SOME DIRECT ESTIMATES OF THE MODE

By Urnr GRENANDER
Unaversity of Stockholm

0. Summary. Consider absolutely continuous unimodel distributions on the
real line. A class of estimates is proposed for estimating the mode of the proba-
bility distribution. The large sample behavior is studied, and it is found that in
the case of main interest the estimates are not even consistent. To remedy this
a modification is suggested and it is shown that the new estimates are consistent.

1. Introduction. In recent years there has appeared a number of papers devoted
to the study of estimating the frequency function of an absolutely continuous
probability distribution on the real line. We refer to the list of references given
at the end of this paper. In general one starts from some smoothed form of the
empirical distribution function and the estimate is obtained by differentiation. A
typical estimate of the frequency function may take the form

ffly) =n" gK(y - ),

where 41, ¥2, - - - , Y» represents the sample and K (y) is a function, usually a
frequency function concentrated around y = 0. A reader familiar with statistical
spectral analysis would find a resemblance to the problem of estimating the
spectral density of a stationary stochastic process. The analogy does not go very
far; mathematically the two estimation problems are distinct.

If one wants to estimate the mode M of f(z), assuming that it is well defined,
it would be natural to look for the value or values of y that make f*(y) as large
as possible. This would give a class of reasonable estimates of the mode; see [1].

The present paper deals with the following problem. Is it possible to find direct
estimates of M, i.e. analytical expressions which behave reasonably well as esti-
mates of M? Such an expression could be taken as a (quasi-linear) weighted
average of the order statistics 2;, 21 < 22 = --+ = ., such that the weights
tend to be large at values where the frequency function is large. The author has
been interested in expressions like M : = B/A, where

n—1

n—1
B = % =Z (xH-l + xv)/(xv+1 - xv)p; A = Z],: 1/(1:,,4.1 - x,,)p.

v

The idea is of course that this should be close to

Mpn = f_: o™ (z) dx/f_:f"(x) da.

The latter quantity will be close to M if we choose the number p sufficiently
large, at least under appropriate regularity conditions. We shall investigate the
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132 ULF GRENANDER

large sample behavior of M in the next section. Unfortunately it will turn out
that M has a non-degenerated limit distribution if p > 1. Since the estimate is
not even consistent it is necessary to modify it. This is done in Section 3 where
it is also proved that the modified estimates are consistent.

Optimality questions will not be discussed in this paper. T. Dalenius and some
of his colleagues at the University of Stockholm have studied various estimates
of the mode numerically. Their results will appear in a separate paper that will
also contain a discussion of the inference aspects of the problem.

2. A direct estimate. Let us consider a stochastic variable with an absolutely
continuous c.d.f. F(z) and the fr.f. f(x), so that F(z) = [ f(£) dt. We shall
assume throughout this paper that

(1) f(x) is positive and has a continuous derivative,

(2) f(z) has a unique maximum, the mode M, so that f(z) < f(M) with
equality only for x = A1, and

(3) f(z) is monotone for large values of |z|. We do not assume any parametric
representation for f(z), nor do we restrict the choice of f(z) by any symmetry
properties.

The task of estimating M is then of non-parametric character. We shall start
by investigating the properties of the estimates,

M} = B/A,
where

n—1 n—1
=3 ;1 @1 + )/ (@01 — )7, A= ; /(2 — )"

and p is a positive number. The estimate is computed from the ordered sample,

2 < xy < -+ < x,, the order statistics.
In the usual way one can consider the ordered sample (x;, 2, - - -, z,) as ob-
tained from an ordered sample (z;, 22, : - - 2,) from a rectangular distribution

R(0, 1) via the transformation G(z) : z, = G(z,), where G denotes the inverse
function corresponding to F(z), G = F". It is now necessary to get around the
difficulty inherent in the dependence between the various z-variables. To do this
one can appeal to the following time-honoured idea. It is known, or can be di-
rectly verified, that the 2’s can be represented as

a=48/+84+ -+ En+14= N/ M1
2 = 51 + 52/51 + 52 + -+ fn+1 = 772/7771-1»1

zn=£1+£2+"'+gn/£1+$2+"'+£n+1= 7]n/’7n+1
nv=$1+g2+"'+£v

where £, &, - - - &,41 are independent observations from a negative exponential
population with the frequency function ¢, ¢ = 0 and 0 for £ < 0.
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Let ¢.(t) be the c.d.f. of the estimate M : . Then
Yu(t) = P(B/A =£t) = P(B— At £0)

so that we would investigate the probability distribution of the stochastic
variable

- %[G (l*i) + @ (L)] —t
S = Z n—21’ Nnt1 Nn+1 _ Z Cv
1

eGu)-o(m)] 7
Nn+1 Nn+1

The factor n~** has been inserted for convenience in the following derivation.
Now we have arrived at something very close to a sum of independent and
identically distributed stochastic variables to which we can apply the classical
results on probabilistic limit laws. To reduce the non-linear behavior of @ split
the sum into a number of partial sums,

S=So+81+"'+8s—1

p=

where
[a;n]—1
So = Zl: Cp
[apiinl—1
S,= 2 0, r=1,2 0,5 2
[apn]
n—1
Ss—l = Z Cv
[as_1n]

and 0 < o < aw < -+ < ay1 < 11is a division D of the unit interval. In the
following D is chosen sufficiently fine and then kept fixed.

