QUEUES WITH BATCH DEPARTURES II
By F. G. Foster AND A. G. A. D. PERERA

London School of Economics and Political Science

1. Introduction; queue size after a departure. In this paper we continue the
study of queues with batch departures undertaken by Foster and Nyunt in [4].
For a detailed description of the queueing model we refer to their paper. In
brief, we assume units to arrive at the instants of a Poisson process with pa-
rameter A and to be served in batches of fixed size k, the service time distribution
H(z) being arbitrary. It will be convenient for later use to take the mean of
H(z) as r/u and to define p = r\/u, the ratio of the mean service time to the
mean inter-arrival time. (In [4] the mean of H(x) was taken as 1/x and p was
defined as \/u, so that basically the definition of p is unchanged in the present
paper.) The traffic intensity is thus + = p/k and we assume r < 1. We also
need the Laplace Transform ¢(s) = [Fe *° dH(x). Let £(¢) denote the number
of units in the system including the batch undergoing service (if any) at the
instant ¢. We say that the system is in state E; at the instant ¢ if £(¢) = 7. Let

pi(n) = PlE(on + 0) = j]
where ¢, denotes the instant of departure of the nth batch. It has been shown in
[4] that when p < k, the limiting probabilities
(1) pi = limp.., pf (n)
exist and their generating function is given by

k=1 ' . Bl — 8;
+ S ’;p}'(z — ) (k—p)(z—l)g(l_;‘)
(2) P(2) = J_;)pfz = Z/K(z) — 1 = #/K(z) — 1

where K(2) = ¢{\(1 — 2)} and 1, 8, 8, - - - &1 are the roots of the equation
2" = K(2) on or within the unit circle.
From (2) it follows that

k—1 k—1
2P (=) = (k= o)z~ DIIG -0/ - 3
from which we obtain by differentiation,
k—1 .
(3) 2Pk =) =k —p
We shall use this result (3) in the sequel.
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2. Queue size before an arrival. Now let us define the probability
pi(n) = PlE(rn — 0) = j]

where 7, denotes the instant of arrival of the nth unit. We note first that the
ordinary limit of p;(n) does not exist for £ > 1. To avoid trivialities let us
assume that the initial queue size is zero, i.e., £(0) = 0. Since units are served in
batches of k it is clear that p;j(n) is zero unless n — 1 — j (number of units
served up to the instant of the nth arrival) is a multiple of %, i.e.

pin) =0 if nxErk4+j+1
#0 if n=vrk+j+ 1.

Thus we consider the Césaro limit

(4)

s = lima.u(1/n) 3 py(m).

In view of the above relations (4), however, it is easy to show that this Césaro
limit, if it exists, is also the Césaro limit of the sequence

(1/76)1'](7“]04‘.7"‘1) T=0}1y21""

We shall show that the ordinary limit of this sequence exists when p < k. It
follows that the Césaro limit exists and

(5) pi = (1/k) lim,. pi(rk + j + 1).
Define the generating function P(z) = oo piz’.

3. Queue size at a random instant. Now let us introduce a third limiting
probability distribution

(6) pf = lim,.. P[E(t) = J].

The existence of these limits (6) has previously been proved by Takécs [9] and
in this paper we shall assume their existence. Define P*(2) = > 5 p;2’.

4. Discussion of the main results. In this paper, we shall examine the relation-
ships between the three distributions introduced above, P(z), P*(z), P*(z), and
specifically establish that

(7) P(2) = P*(2) = (1/R)I(L — £)/(1 — 2)IP*(2).

This result comprises Theorems 1 and 2 below. We use direct methods of proof
on the limiting distribution and the proof of Theorem 2 is based on a method
due to Khintchine [6] which he used for the case k¥ = 1.

Theorem 2 has been previously proved by Takécs [9] as a limiting result of the
time-dependent case. It may be remarked that it can be derived from a result
of Fabens [2]. A proof based on the supplementary variables method [1] can also
be given [7].
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We will assert these results heurisically before we give any rigorous proofs.
Let us first consider the case k = 1. p; , the probability that an arbitrary arrival
finds 7 units in the system, is the proportion of arrivals that find j units ahead
of it, that is, the proportion of transitions E; — E;;; . Now if M, denotes the
number of transitions E; — E;,; over a given long period of time, then asymp-
totically p; = M/ D oo M; .

