ON THE PROBABILITY OF LARGE DEVIATIONS OF FAMILIES OF
SAMPLE MEANS!

By J. SETHURAMAN?

University of North Carolina and Michigan State University

1. General summary. Results concerning the exponential convergence to
zero of the probability of large deviations of the sample mean have already been
obtained in the literature for instance, in Cramér [5], Chernoff [4], Bahadur and
Rao [1], etc. We establish similar results about the exponential convergence to
zero of the probability of large deviations of the sample distribution function,
and more generally, of families of sample means.

2. Introduction and summary. Let (@, S, P) be a probability measure space.
Let X1(w), X2(w), --- be a sequence of ®-measurable random variables with
values in X which are independently and identically distributed with common
distribution u(-). Here & is a separable complete metric space and ® is the
class of all Borel subsets; u(n, w, -) is the sample probability measure of X;(w),
-+ . X,(w), namely, the probability measure that assigns masses 1/n at each of
the points Xi(w), ---Xa(w).

Let f(x) be any real valued measurable function on & with ff(a:)p.(dx) < oo,
Then the strong law of large numbers due to Kolmogorov states that

(1) P{w:f(Xl(w)) + .- +f(Xn(w)) _ ff(x)y(dx) _)0} =1.

n

Again, when fe” @yu(dx) < o, for all ¢, the above result has been improved
upon as follows, by Cramér [5], Chernoff [4], Bahadur and Rao [1], etc.

o ’f(Xl(w)) + -+ f(Xu(w)) _/M)M(dx) > }

n
- IOg P(f) 6)

1
2) ﬁlog P{

where 0 < p(f, ¢) < 1 and will be defined in (14). We interpret this result in
words by saying that the probability of large deviations of the sample mean
tends to zero exponentially.

Let % = R*, be the Euclidean space of k dimensions. Let F(x) and F(n, », x)
represent the distribution functions corresponding to u(-) and p(n, », -) re-
spectively. The Glivenko-Cantelli theorem states that

(3) P{w:supy |[F(n, v, x) — F(x)| — 0} = 1.
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We now ask the question whether the probability of large deviations of the
sample distribution function will tend to zero exponentially. We answer this
question by the following theorem:.

TuEOREM 1. For ¢ > 0,

(4) (1/n) log P{w:supx [F(n, @, x) — F(x)| Z ¢} — log p*(F, ¢)

where 0 < p*(F, ) < 1 and p*(F, €) will be defined in (26).

Now we can interpret F(n, w, X) as the sample mean of a certain real valued
function or as the sample probability measure of a certain subset of . Corre-
sponding to each of these interpretations we can generalise the above theorem
as follows. The proofs of all these theorems are given in Section 4.

TraeoreM 2. Let § be an equicontinuous’ class of continuous functions from X to
the real line. Let g(x) be a continuous function such that [f(z)| < g(x) for each f
in § and such that [e"“u(dx) < « for all t. Then for ¢ > 0,

ff(x)u(n, w,dz) — ff(x)u(dx)

2 of =07,

1
- log P {w: SUps.s

where T is the closure of & under the uniform convergence on compacta® (u.c.c.)
topology and p(F, €) will be defined in (15).

TaeoreM 3. Let § be a class of continuous functions from X into R” that is
compact under the u.c.c. topology. Let uf " be mon-atomic for each each f in F.
For each a in R and f in & let A(f, a) be the set {z:fi(z) < a1, -+ fi(x) £ a}.
Then for e > 0,

(1/n) log P{w:supse sups [u(n, o, A(f, 8)) — w(A(f, @))| > ¢ — log p*(e)

where 0 < p*(e) < 1 and p*(e) will be defined in (26).

These results are allied to those of Sanov [11] and could be possibly deduced
from them. However elementary and straightforward proofs are presented here.

Section 3 deals with the necessary preliminaries and some well known lemmas.
Section 4 gives the proofs of Theorems 1, 2 and 3 and Section 5 contains some
of their applications.