It is now easy to find suitable bounds for S,. For 0 < r < s — 1 with the
obvious modifications for r = 0, s — 1,

[arpin]—1

—2p G[n[a,n]/nn—(*l] -t

y4
n+1 S
max g7(2) tarn1 E2

lIA

n

r

t larpin]—1

< G[’f)[a,+}n1/?1n+1] - N+
- min g7(2) lanl  ED1’

where max ¢”(z), min ¢”(2) denote the maximum and minimum respectively of
the function ¢”(2) when z takes the values from 2ja,nj = Nan1/Mn+1 10 2(a,,1n] =
Mays1n/Mms1, and g(z) = @' (2). Note that g(z) = 1/f(z) with z = G(z). But
as n tends to infinity we know that z(.,.; tends to «, in probability. We also
know that

(n)™ ¢y = (“3‘ te+ oo+ 5"“) — (Ep) = 1

n
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in probability. Hence we have
Lemma 1. For a given positive e there exists no such that for n > ne with probability
arbitrarily close to 1, the simultaneoss inequalities hold:

G(a,) —e— 1 larpin]—1 7

max ¢°(z) + ¢ (mm En
ar<zsaryl

n'—P

=8

—p G(ar-H) + e — [apiin]—1 1

n min  gP(z) — € (a1 Em
arSzsaryy

IIA

To obtain the asymptotic distribution of the left and right members of the
inequality in the lemma one should observe that the terms {,41 = 1/£%4 are all
independent and have the same frequency function

h(g) = (1/ps¥P*) exp(— %), ¢ > 0.

This function vanishes at { = 0 together with all its derivatives. For large values
of ¢ the function behaves as 1/p¢™?*!. This means that if p is large enough the
appropriate limit theorems will lead us to the stable laws.

In order to get the limit law with all its parameters for the variable
Z = 1/mP D v &y, it is just as simple to do this directly as to get it by appealing
to the classical results. The characteristic function ¢(2) of ¢ is

o(e) = p fo exp (izf — ¢77) f—u(,{f: A
and
@ d
o(z) — 1= p—‘fo exp(—¢ ") exp(iz¢) — 1] S:ﬁrfﬂ

For z > 0 this turns out to be

1/p © . u
o(2) — 1= expl— (/)" — 1] ~ami-
p Jo U

If p > 1 we have for small values of z because of dominated convergence
o(2) — 1= (Z"/p)ly + o(1)]
with l
y = fom [ — llmjplm = (= p).
This gives forz > 0
log E exp i2Z = m/p(m~"2)""ly + o(1)] = 2"/,

which completes the proof of
LemMA 2. The normed sums Z have, for p > 1, as limiting distributions the stable
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laws with the characteristic function
exp v2'?/p, 2 = 0
exp ¥|2|'?/p, z £ 0.

From Lemma 2 it follows that the limiting distribution of the sum
[e r417 1-1
1/n? [Z] 1/¢0m

has a characteristic function whose logarithm is given by

(ars1 — @) (v/p)2"", 2 > 0.
It is necessary to deal separately with Spand S, ; let us look at S, . But

-1 —2 -1
S = 2 [“f T —x, — 20 n Pl -1
0 = ol . T o p—1
1 Z[xv-I-l - xv]p 2 1 [xv+1 - xu]p !

[a1n—1] (x _ t)

T (2 —a)?

+ =3+ 3.

The first of these two terms can be written as

[a;n—1]

Zo=1/20" 2 a7 {1/g" (6 s — &)
1
where 6, is some number in the interval (2, , 2,41). But expressions of the form
n7 2207 1l — alg; g > 0;
1

have limit distributions as n — « ; see the proof of Lemma, 2. Since the values of
g(0,) are bounded from below it follows that =; tends to zero in probability.
The second term 2, can be dominated, if n is large enough,

[e1n]—1

L |G|+ |1
| < 2P|____
B S o Y e = o

Hence
t [e1n]—1 .
|2 = LG%E!T_)‘_M 21: 07?1 [2n — 27,

where ¢ is in the interval (21, 2(an;). We now assume that f(x) = 0(lz[™),
B > 1,as x — — «. Then the function

G| + 1t _ PO\ _ () d-PBY _
Trw (lz] + Of*(x) = 0(&™) = 0(1).
But if oy is small, the limiting distribution of

[e;n]—1

Z n? 1/l201 — Zu]‘7

1
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is concentrated around the value zero. This shows that =; + Z, can be neglected
asn — o if oy is small enough. The term 8, is treated analogously.

