JOINT DISTRIBUTIONS WITH PRESCRIBED MOMENTS!

By Howarp Rumsey, Jr. AND Epwarp C. PosNER
Jet Propulsion Laboratory, California Institute of Technology

1. Introduction. Suppose two random variables X and Y have a joint distribu-
tion, whereas only the marginal distributions are known, and also certain other
information. (For example, let the two random variables represent height from
reference level at two randomly chosen points a given distance apart on the
Moon’s surface. The distribution of heights at a single point is fairly well-known,
and radar data also determine the average value of the absolute value of the
difference in heights, that is, E(|X — Y|), [5].) It is then desired to make in-
ferences about the joint distribution of X and Y. This article adopts the principle
of maximum entropy [2] to select one plausible joint distribution from the various
possible ones consistent with the given marginal distributions and a given set of
cross moments. It is shown that a joint distribution of maximum entropy exists
and is unique, under very general conditions. The unique joint distribution is
shown to have a special form, by means of which it is shown that the unique
joint distribution can be obtained as the solution of a certain set of non-linear
integral equations. The techniques involve functional analysis and the calculus
of variations, as well as standard properties of the entropy functional.

2. Problem statement. We shall solve problems of the following kind. We are
given two random variables X and Y and information about their joint density
function f = f(z, y). In particular, we are given the marginal density functions
of X and Y, say p(z) and ¢(y). Thus,

J2uf@,y) dy = p(x),  [Zaf(z,y)dz = q(y),

where both equations hold almost everywhere (a.e.). In addition, we are given
a finite number (possibly zero) of other linear constraints which the density
function f must satisfy. These constraints are to be expressed in the form

JZa[Za f (@, y)ri(a, y) dudy = p;, j=1,-,k,

where the r; are given functions and the p; are given constants. The problem
is to find that joint density function f which satisfies all these constraint equa-
tions and which in addition has maximum entropy

H(f) = [Zo]Z0f log ' dz dy.
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We shall show in Theorem 1 that under quite general conditions there is a
unique (up to sets of measure zero) such function f, and in Theorem 2 we prove
that this function f has a very special form which is enough to characterize it
uniquely.

3. Definitions. We begin with the (ad hoc) definition of an admissible set of

Sfunctions.
DeriniTION 1. Let p(x) and ¢(y) be two fixed density functions defined in
the interval (— o, ). Let ri(x, y), - -+, 7(x, y) be fixed, real valued functions

defined in the (z, y)-plane. We shall always suppose that no non-zero linear
combination of the r;(z, y) is equal almost everywhere to a function of z plus a
function y, since the expected values of such sums are determined solely by the
marginal distributions and have no influence on the maximization problem.
Let py, - -+, px be given constants. Let F = F(p, q; 71, -+, T P1, ", Pk)
be the set of density functions f = f(x, y) which satisfy the following conditions:

() 2o f(z, y) dz = q(y);
(8) JZaf(z, y) dy
(frj) e Lyforj = 1, --- , k with

p(2);

('Y) ffw o‘.iwf(x’ y)rj(x7 y) dx dy = Pji,

where Equations («) and (8) hold everywhere and L, is the set of Lebesgue
integrable functions (in the (z, y)-plane in this case, but we shall also use L;
to denote the Lebesgue integrable functions on the line as well). We shall call
such an F an admissible set of functions if the following statements are true in
addition:

(a) F is nonempty, and there is at least one function feF such that
flogfeL.

(b) plogp,qloggelL.

(¢) If f ¢ F,then fff<1 flog’f < A, where A is a constant (depending on F),

(d) Fis closed in L; .

It is not apparent from this definition how one could decide whether a given
set F = F(p, q; 71, ,7;p1, ", pr) is admissible or not. For example, it
might be very difficult to decide whether F is nonempty or not. However, this
class of problem has been dealt with extensively in the literature [1], and we
shall not discuss it further in this paper. The other Conditions (b), (¢) and
(d) are more easily dealt with. In fact, (b) is trivially checkable, since p, g are
given, and (c) can be made to depend on some weak condition on p and ¢. Thus,
for example, we have the following:

Lemma 1. Let p(z) and q(y) be density functions such that xp(z), yq(y) € Ly
(that s, the means of X, Y exist). Let f = f(z, y) be a joint density function with
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marginal densities p(x) and q(y). Then

f flog’f < A, where A depends only on p and q.

7<1
Proor.