A result related to Theorem 1, giving some upper bounds to the probability
on the left hand side of (4) may be found in Kiefer and Wolfowitz [9]. Weaker
forms of Theorems 2, 3, 4 and 5 have been obtained by Rao [10]. A result ex-
tending Theorem 4 but weaker in other respects may be found in Wolfowitz [14].
Theorem 6 extends the results of Blum [3]. Theorem 7 is an extension to Banach-
space valued random variables.

3. Preliminaries. A sequence of measures {r,} on (&, ®) is said to converge
weakly to », v, = » in symbols, if for every bounded continuous function k on X,

fh(a:)un(dx) —>fh<x) v(dz).

3 For a definition see Section 3.
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In such a case, for any 6 > 0, there is a compact set K in 9 such that
m(K)21—46 for n=1,2, -,

and
W(K)=1-—6.

This result may be found in Billingsley [2].

A family of functions & is said to be equicontinuous, if for every 6 > 0, there
is an r such that |f(z) — f(z")| < & for all f in & whenever d(z, z') < r, where
d is the metric on X. A sequence of functions {f,} on X is said to converge uni-
formly on compacta (u.c.c.) to a function f, if f,(z) converges to f(x) for each
z and the convergence is uniform on each compact set in . A theorem due to
Ascoli (for instance see Kelley [8], Chapter 7) states that an equicontinuous
family of functions § bounded by a function ¢ is conditionally compact under
the u.c.c. topology. In this case for any § > 0 and compact set K in &, we can
find a finite collection of functions {f, --- f.} in § such that for any function
fin &, there is an index ¢ such that sup..x |f(z) — fi(z)| < 6.

Let

(5) = {win(n, o, -) = u(-)}.

An interesting result due to Varadarajan [12] which is a partial generalization of
the Glivenko-Cantelli theorem states that

(6) P(Q) =1

A conclusion that we draw from this is that for each 8 > 0 and w in Q, there is
a compact set K, in X such that

(7) p’(n)wwa)gl_ay n=172:"'; “(Kw)gl_a

Let g(x) be any measurable function with fg(x)y(dx) < o,
Let

(®) 0 = for [ o@lutn, o, @) > [ gt}
The relation (1) can now be rewritten as
(9) P() = 1.

Another conclusion that we can draw from this is the following. For each 6 > 0
and w £ Qy , there is a compact set K, such that

(1) [ g@w(ned) <8 n=1-; [ g@uda) <s.
m*xw Ky
For any function f we define E(f) by the relation

(11) B() = [ fautdn).
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Let f(x) be a function for which E(e”’) < o for all ¢. Define for ¢ > 0,

(12) Hi(f, t, €) = E(exp(if — tE(f) — t));
Hy(f, t, €) = E(exp(if — tE(f) + te)).

Define

(13) pi(fy €) = infezo Hi(f, 8, €);  pa(fy €) = infico Ha(f, 8, €).

Define

(14) p(f, €) = max(pi(f, €), p2(/, €)).

For any class of functions & such that E(e"’) < o for all ¢ whenever f is in &,
define

(15) p(F, €) = supss p(f, €).

The following are well known and are given here only for completeness.
Lemma 1. If f is any function such that E(e”) < o forallt = 0, and ¢ > 0,
then one of the following two is true: (i) P{f — E(f) > ¢ > 0 and

(16) mino<e<r Hi(f, 4, €) = ou(f, e),

where T s finite, (ii) P{f — E(f) < ¢} = 1L and pui(f, t, ) = P{f — E(f) = ¢},
and given any 0 > 0, there ts a T such that

(17) mino<,<r Hi(f, ¢, €) = pi(f, €) + 0.

Proor. (i) may be found in Wald [13] p. 158. (ii) follows from similar analysis.
That either (i) or (ii) must be true is obvious.

LemmMa 2. If f is any function for which E(e”) < o for all t, and ¢ > 0 then
given any 6 > 0, there is a T such that

mino i< Hi(f, 8, €) = pu(f, €) + 6;
min—rgtgo H2(f, A 6) = Pz(fs 6) + 0.

Proor. This follows from Lemma 1 and a similar result for Hy(J, ¢, €).