Similarly, if N; denotes the number of transitions E;.; — E; over a long
period of time, then asymptotically, pf = N;/> 50N, . Now the number of
transitions E; — E;., and E;; — E; differ at most by one and hence over a long
period of time we have asymptotically, M; = Njand X g0 M; = 2 5= N; from
which it follows that p, = pj. The argument, clearly, makes no asumptions
about the distributions and is therefore true for the general model G/G/1 where
the input and the output are arbitrary. If, however, the input is Poisson, then
on account of its Markov property, the arrival of a unit is independent of any
other event in the system and so it follows that p; = p}. Thus for the model
E1/G/1 we have P(z) = P*(z) = P"(z). An analogous argument may be
applied to the case &k > 1. If as before M ; and N; denote the number of transitions
E; — E;u and E;, — E; respectively, over a long period of time, we have,
asymptotically,

Mj=N0+N1+“-+Nj ]<]C
= N1+ Njgge -+ + N; j =k

For the two sides differ at most by one. Thus Y 5o M; = k 2 ;= N; and in-
terpreting p; and p as before, we have

pi = (1/k)(ps + pi + - + p}) i<k
= (/) (pi—itr + Dicire -+ + D7) Jj =k

Here again we make no assumptions of the type of distributions and hence this
relationship is true for the general model G/G*/1 where the input and the output
are arbitrary. If, however, the arrival process is Poisson, then for the same reason
asin the case k = 1, we have p; = p; and hence (7) is true for the model B,/G*/1.

6. Proofs of the main results. We now treat this problem more rigorously. Let
=& —0); & = Eon +0).

TaeoreM 1. If p < k the limiting probabilities defined by (5) exist and P(z) =
(/)1 = 2)/(1 = 2)IP*(2).
Proor. If j < k, then

. + .
Enkritt = J © 0n < Tritir1 © En = 7.
Therefore

J
(8) pi(nk + j + 1) = Plow < tusnl = 2 pi(n).
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Ifj = k,sayj = sk + 7 (s > 0,7 < k), then

buepir = 1k + 7 (3 =0,1, -+ 8) & op < Tmpss1 © £n = J
Therefore
s i
9) ;pﬂm (nk + 5+ 1) = Plon < Taptin] = Z;I)}L(n)-

Now in [4] it was shown that when p < k the right hand sides of (8) and (9)
tend to finite limits. Hence under the same conditions the probabilities on the
left hand sides tend to finite limits. Thus the p; defined by (5) exist, and we have
from (8),

pi= (k) (pf +pia+ - +p8)  j<k
From (9) we have forj = sk + r,

s J
;} Pi—it = (1/70)2)2)?-
Replacing 7 by 7 — k and subtracting, we obtain at once

p; = (1/k)(pf + pi= + PR o Pin) 2k

The theorem is now immediate on taking generating functions.

TareorEM 2. If p < k and the service time distribution is not a lattice distribution,
then P*(2) = (1/k)[(1 — 2)/(1 — 2)IP"(2).

Proor. The expected number of arrivals and services during an arbitrary
period T are NT and AT'/k respectively. But the expected length of each service
is r/u and so the expected time the server is busy is (\/k)T-r/u = (p/k)T.
Hence the probability that at an arbitrary instant of time the server is busy is
p/k and the probability that the server is idle is 1 — p/k.

p} is the probability that the number of units in the system at an arbitrary
instant of time is 7. Consider such an instant. This falls in an idle period (j < k)
with probability 1 — p/k.

An idle period can begin with ¢ = 0, 1, 2, ..., k& — 1 units present. It ends
when there are k units present and it is divided by the instants of arrival into
k — < intervals each of mean length 1/X.

The probability that an idle period selected at random begins with ¢ units is
jointly proportional to p? and to the expected length of such an idle period;
which is (k — 2)/\.

The conditional probability, given that the idle period selected starts with ¢
units, that at a random instantin the interval there arej (=¢,2 41, --- ,k — 1)
units present is 1/(k — 7).