[[roe5=" [[riogs+  [[11087

<t {log2f>|x]+lm+l} {{og2fSlzl+ly|+l}

I\

ff fexp — (ol + Iyl + D' (lel + o] + D

+ [[ et + i + 1)1

§A1+L!xl p(x)dx+f_wlqu(y) dy + 1

< 4,

where A depends only on p and ¢. This proves Lemma 1. It is thus evident from
this lemma that Condition (¢) of the definition of an admissible set of functions
can be made to depend on some type of restriction on the marginal density func-
tions p and g.

Similarly, (d) can also be made to depend upon special properties of the
funection r;, - - - , 7, and p and ¢. In fact, let fi, - -+, fa, - - -, be a convergent
sequence of functions in F and let f be the limit function in L, . In order to verify
that (d) is true we must show that f satisfies Equations (a), (8), and (y). But
Equations («), (8) follow immediately from the L, convergence of {f,} to f
(by taking Fourier transforms for example). Thus we need only verify that

(1) Iff(x7y)r1(x>y) = Pj, .7: 1>)k

If the function r; in Equation (1) is in L. (the set of essentially bounded Le-
besgue measurable functions) then Equation (1) is an immediate consequence
of the L; convergence of the sequence {f.} to f. If r;(z, y) is not essentially
bounded but satisfies some inequality of the form

Iri(z, y)| = 21‘;1 Ri(x)S:(y),

then we can guarantee the validity of Equation (1) by stipulating that p(x)
and q(y) are such that for ¢ = 1, --- , n either R*p and S ¢ L, , or R.*p and
8.7q ¢ Ly . To prove this statement it is only necessary to apply the Schwarz
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inequality several times to the difference

Jffr) —pi= [ (F = Fu)rs.
The point of the discussion is that, although it may be exceedingly difficult to

decide in complete generality whether the set F = F(p, q;7r1, - , "% 301, " ,
px) is admissible, in particular cases the admissibility of F can be affirmed by
some weak constraints on p, ¢;r1, -+, "% ; p1, -, pr, except for Condition

(a) perhaps. But once an f is found by the methods of Section 6, then even this
problem will be taken care of.

We shall need the following

DeriniTion 2. Let f = f(z, y) be a density function on the (z, y)-plane. We
define the entropy of f (if it exists), H(f), by the equation

H(f) = [ flogf™.
We also define two operators H . and H_ as follows:
H(f) = [[1aflog ™,

H_(f) = [[>1flog .
It is evident that H,(f) and H_(f) are positive and that

H(f) = H(f) — H-(f),
if H(f), or H (f) and H_(f), exist (in L,).

4. Existence and uniqueness. We now state the first theorem of this paper.

TueoreEM 1. Let F = F(p, q; 1, <+, Ts; p1, -, pr) be an admissible set.
Then there exists a function f & F such that H(f) is a maximum. Furthermore, f is
unique (to within sets of measure zero).

Proovr. As the proof of this theorem depends on a number of lemmas, we shall
begin with an outline of the successive steps in the proof. We first show that
the entropies H(f) of functions f ¢ F are bounded from above. We call the least
upper bound of these entropies Hmax . Then we show that if f and g are two func-
tions in F with entropies “close” to Hmax , then f and ¢ are “close” in the sense
of the L, norm. Then we select a sequence of functions fi, -, fo, - e¢F
such that lim,.., H(f,) = Hmax. It follows that {f,} is a Cauchy sequence of
functions; by completeness of L, , there is a function f ¢ L, such that ||f — f.|li — 0.
But since F is admissible, it follows that F is L;-closed. Hence, f ¢ F. We com-
plete proof of the theorem by showing that H(f) = Hum.x . We now proceed to
the details of the proof.

LemMma 2. Let F = F(p, q) be an admassible set of functions. Then there is a
positive constant A depending only on F such that

H(f)y SH.(f) £ A forallfeF.

Proor. The first inequality is obvious. The proof of the second is as follows:
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mﬁ)‘ﬁﬂ@a_ﬁ[uyn%%ﬁﬁﬁ

+ﬂxWog()UJ

_ﬁﬂxm<%@? )M@+ﬂ%xwm()@ v dy

1
s /f p(x)g(y) dz dy + fff(x, y) <log 5(—5‘ + |log @D dz dy
= 1+/p(x)log e dx+/]q(y)log ()idy
<4,

where A depends only on F.
An immediate consequence of this lemma is that the following definition

makes sense.
DeriniTioN 3. We define number Hp.x , H, , and H_ as follows:

Hmnx = SUPyer H(f)7

H, = limeo sups,einsa,, —« Hi(f),

= max’

H_= H, — Hpux .