LemMma 3. If § ¢s a class of continuous functions that is compact under the u.c.c.
topology then the function p(F, €) s continuous from the left at each ¢ > 0.

Proor. Let 6 > 0. We note that H,(f, {, e — 6) = Hi(f, ¢, €) for t = 0 and
Hy(f, t,e — 8) = Hy(f, t, ¢) for t = 0. Hence p(f, e — 8) = po(f, €) for each f.
Thus p(F, e — 8) = p(F, €). Hence

(19) lim infsLo p(F, € — 8) = p(F, ¢).

Now, let €, be a sequence of numbers tending to e. For any 8 > 0, we can find a
sequence {f,} of functions in & such that

(20) p(fn, &) = p(F, &) — 6, n=12 ...

Since § is compact, there is a subsequence of {f,}, say {f.} itself, for simplicity,

(18)
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that converges to f uniformly on compact sets. Hence H;(f, , &, €,) — H.(f, t, €)
uniformly on bounded intervals of ¢. Further pi(f., €.) < mino<e<r Hi(fu, ¢, €)
and ps(fa, €) < min_r<i<o Ho(fn, ¢, &) for each finite 7. Again given § > 0,
we can find a 7 to satisfy relation (18) of Lemma 2. We thus obtain

(21) lim sup P(fn ) &) = P(fy €) + 0,

for arbitrary 9. Combining (21) and (20) with the fact that p(f, e) < p(F, €)
we obtain

(22) lim sup p(F, €,) < p(F, ¢€).

(19) and (22) establish Lemma 3.

We now require some properties of p(F, ¢) where F is restricted to certain
classes of functions. Let f be the indicator function of a set and let P{f = 1} = p.
Then p(f, €) depends only on p and is written as p*(p, ¢). We can now rewrite
result (2) as follows. If X(w), X2(w), -+ is a sequence of independent and
identical binomial random variables with mean p, then

(23) (1/n) log P{w:|(X1(w) + -+ + Xa(w))/n — p| = ¢ — log p*(p, €).
We can find an explicit expression for p*(p, ¢) from (14) as follows.
(24) " (p, ) = max(pi (p, €), p3 (p, €))

where

IA
=
I\
—

I

o¥(p, ) = [p/(p + (1 = p)/(1 —p — "™, 0 <

- 0; l—e<p=1

(25) * 1—p+e —€
pz(pye) = [(1—p)/ (1 —p+ )l " p/(p — I, esp=1
=0, 0=p<e

Let F(x) be any distribution function in R*. We define
(26)  p"(F,e) = supc 0" (F(x),¢),  p"(e) = suPogpz1 0™ (p, €).

We now state a few results concerning the function p*(p, €).
LemMma 4. (Hoeffding) If ¢ > 0 and 0 < p < %, then

(27 p*(p, €) < exp{—[2¢/(1 — 2p)llogl(1 — p)/pl}
and hence,
(28) lim.0 p*(p, €) = 0.

Proor. This result may be found in Hoeffding [7], relation (2.4).

LemMA 5. The function p*(F, €) is left continuous at each ¢ > 0.

Proor. The proof is elementary and proceeds through steps analogous to
Lemmas 1, 2 and 3 and will therefore be omitted. In fact, p*(F, ¢) can be shown
to be continuous in ¢, but we shall not require it here.
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We now proceed to a few well-known lemmas which are connected with
uniform convergence of distributions.

Lemma 6. If {f,} is a sequence of continuous functions converging to a function f
uniformly on compact subsets then uf;* = uf " and, moreover, if uf~ is non-atomic,
then

(29) supa [u(A(fa, @) — w(A(f, a))| — 0
where A(f, a) s the set
(30) {z:f(z) = a.

Proor. The first part of the lemma is well known. The second part is equally
well known and is usually referred to as Pélya’s theorem.

