Appendix
B) contains proofs of both the transient and asymptotic results. We let the
service time have expectation « and a distribution function G(x) with Laplace-
Stieltjes transform ¢(s). We let the additional delay time have expectation 8
and a distribution function H(x) with Laplace-Stieltjes transform u(s). We let
A be the parameter of the Poisson input process.

We first give two lemmas characterizing the behavior of the queue size. We
define

£, = queue size immediately after the nth departure, n = 0, 1, --- .

The value n = 0 corresponds to the initial departure point.
LemMA 2. The process {£, :m = 0,1, 2, - -+ } 25 a homogeneous Markov chain.
The generating functions

L.(z) = %P{E” = k)" l2] =1
are gien by
> no__ zLO(z)
2, L0 = o T =)

who{g(w) }¢(AN(1 — 2))[ep(AN(1 — 2)) — 1]
[z — we(M(1 — 2))II1 — g(w)u{M1 — g(w))}]
where g(w) s the unique root with minimum absolute value of the equation z =
wop(M(1 — 2)).

LemMmA 3. If Aa < 1, then the Markov chain s ergodic and independent of the
initial distribution, we have limg-o P{&, = k} = Pr, k = 0, 1, 2, --- where
{ Py} is a probability distribution with generating function

+ lw| <1

> © 1 — oW1 — 2))[zuN(1 — 2)) — 1]
kgap"z R IERY: z — wop(A\(1 — 2)) el = 1.

If A = 1, then limy.q P{E, = &} = 0, for all k.

We now give two lemmas characterizing the waiting time. We define
7. = waiting time of the nth departing customer
Wa@) = Plm S 2}, uls) = [ 6 (o) Re (s) 2 0.
0

Lemma 4. The Q,.(s) are given by the following generating function:

= < a_ wh — s)(s) wg(w)u A1 — g(w)) (N — s)u(s) — ]
,.Z=:1 as)u’ = N —s—w(s) A — s — wr(s)][1 — g(w)p{N1 — g(w))}]

Re (s) =2 0, lw| < 1,

+
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where g(w) s the unique root with minimum absolute value of the equation z =
wp(\(1 = 2)). o

LemMA 5. If Na < 1, then, independent of Wi(z), W.(x) converges to a dis-
tribution function W(x) as n — o, where W(x) has Laplace-Stieltjes transform

1= (O —8)u(s) =
14+MN N—s—(s) °

If No = 1, then independent of Wy(z), we have for all z
limpee Wa(z) = 0.
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