LeMMa 3. Let f and g be functions in F such that H(f), H(g) = Hmax — € for
some ¢ > 0. Then
If = gll: < 9¢.

Proor. Let 6f + (1 — 6)g, 0 = 6 =< 1, be a convex linear combination of
fand g. First we show that 6f + (1 — 6)g has finite entropy whenever f and ¢
do. Since 6f + (1 — 6)g ¢ F, it follows from Lemma 2 that H(6f + (1 — 6)g)
is bounded from above. It remains to show that it is bounded from below. But
this is an immediate consequence of Shannon’s inequality

(2) H(6f + (1 — 6)g) = 6H(f) + (1 — 8)H(g),

which follows from the concavity of  log (1/z). Thus the function A(8), which
we define by the equation h(6) = H(8f + (1 — 8)g), is well-defined for all
0 = 6 £ 1. In fact, Definition 3 and Inequality (2) imply that

(3) Hmax — € é h(o) é Hmaxo

Next we show that h(8) has a second derivative throughout the open interval
0 < 6 < 1. A standard argument ([3], p. 323) will be used to prove that A"
exists. Thus, let 6 and 6" £ (0, 1). We compute (using the mean value theorem )
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h(9) — h(d) _
6—06

(4) — [0F + (1 — ¢')gl log [(6'f + (1 — 6)9)7']}
= [[16 = 910107 + (1 = #)9)™) = (¢ = )]

s [ o+ (1 = )l log (o7 + (1 — )97

= [[ G- 0gl@s + 1 = 0)9)7

where 6" = 6" (z, y) is a measurable function of (z, y) and is between 6 and 6’
for all (z, y). But it is easy to verify that
I(f — ¢) log [(6"F + (1 — 6")g) ]| < |flog /7| + lg log g7’

+ flog [(8”)7'] + g log [(1 — 6”")7].
This inequality shows that

(f —9) log [(6"F + (1 — 6")g)7"]

is bounded by an integrable function. Hence, by Lebesgue’s dominated con-
vergence theorem, h’(9) exists for 0 < 6 < 1 and

(5) K(8) = [f(f—g)log[(65 + (1 = 8)g)7"].
A similar computation shows that h”(6) exists for 0 < 6 < 1 and that
(6) B0 = —=[[ (F =)/ (F+ 1 =0)g), 0<8<L

Now consider the number
h = h(3}) — 2h(3) + h(3).

Inequality (3) implies that |h| < 2, while the mean value theorem (applied
twice) shows that h = (%)h” () for some 4 < 6 < 2. Thus, forsome 4 < 6 < 2,

") = [ (f — ¢)*/(6f + (1 — 8)g) < 72
But, by Schwarz’s inequality,
JJIF=a)* = [J(F— )%/ 6f + (1 — 0)g) [ 16 + (1 — 6)gl.

Therefore,
I =gl = (J] F = )65 + (1 = 0)9))* = (726)* < 9,
which completes the proof of Lemma 3.

An important consequence of this lemma is that if f and g are two functions
in F such that H(f) = H(g) = Hmax then ||f — g|li = 0; and, therefore, f = ¢
almost everywhere.

We are now in a position to determine the function f & F with maximum
entropy. To do this, we select a sequence {f,} of functions in F such that

(7) lin'ln-»oo H(fn) = Hmax 5
(8) lime H+(fn) = H+ )



292 HOWARD RUMSEY, JR. AND EDWARD C. POSNER

(9) limye H-(fn) = H-.

The existence of such a sequence is guaranteed by Definition 3. Equation (7)
and Lemma 3 imply that £, is a Cauchy sequence (||fn — fulli —0asn, m — «).
Therefore, by the Reisz-Fisher theorem for L; (selecting a subsequence of f, if
necessary ), there exists a function f ¢ L; such that

(10) lim,... fo = f a.e.,
and
(1) liMye [If = fulls = 0.

The last equation implies that f ¢ F, since F is admissible. Thus we need only
show that H(f) = Hmax to complete the proof of Theorem 1. That is, we must
show

Jfflog /™ = limyaw [f fu log £
Now Equation (10) implies that f, log (1/f.) — f log (1/f) a.e. Thus by
Fatou’s lemma, f log (1/f) ¢ L; and

(12) JI\flog 77 < limp [ (£ log £l
[= H, + H_ by Definitions (8) and (9)]. But, by Definition 3,
(13) H(f) = [[flogf" < Hupax = Hy — H_.