LemMmA 7. Let § be a class of continuous functions that ts compact under the
u.c.c. topology and uf~ be non-atomic for each f in F. Then as § — 0

(31) Supyey SUPacri|u(A(f + 8, a)) — u(A(f, @) —0

where f + 6 s the function f(x) + 6 and A(f, a) is as defined wn (30).
Proor. The lemma is easily proved by contradiction using Lemma 6.
Levma 8. Let X = R* and £ be the class of linear functions from % into R*

of norm unity. Then as 6 — 0

(32) SUPzeg SuPa|u(A(L + 8, a)) — w(A(L, a))| — 0.
Proor. This is immediate from Lemma 7 since £ is compact under the u.c.c.
topology.

Whenever & = R* and L in £ we will sometimes call A(L, a) a half space.
3. will denote the class of all sets that are formed by the intersection of m
half-spaces. |x| represents the norm of x in the Euclidean space. S(a, r) is the
closed sphere {x:|x — a| < r}. For any subset D in &, S(D, r) = Uxep S(x,1).

We will also need some properties of convex sets in R*. For the general prop-
erties of convex sets, the treatise of Eggleston [6] is an excellent reference, but
Section 4.1 of a recent paper by Rao [10] covers the material adequately for our
purposes and we shall reproduce that section with slight alterations.

Let C be a convex set with non-empty interior. Let a be an inner point of C.
Then the gauge function, (g.f.), H(x), of C with respect to a is defined as follows:
H(x) = inf {X\:a + (x — a)/\ € C}. It is clear that if H(x) is the gauge function
of C, then C* = interior of C = {x:H(x) < 1} and C = closure of C =
{x:H(x) £ 1} and the boundary of C = {x:H(x) = 1}. The following properties
of gauge functions are well known and can be immediately deduced from its
definition

(i) If H(x) is the g.f. of C with respect to the origin then (a) H(x) = O,
and H(x) = 0if and only if x = 0; (b) H(cx) = cH(x), for all¢ > 0; and (c)
H(x +y) < H(x) + H(y), for each pair x, y. Conversely any function H(x)
with the above properties is the gauge function of the convex set {x: H(x) =< 1}.
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(ii) Suppose that H(x) is the gauge function of C with respect to the origin
and that S(0, r) c C. Then for each x, H(x) < [x|/r.
For any convex set C, the inradius of C, denoted by r(C), is defined to be

r(C) = sup{r:8S(a, r) < C, for some a in C}.

Then it follows from definition that r(C) = 0 if and only if C has empty interior
and that r(C) < oo, if C is bounded.

(iii) If C is a bounded convex set with non-empty interior then there is a
gauge function H (x) associated with C for which

|H(x) — H(y)| = [x — y//r(C)

for all x, y in R*. We shall call this the primary gauge function of C.
(iv) If C is a convex set with inradius <a then there is a linear function L
such that

C C {x:ia = L(x) = a+ 2a].

Let K be any bounded set in R*. @(K) denotes the class of all closed convex
sets contained in K. For a > 0, C€(K, 1, a) denotes the class of all closed convex
sets contained in K and of inradius 2a. €(K, 2, a) = €(K) — C(K, 1, a).
The final results about convex sets that we shall use in Section 4 can now be
stated as two lemmas.

LemMa 9. The class 3C of primary gauge functions, H, of the elements in C(K, 1, a)
18 compact under the u.c.c. topology. Further if the boundary of every convex set
has u-measure zero then uH " is non-atomic for each H in 3C.

Proor. The proof is immediate from property (iii)

Lemma 10. As a — 0,

Sup cee (k2,00 H(S(C, a)) — 0.
Proor. We note from (iv) that
S(C,a) C {x:a — a = L(x) < a + 3a}.

The lemma follows from Lemma 8.

Again let % = R*. Let @ be the class of sets A each of which possesses the
following property. If x = (2, ---, 2x)eAd andy = (y1, --- ¥) is such
that y; < zi,7 =1, ---k,thenye A. Let @;,7 = 2,3, ---, 2" bethe 2* — 1
classes of sets which can be obtained by reversing, one at a time, the % in-
equalities occurring in the definition of @; . Let @ = U?Zl @; . For two cases of
sets D and & let © ® & denote the class of sets D N E where D is in D and E
in 8. Let

(33) A*=a®a® ---®Qa

the “product” containing a finite number of, say m, terms.
Lemma 11. (Blum) Let u be absolutely continuous w.r.t. the Lebesque measure.
Given any & > 0, there is a finite class of sets B(8) such that for each A in @ there
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exist two elements By and By tn B(06) such that
Bl cAC Bz and M(Bz — Bl) < 6.