We have therefore,

J
Py = 2 C(k = a)pl1/(k — 7) (G=012 - k—1)

J

=0
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where C is a normalising constant. Now we have Y i—s p; = 1 — p/k. Therefore

k—1
C’j;o ;pj =1-—p/k
ie. CD %Zi(k — 7)pf = 1 — p/k. Therefore by (3), C = (1 — p/k)/(k — p) =
1/k; hence

(10) o = (1/0) 2 ot

Now consider pj(j = k), then the arbitrary instant considered falls in a busy
period. Denote by « the expired part of the service time that is going on at the
instant considered. Then by an argument similar to that used by Khintchine
[6] or as a consequence of a known result in renewal theory (see [8]), we get,
provided H(z) is not a lattice distribution,

Plz < u <z 4 dz] = (p/k)(p/v){1 — H(z)} de = (\k){1 — H(z)} dx.
Thus the probability that j units arrive during the expired part of the service
time is
N[ e )

=% 7 {1 — H(z)} dz,

m;

ie.
an M) = Zme = (/DI = KE)/A - 2

Now if £ is the queue size at an arbitrary instant, by comparing £* with the
queue size £ after the immediately preceding service end point, we have
£ = max(£, k) + 5" (" = k)

where »* is the number of arrivals during the expired part of the service time
that is going on at the instant considered. Applying generating functions to the
above equation, we get

k—1 k—1 k—1

P'G) = Bl = {P) — X0l | M) + 2 5 M)
(12) 1
= P*(2)-M(z) + J;) pi (¢ — &) -M(2).
But by Equations (2) and (10)

k—1 k

];) pi(d =2 = {fz(—zj — 1} P*(z) and
(13) k—1

4k
SR P LA Y N B o0
j=op’ Tk z— 1 RVAO) z— 1
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Substituting from Equations (11) and (13) in Equation (12), we obtain the
theorem.

Exawmpre 1. If the service time distribution is Erlang E, , it was shown in [4]
that

(14) Pi(z) = Hl((l — &)/(1 — €z))
7=
where ¢; are the reciprocals of the roots outside the unit circle of the equation
(15) [1 4 (o/r)(1 = 2)7" = 2"
Thee (j = 1,2, ---, r) were shown to be distinct and hence

Pre) = 3 C/(1 = o)
whete 0; = (1 = &) [T ((1 = &)/(1 = e/5)), ic.
(16) ph = 2 Ol

Then by Theorems 1 and 2,

oy 11— 1 — ¢
a7) P(z)—P(z)—%l_z’ﬂ <1—e,z>
It follows that
1 r 1 — m+1
pm:pz:ﬁj=loj I—GJG m<k
(18) ’
=1’Cm_k+1(1—e’; > k
k=77 1 — ¢ =

ExampLE 2. If the service time distribution is Exponential E: , then we have
from Example 2 of [4] and the above theorems,

oy 11 =21 —

(19) P(z) = P"(2) = T p— (1—————_ ez)

where ¢ is the reciprocal of the root outside the unit circle of the equation
(20) {14 p(1 = 2)}7" = 2"

As in the previous example we can express these probabilities explicitly for later
use,

Pm = pm = (1/k)(1 — &) m <k
= (1/k)e" ™ (1 = &) m 2 k.

6. Relationship between E;/G*/1 and E,/G/1. In this section, we investigate
the relationships between the distributions for these two systems. We can think

(21)
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of the arrival process of the system E,/G/1 as being composed of k& phases each
of which has an exponential distribution with parameter N. Now if we think of a
unit as being composed of & sub-units, one of which arrives at each phase then
the situation is identical with the batch departure model E;/G*/1, a batch in
the batch departure model corresponding to a unit in the Erlang arrival model.
Thus if 71, 72, - - - are the instants of arrival in the batch departure model, the
instants of arrival in the Erlang arrival model are 71, 7o , 73 , - - - since a unit
in the Erlang arrival model would have arrived when and only when all its %
sub-units have arrived. Since the sub-units are served in batches, the instants
of departure for both models are the same. It should be noted that the Erlang
distribution considered here is composed of & independent exponential distri-
butions, each with parameter A, so that the Erlang distribution has mean &/},
and that this differs from the Erlang distribution used by one of the authors in
[3] where each exponential distribution had parameter Nc so that the Erlang
distribution had mean 1/\.

Let ¢(¢) denote the number of units in the Erlang arrival model (including
the units at the service counter if any) at the instant . We shall study the three
distributions related to the system E;/G/1:

i) gf(n) = Pl(on + 0) = j]
(ii) i (t) = Ple(t) = 4]
(iit) gi(n) = Pt (rm — 0) = j].

If £(¢) denotes the number of units in the batch departure system at the instant
t, then clearly

(22) ¢() = [E)/k]

where [z] is the integral part of z.
(1) From Equation (22) we have

ai(n) = pi(n) + Pha(n) + - + Phasa(n).