Inequalities (12) and (13) are equivalent to the following:
Hi(f) + H(f) = Hy + H-,
H(f) —H(f) =H, — H-.

If we can show that H,(f) = H,, then both inequalities can be replaced by
equalities and it will follow from (13) that H(f) = Hmnax as desired. Thus, to
complete the proof of Theorem 1, we need only prove

(14) H.(f) = limpse Hy(f2).
To verify Equation (14) we write

() = Heh) = [[ 1108 1 = [[ 5108 1

e o
_Qlflogfﬂ“r,f{l(f f2) log =
ff . 1ng—2l}n;:§1
E3
+[[flog [ffnlog
f51 Fe

=II+I2_I3+I4—'I5 say.



JOINT DISTRIBUTIONS WITH PRESCRIBED MOMENTS 293

Equation (14) will follow if we show that each of these five terms tends to zero
as n — . For the first term we have

If log [(f + fu)/2fIl < flog (fu/f) S fu — if fo = f;
=floglf/(L —=3(f —fu)l S 2(f = fu) fz/fu.
Thus
i) £ 2lf — fulli = 0 as n — . Similarly |I;] — 0 as n — o.
For the second term we have

ps( fl1r- o) s ff =l f[ ¢-15

fifasl fifns1

Sf = falh X 2 XI'QI fif,.

by Condition (c¢) in the definition of admissibility (Section 3). Thus, I, — 0
asn — o,
For the fourth term we have

<I,- ffflog ffflog

[+
2

log®

é 24 “f - fn”l )

=1
fa>1
where
= {(z,y) |[f(z,y) =1 and fau(z,y) > 1 forsome m = n}.
But

limyse S = {(2,9) [/ = L u s,

where S is a set of measure zero. Thus

lim 7, < f flog} —o.
n->0 (=1)Us
Finally, for the fifth term we have

= ([l //f,. [t ffn

nSI fnSl

Af/Ifn—fl+Afff<A||fn—fnl+Af/F

fnSl fnSI

IA

where

T, = {(z,y) | f(z,y) >1 and fau(z,y) <1 forsome m = n}.
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But lim,... T, is a set of measure zero by Equation (10). Thus Is — 0 asn — o,
which completes the proof of Equation (14), and thus of Theorem 1.

5. Characterization of solution. The following theorem characterizes the func-
tion with maximum entropy, revealing its special form.

TeEOREM 2. Let F = F(p, q;71 -+ , 71 ;p1, - - , px) be an admissible set and
let f be the unique function in F with maximum entropy. The f has the form
(15) . f(z,y) = a(@)b(y) exp [2251 airi(z, )],
where a(x) and b(y) are positive functions of x and y, respectively and oy , - - -, o

are constants. Furthermore, f is uniquely characterized by Equation (15); that s,
f is the only element of F (up to almost everywhere equivalence) which has this form,
a(z) and b(y) are unique to almost everywhere equivalence, and the «; are unique
constants. .

Remark. Equation (15) can be obtained formally by using a calculus of vari-
ations type of argument to maximize the integral ff flog f~*, where f is subject

to the constraints
fyfzp: fzfz% fffri=Pi-

The following proof should be looked upon as the rigorous justification of this
purely formal calculus of variations analysis. The referee pointed out that the
uniqueness part of the proof of Theorem 2 can also be done by a clever applica-
tion of Jensen’s inequality (the expected value of log u(z, y) is less than the log
of the expected value, unless « is constant almost everywhere) in special cases.

Proor or THrOREM 2. Let g ¢ F be such that ¢ < Af a.e. for some constant A.
We first show that

(16) JJ(g=nlogs™ =0

As before, we define the function ~(8) by the equation h(8) = H[6g + (1 — 6)f].
Since ¢ = Af a.e., the function h(8) is defined in an interval [5, 1] for some
6 > 0. From the definition of f, it is clear that h(#) has a maximum value at
6 = 0. But an analysis like that used in the proof of Lemma 3 shows that " (0)
exists (¢ = Af is not really necessary here) and equals f f (g — 1) log (1/1).
But #'(0) = 0, and therefore Equation (16) holds.

Now let B be the set defined by

B = L(f) = {o = oz, y) | [[ |olf < =}.