Proor. The proof of this lemma follows from elementary considerations of the
properties of the sets in @ and may be found in Blum [3].

LEmMmA 12. Let u be absolutely continuous with respect to the Lebesgue measure.
Then for each § > 0, there is a finite class of sets ®*(8) such that for each A in
Q™ there exist sets By and By tn ®* () such that

Bl c AC B2 and M(BQ — Bl) < 8.
Proor. This follows immediately from Lemma 11 and the definition of @*.

4. Proofs of Theorems 1, 2 and 3.

Proor oF TuEOREM 1. Let Gy(z), - - - Gy(x) be the right-continuous marginal
distribution functions of F(x). For any é§ > 0, we can choose & sets of (m + 1)
points (Zw, Zu, -+ Tim), -~ (Two, Tx1, * -+ Trm) corresponding to the & mar-

ginals so that
(34:) —00 =2 < T < < T = + o, Gi(xis - 0) —_ Gi(xis.q) <9
1=1,---kands = 1,

Any point x = (&, --- ) in R* will satisfy the relations
(35) Tiggi—) < Ti S Tis; 1=1,---k
for some integers 1, -+, S8, 1 < & < m, 1 = 1, --- k. A straight-forward

analysis then shows that
(36) supx |F(n, w, x) — F(x)| £ supeers [F(n, 0, x*) — F(x*)| + 8

where X* = {x*:x* = (15, , - - - 2%, ) for some integerss; , - - - 4z with0 < 4, < m
s=1,.--k}.
Also from (23) we have

(37) (1/n) log Plw:|F(n, o, x*) — F(x*)| = ¢ — 3}
— log p*(F(x*), e — 8) < log p*(F, ¢ — 5).

(36) and (37) yield
(38) lim sup (1/n) log P{w:sups |F(n, o, x) — F(x)| = ¢ < log p*(F,e— ).
Since 8§ > 0 is arbitrary and p*(F, ¢) is left continuous from Lemma 5 we have
(39) lim sup (1/n) log P{w:sups [F(n, o, x) — F(x)| = ¢ < log o*(F, ¢).
Also

P{w:supx [F(n, @, x) — F(x)| 2 ¢ = P{w:|[F(n, 0, x) — F(x)| = €
for any x in R*. Thus using (23) and noting that x is arbitrary we obtain
(40) lim inf (1/n) log P{w:sup: F(n, o, x) — F(x)| = ¢ = log p*(F, e).
(39) and (40) prove the theorem.
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Proor oF THEOREM 2. Let & be the closure of & under the u.c.c. topology.
We note that

[ #@utn, v, d2)

SUpy.5 ff(x)n(n, w,dzx) — ff(x)n(dx) = SUPse5

— [ #o)u(az)
and thus
P{w:supfsg ff(x)u(n, w, dx) — ff(x)u(dx) = e}

2

It would thus be no loss of generality to assume that § is closed and therefore
compact.
= e} .

[ #@)utn, o, d2) = [ f@)utde)

= P {w:supfe?;

Define ; as in (8). We have P(Q;) = 1 from (9). For each fin &, let

(41) 9, ¢) = {w:wml and ‘ff(:c);i(n, o, dz) — ff(x)u(dx)

It is enough to show that
(1/n) log P{fU Q(f, €)} — log p(5, €).
eF

Choose and fix a 6 > 0. For any w in ©; , there is a compact set K,, in & satisfying
relation (10), namely,

f@)u(n, w,dz) <én=1,2,---, and
(10) ’
f(x)u(dz) <8, forall f in &
XK,
Further since § is compact we have a finite collection {f1, - -- fu} of functions
in & such that if f is in & there is an index ¢ such that
(42) Supaex, [f(z) — fo(z)| < 8.