The probabilities on the right hand side are known to converge as n — « when
p < k and hence

(23) g7 = limpsw g5 (n) j=012 ...
exist when p < k and

(24) @ = ph + P+ -0+ i

Define

Q*(z) = gﬂ: e

In [4] the relationship between the generating functions @*(z) and P*(z) was
derived:
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-z Pt(v)

2mt Jo (1 — v)(v* — 2)
where C is the contour [z] = 1 — 8. We shall not make use of this formula in the
present paper.

(ii) From Equation (22) we have
07 (1) = Pi(®) + Pin(®) + - + Plirra(?).

It is known (cf [9]) that the probabilities on the right hand side converge as
t — oo when p < k, provided the service time distribution is not a lattic distri-
bution. Under the same conditions, therefore,

(25) Q*(z) =1 do

(26) g7 = lime.w g5 () i=012 ...
exist and

(27) af = pi + i+ -+ + Pl

Define

Q*(2) = 2 i’

An analysis similar to that carried out in [4] will give the direct relationship

between the generating functions

-z P*(v)

21t Jo (1 — v)(v* — 2)

Again we shall not use this formula in the present paper.
(iii) Now let us consider the limits

(29) g; = limg., gj(n)

dv.

(28) Q*(z) =1

and the generating function Q(2) = Dm0 ;2. By Equation (22)
gi(n) = pa(nk) + pup(nk) + -+ + pppraa(nk) = pipppa(nk)

since the other terms are zero by Equation (4). We have in Theorem 1 of the
preceding section that when p < k the limits, (1/k) lima. pj(nk + 7+ 1) = p;
exist. Hence the limits ¢; defined by (29) exist when p < k and ¢; = kpjetr— -
But by Theorem 1

Piri—t = (1/5)(Phepir + Pieri—s + -+ + Dh).
Therefore g; = pjitims + Diiz + -+ - + i so that by (24), ¢; = g7, i.e.
(30) Q(z) = @*(2).

This is consistent with the general result asserted heuristically in Section 1, that
the queue size distribution just before arrivals is the same as that just after
departures for the general model G/G/1.
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ExampLr 3. If the service time distribution is Erlang E, , then we have from
Example 1 and Equations (24) and (30)

k—1
= ;}p;k+g — Z C ( mk+1 _I_ . e‘;{lk‘f‘k—l)
(31) .
= 2 (1 = /(1 = &),
ie.
_ Nt _ : C; 1-— e’;)
(32) o) = 0 = B2 (129).
Again':from Example 1 and Equation (27)
k—1
Qm = .1=ZO p::lc-l-] m =1
(332) = %Fl = g G R
L1 g (1Y
Tk Cie <1 — ¢
and
k—1 "
Q = Z D;
7=0
1< C; 2 k
(33b) =E;—f;u—q+1—q+-~+1—w
_1
R DL

since 2 C;/(1 — ¢) = 1, i.e
=1

Q) =1 — Z ¢! ")2 — 2 g
(1 - ) m=1
(34) : .
_1_1—2 Cjéj l—ej

E =0 —¢)? 1= ez’
We shall obtain a similar set of formulae for the same model Ej/E,/1 through
batch arrivals in [5] and therein we shall show the equivalence of the two sets of
results (cf [3] and [4]).

ExampLE 4. If the service time distribution is Exponential E; , then, as in the
previous example, we have from Example 2 and Equations (24) and (30)

(35) g = q';' —_ (1 — e)(e.’fk + E.’ik"—l + .. + ejk‘Hc-l) —_ e]k(l — ek),
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ie.
(36) Qz) = Q7(2) = (1 — &)/(1 — é2).
Again from Example 2 and Equation (27)

;!‘ — 1 k 1 _ ék ejk—lc+1 Ejk_k+2 .. e,770 . ; 1
(378) 2 = (1/k)( k)(2 + H+1+ + &) J

= (1/B)I(1 — €)°/(1 — )] T,

and

o= /E) 1 —e+1—€4 .- +1—¢
(37b) 2@ = (1/k)( + + -+ )

=1— (¢/B)(1 — &)/(1 — &)
But from Equation (20), (1 — €°)/(1 — €) = p, i.e., (/E)[(1 — é)/(1 — €)]
= p/k = . Substituting in (37a) and (37b), we obtain
¢ = (1= Gz,

with ¢¢ = 1 — 7. Therefore
Q*@) = gf + 2 g =1 — r 4+ (1 — &) V%7
= =
=1—74 71— é)z/(1 — ).
ie.
(38) Q*(z) = 1 — r + 2Q(2).

This relationship between Q*(z) and Q(z) will be seen to hold for the wider
class of queueing models G/E;/1 in [5].
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