It is well known ([4], Section 15) that B is a Banach space and that its dual
space B is given by

B* = Lu(f) = {u||ul < Af a.e.,  for some constant A}.
Let S be the subset of B defined by
S={eeBlo=a() + B8y + 2jaarizy)

for some functions o and B3, and some constant «;, - -+, a; . Observe that S



JOINT DISTRIBUTIONS WITH PRESCRIBED MOMENTS 295

is a closed subspace of B. Then let S* be defined as the orthogonal complement
of S in B*:
: S*={ueB*|[[mw =0 forall wesd}.

A simple argument shows that S* can also be written as the following set of
functions:

(17) S* = {u||ul < Af ae., for some constant A

and
JJwri= fon=Jfyn=0.

Write @ = log (1/f) and observe that ® ¢ B, since H(f) exists. Equations (16)
and (17) imply that & is orthogonal to S* (i.., that f f ®u = 0 whenever
peS*), since if e £ S*, then e 4+ f e F by Equation (17). But if S is a closed
subspace of a Banach space B then (S*)*n B = S, ([4], p. 20). It follows that
log (1/f) = ®is in S. That is,

log /™ = a(z) + B(y) + iaari(z, y),

the required expression. This proved the first part of Theorem 2. To prove that
f is in fact uniquely characterized by the fact that it belongs to F and has the
form a(z)b(y) exp [D air;(z, y)], let g be another member of F which has this
same form. Then we observe that f log g and g log f are in L; (this follows im-
mediately from the special forms of f and g and the fact that fr; and gr; are in
Liforj = 1, .-+, k). But then a simple extension of the argument used in the
proof of Lemma 3 shows that the function h(8) = H[6f 4+ (1 — 8)g] has a
(right-handed) derivative at § = 0 and a (left-handed) derivative at § = 1.
In fact, we obtain

W) = [f(g—1logg
H(1) =[] (g~ 1) logf.
But both of these integrals are equal to zero:
Jf@—=Hlogf=[f(g—1loga(x) + [ (g — 1) log b(y)
+ [ (g —NZar;=0.

[The first two integrals on the right are zero because f (g — fdy =
f (g — f) de = 0; the third is zero because each (¢ — f)r; i is zero.] Therefore,
by Rolle’s Theorem, there is some 0 < 6 < 1 such that h"(9) = 0. And by
Schwarz’s inequality

1= a5 (] 7L %5) ([[or+ @ = 09) = o

for all 9 with 0 < 6 < 1. Let 6 be such that " (8) = 0. Then it can be concluded
that |[f — gl = 0, and f = ¢ a.e. To prove the uniqueness of a(z), b(y), and
the «; , observe that if f(z, ) were expressed in two different ways almost every-
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where in the form given by Equation (15), then some nonzero linear combina-
tion of the r;(z, y) would equal a function of z plus a function of y almost every-
where. But this possibility is not permitted by the definitions of Section 3. This
completes the proof of Theorem 2.

6. Main theorem. We restate and summarize Theorems 1 and 2 in the following
theorem.

TueorEM 3. Let the functions p(x), q(y), ri(z, y¥), - -+, me(x, y) and the con-
stants pr, +++ , pr be such that F = F(p, q; 71, , Tk ;p1, ", px) 28 an ad-
missible set. Then the set of simultaneous integral equations

a(x) [Zb(y) exp [ 2 ajri(z, y)]dy = p(x);
b(y) JZua(z) exp [ D ajri(z, y)]de = q(y);
J2ofZe {a(2)b(y) exp [ ajri(z, y)ire, y) dedy = pi, @ = 1,---, Kk,

has a unique solution in functions a(x), b(y) and constants oy , - - - , e, . Further-
more the function a(x)b(y) exp (D ajr;) is the unique element of F with mazimum
entropy.

ReMark. Note that when & = 0 (no constraints), then

Z:';l ai"'i(x: y) =0

and f(z, y) = a(z)b(y). The unique solution (up to constant factors) is, of
course, a(z) = p(z), b(y) = ¢(y). This is nothing but the well-known result
of Shannon ([6], p. 17) that the joint distribution of maximum entropy with
prescribed marginals is the product of the marginal distributions, obtained when
X and Y are independent random variables.

7. A particular symmetric case. In the case of the lunar radar problem dis-
cussed in Section 1, we can make the following observations. From [5], in suitable
height units,

p(x) = qx) =3 k=1; nzy) =lc—y.

The expected value p of r(x, y) is assumed known.