Relations (42) and (10) yield the inequality

[ 1@uin, @, do) — [ j@u(d)

SUpyses

(43)
+ 68

= SUP1<izm

[ i@nn, o, o) — [ fi@)utde)

for each w in ;. Thus

(44) Uag, o c Uali,e— o).
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Relation (2) can be rewritten as
(45) (1/n) log P(Q(f, €)) — log o(f, €).
From (44) and (45) we have

lim sup (1/n) log P{fL; (f, )}

IIA

maxXi<igm log p(fi, € — 66)

(46)
< log o(5, ¢ — 65).

Since 8 > 0_is arbitrary, and p(%, ¢) is left continuous from Lemma 3 we have

(47) lim sup (1/n) log P{fg Q(f, e)} = log o(F, e).

Again, U5 Q(f, €) D Q(f, €) for each f in §. Using (45), we have
(48) lim inf (1/n) log P{H; Q(f, )} = log p(5, ¢).

The theorem now follows from (47) and (48).

Proor oF THEOREM 3. Define Qy as in (5). From (6) we have P(Qy) =1.
Choose and fix a 8§ > 0. Then for each w in @y, there is a compact set K,, in &
satisfying relation (7), namely,

(7) I-‘(n)w,Kw)g-l—ay n=12 -3 M(Kw)gl_a
Let A(f, a) = {z:fi(z) £ a1, --- fu(z) = a}. Since § is compact under the
u.c.c. topology, there is a finite collection {f;, --- f.} of members of § such that

for each f in § there is an index 7 such that sup..x, |f(z) — fi(z)| < 6. Using
this fact and relation (7) we have

u(n, 0, A(fi + 9, a)) — w(A(fi — 4, a)) — 4o
p(n, w, A(f,a)) — u(A(f, a))
= l‘(n, W, A(fz — 9, a)) - M(A(fi + 57 a)) + 49

I\

for each w in Q.
Now choose and fix any 6 > 0. Using Lemma 7 we choose & so that

Supyes supa |u(n, o, A(f,a)) — w(A(f, a))|
(49) < SUP1<igm MAX1 << SUPs [(7, @, A(fi + ¢35, 2))
— p(A(fi + ¢35, a))| + 46 + 260

where ¢, = 1 and ¢ = —1.
If f is any function from % into R* with non-atomic induced distribution, we

have from Theorem 1 that,
(50) (1/n) log P{w:sup, [u(n, w, A(f, a)) — u(A(f, 2))| = ¢ — log p*(e)

where p*(e) is as defined by (26).
Since f; + ¢;4 has non-atomic induced distribution we have

( lim sup (l/n) IOg P{w:supfeg. Supa |M(n7 @, A(f, a)) - ﬂ(A(f, a))l = 6}
< log p*(e — 46 — 26).
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Since p*(e) is left continuous by Lemma 5 we can replace the right hand side
of (51) by log p*(e).
Now

SUp.s SUPa [u(n, w, A(f,a)) — w(A(f, a))|

Z supa |u(n, o, A(f, a)) — w(A(f, )|
for each f in &. This together with relation (50) gives
(52) lim inf (1/n) log P{w:sups.s supa [u(n, o, A(f,a)) — w(A(f, 2))| = ¢
2 log p*(e).
The theorem follows from (51) and (52).

5. Some applications of the results of Section 4. We now state and prove four
further theorems which are applications of the above and are of immediate
applicability to practical problems. In Theorems 4, 5 and 6 we shall assume that
x = R".

THEOREM 4. For each linear function L let uL™" be non-atomic.

(53)  (1/n) log P{w:Supase, [k(n, &, A) — u(4)| = & — log p*(e),

where 3C,, 18 the collection of all sets formed by the intersection of m half-spaces.
Proor. This theorem is immediate from Theorem 3 and the observation that
&£ = all linear functions of norm 1 is compact under the u.c.c. topology.
THEOREM 5. Let @ be the class of all closed convex sets. Let u(bd C) = 0 for
each set C ¢ @, where bd C = boundary of C. Then
(54)  (1/n) log P{wisupeee [u(n, o, C) — u(C)| Z ¢ — log p*(e).
Proor. Choose and fix a 6 > 0. We can find a bounded closed convex set K;
in such that
(55) w(Ki) =21—6
We divide € into three classes, for some o, with 1 > « > 0, which we will choose
later.
e =cK,l,a)Ue(K,2 a)Uec*
where €* = class of all convex sets C with ¢ N K} not empty, and where K1

is the complement of K .
Let K = S(Ki, 1). Then trivially

(56) supcee; L |1(N, @, C) — u(C)| £ sUp e 10 |1(n, w, C) — u(C)|.

Let C ¢ (K1, 2, @). Then a, with 1 > « > 0, can be chosen from Lemma 10
so that u(C) < 8. Thus

(57) =8 = pu(n, 0, C) — u(C) = u(n, o, 8(C, a)) — u(S(C, @) + o.
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Now 8(C, ) is convex, has inradius = « and is contained in K and so is a member
of ¢(K, 1, ). Thus
(58)  supceem; 2. [1(n, @, C) — w(C)| = supceewm (R, @, C) — u(C)| + 4.
Combining (56) and (58) we have
(59) supceexy [u(n, 0, C) — p(C)| = suPcewam (1, @, C) — u(C)| + 8.
Let C ¢ €*. Then
p(n, o, KsNC) — p(K:NC) = § = p(n, o, C) — u(C)
< u(n, 0, KiNC) — w(K:i N C) + u(n, o, K1) — (K1) + 8.

Here C N K, is convex and is in €(K). Thus combining (59) and (60) we
have

(60)

sup cee [u(n, w, C) — u(C)| £ sup ceex, 1,0 (7, 0, C) — u(C)|
+ |u(n, v, K1) — u(K1)| + 8.

Consider the class 3¢ of primary gauge functions of elements of C(K, 1, «).
This class is compact under the u.c.c. topology from Lemma 9. Each
CeC(K,1, a)is the set {x:H(x) < 1} for some H(x) in 3¢ and from the con-
ditions of the present theorem, H has non-atomic induced distribution. Thus
from Theorem 3 we have

(62) limsup (1/n) log P{w:supcee ..o (1, w, C) — u(C)| = B} < log p*(B).
Again, from relation (23) we have

(63) (1/n) log Plo:|u(n, ©, K1) — uw(K1)| Z 6} — log p*(s(K1), 0).
From (61), (62) and (63), for each fixed 6, with e — 6 > 6 > 0, we have

(61)

lim sup (1/n) log P{w:supcce |u(n, @, C) — u(C)| = ¢
< log {max (p*(e — 8 — ), p™(u(K1), 0))}.

From Lemma 4 we know that for each 6 > 0, p*(p, ) — 0 as p — 0. Hence
for sufficiently small 8, p*(e — 8 — 8) > p*(u(K1), 6). Again since p*(e) is left
continuous from Lemma 5 we can replace the right hand side of (64) by log p*(e).
The corresponding inequality for the lim inf is trivial. Hence, the theorem is
proved.

TuEOREM 6. Let u(-) be absolutely continuous with respect to the Lebesgue
measure. Let @* be as defined in (33). Then

(65) (1/n) log Plwisupae’u(n, o, 4) — u(4)| Z ¢ — log p*(e).

Proor. The proof of this theorem follows immediately by the application of
Lemma 12.
THEOREM 7. Let X be a separable Banach space and X1, the space of all con-

(64
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tinuous linear functionals, z*, on X with norm unaty. Let f 21 (X(w))P(dw) = 0
for each x* in xT and let [ exp (¢|X (0)|)P(dw) < o for all t. Then, for € > 0,

(1/n) log P{w:[[Xi(w) + -+ + Xa(w)l/nll Z ¢ — log o(XT, ¢).

Proor. We note that &y is a compact family of functions under the u.c.c.
topology. The theorem follows immediately from Theorem 2.
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