It is easy to prove from the concavity of the entropy functional H(f) that,
in case p(x) = ¢(x), and all r;(z, y) are symmetric in z and y (as is ri(z, y) =
|t — y|), then the f(z, y) providing maximum entropy is likewise symmetric.
That is, f(z, y) = f(y, ) when p = ¢ and each r; is symmetric. Therefore, the
set of integral equations of Theorem 3 for this case becomes

b(x) [2a b(y)e™ ™ dy = 377,
ZafZa |z — ylb(@)b(y)e™ ™ dx dy = p.

We would have an admissible family for this problem by the remarks following
Lemma 1 in Section 3 (z'¢ "' ¢ L;) provided we can show that the family F is
nonempty for every possible p. We shall observe below that 0 < p < 2. To
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actually exhibit an element of F for every such p is easy enough to do in several
different ways. One way is to obtain distributions (which are not densities)
corresponding to p = 0 and 2; we shall obtain these two distributions below. Per-
turb these slightly to obtain densities with p = ¢, 2 — ¢, forany ¢, 0 < ¢ < 1.
Take convex linear combinations of these two densities to obtain an element of
F with any p between ¢ and 2 — e. Since e is arbitrary in (0, 1), any p in (0, 2)
is so obtainable. The perturbation process needed to obtain densities from dis-
tributions simply amounts to replacing a delta function conditional distribution
with an approximate identity in L,. Further details are omitted. We remark
that if the integral equation were found to have a positive solution for a given
p, & demonstration that F is nonempty would be automatically obtained. Now
that F has been shown to be nonempty, we conclude that the family F is ad-
missible in the sense of Section 3. Hence, the theorems of this paper now can
be applied.

The way these integral equations would be used is as follows. “Solve’ the
first integral equation for b(x) as a function of the parameter «. To obtain the
solution is however a formidable assignment; we have not yet been able to solve
this problem. The solution would yield an f.(z, y) say as the density function
sought. Then find E,(|X — Y|), where E, denotes ff -+« fa(z, y) dz dy. The
function E.(|X — Y|) of « is set equal to p. This determines « as a function of
p and thus p as a function of «. The value of « so determined is inserted into
fa(z, y) = b(x)b(y)e*™*'; this £, is the unique f(z, y) of maximum entropy
for the given value of p.

A problem that such a solution method would encounter is this: Is « deter-
termined uniquely from p? But Theorem 1 gives the answer: yes. For a function
of the form b(z)b(y)e** ¥ is of this form for exactly one a, as was proved in
Theorem 2. Since f(z, y) is uniquely determined by p (Theorem 1), p conversely
uniquely determines «. Thus, as p increases from 0, « goes from some minimum
value; one obtains a one-to-one function. (We are indebted to A. Garsia for a
proof that the mapping from p;-space into aj-space is always one-to-one.) Now
p = 0 when (and only when) X and Y are proportional (with probability 1).
(The “density” function becomes f(x, y) = % exp {[(—|z| — |y|)/2]6(x — y)},
¢ is the Dirac delta function). This value p = 0 clearly corresponds to a = — .
Thus, « is a one-to-one function of p in some set of p. This set of p is an interval
by our earlier remarks in this section.

What is the largest value of « that can occur? And what is the largest value of
p that can occur? Since E(|X — Y|) < E(|X]) + E(|Y|) = 2, p = 2 is the
largest p to consider. Moreover, E(|X — Y|) is strictly less than E(|X|) + E(|Y]),
unless X + Y = 0 a.e. Thus p = 2 occurs only for X = —Y a.e., corresponding
tof(z,y) = 2exp{l(—|z| — |y|)/2]6(x + y)}; this case corresponds to « = + .
Thus, we need consider only the open interval 0 < p < 2 when solving the
integral equation for b(x).

This case p = 2 does not contradict Theorem 3, since the set F for p = 2 is
not admissible in the sense of Section 3. A similar comment applies to the case
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p = 0. Actually, the case p = 2 can be thought of as the limit of solutions of the
form exp [a(|z — y| — |=| — |y|)ib(z)b(y), as @ — «. For then only the case
& = —y gives a term in the limit; b(z) must then approach 2 exp (—|z|)/2.

In sum, as p goes from 0 to 2, @ goes from — » to + «, and « is a one-to-one
function of p. We can invert this function in one trivial case: when « = 0, X
and Y are independent, and f(z, y) = % exp (—|z| — |y|). The value of p is
then §. Thus p = § corresponds to o = 0.
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