Combining this with Lemma, 1, it follows that S is with probability arbitrarily
close to 1 contained between two stochastic variables whose characteristic func-
tions have logarithms close to

_p _ 1/»
LA [““ Glar) ] (arsn — a)

D ar,1<F(Fe | Min or max g2(z) F e
B arfzgaryl

D min or max ¢?(2) F
arszgarg

1/p _ 1/p
+ e Z [ G(ar+1) + € ¢ ] (Olr+1 - Otr);z > 0.
a,+1>F(t:Fe)

This implies that the logarithm of the limiting characteristic function of S is

- 1/p 1/p 1/p 1/p
¥z [t — G(a)] vz [G(a) —-1]
—_- - . d A, = = d
P fagm) g(a) ot P fa>ru> 9(a) *
-1/p

= 7’; f; (t — )"*f*(z) dz + 7—2;;? /tw (z — 0)"°f*(z) da.

Indeed for the finite part of the integrals the proof is complete. It remains to
verify that the contributions of the tails of the integrals can be made small.
Take e.g.

[ =y s = 0 ( [ = oy dx)

_ 0 (f—Ax—zﬁH d.l?) — O(A-—Z(Bwl))

which tends to zero as A — — . We have proved the following.
TrEOREM 1. Under the conditions given in the beginning of this section and if
p > 1 and

f@) = 0(1/|z’), z — oo

with 8 > 1, then the limiting distribution function ¥ (t) of the estimate M : can be
computed as P(U,; < 0) where the stochastic variable U, has the characteristic func-
tion gwen by

1/p

log E exp 12U, = ~z—p— (YK (t) + vL(1)],2 = 0

1/p
_ LLT WK (1) + FL(D)], 2 £ 0.

The functions K (t) and L(t) are defined as
K(t) = / At — wu''? du, L(t) = / At + w)u''? du.
0 0

But this means that M* is not even consistent, which is disappointing to put it
mildly. To deal with the case p < 1, we norm the sums appearing in S by n™"?
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instead of n~**. Since the stochastic variables 1/ have existing mean values in
the present case,

BYg = [ =1 - p)
0

we get easily, assuming that f(z) = 0(1/]z|"?) for & — 2, S tends in proba-

bility to T(1 — p) [§[G(a) — t}/[¢”(a)] da = T'(1 — p) fﬂ, (x — )P (2) d.

Hence

Y(t) = im P(My < t) = 1if [Zu (z — )PP (2) dz < 0

= ( otherwise
which proves
TaEOREM 2. If0 < p < 1 and if f(x) = O(1/|z|"?) forx — =+, the estimates
M’ converge in probability to the value

My = j:w zf P (z) da / [:f”“(x) dzx.

In the last case the estimate 7s consistent. However, the limiting value M ,; is
in general close to M only if p is large. Therefore My can not be used in its original
form, but we shall see in the next section that it can be modified to yield a useful
estimate.

3. A modified direct estimate. It is obvious from the proof that the lack of con-
sistency stems from the fact that the stochastic variables {, = 1/& do not
have finite mathematical expectation. To remedy this we shall construet our
estimate not from the first differences z,4; — z, but from the kth differences
Z,4r — &, , where the integer & will be chosen later on to guarantee consistency.
Introduce M :‘k = B;/A where

n—k

n—k
Bk = %; (x”‘l'k + x")/(xv+k - xv)py Ak = ;1 1/(xv+k - :ty)p.
To compute the limit ¢(¢) of
Ya(t) = P(Mpx S 1) = P(Br — Axt £ 0)

we consider the new sum

& i + ) —
S — p—172 v+k v =
YZ;{ " [@4r — 2,7 Z_‘i e

But the stochastic variables £ = &4 + &44-1 + - -+ + &41 have the frequency
function 1/(k — 1)le*¢ " so that

1 1 ® tg-1p 5, Lk — p)
Be=g—ml e G
We shall assume that p < k in the following. Now we can proceed in the same
way as in the last section with one modification. The terms in a sum of the form
(7]
S=n" 2 Vka+ -+ &l

[an
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are no longer independent. Let us split the summation interval ([an], [8n]) into
consecutive blocks 4; U B; U 4, U By, U --- U A, where all B; contain %
points and the A, contain K pointswhere K is a number chosen much larger than
k and kept fixed afterwards. The number s should satisfy sK + (s — 1)k =
[Bn] — [an] + 1. We then have

s s—1
2= n_lz S + n~12 S,
=1 =1

where S4,, Ss, denote partial sums over the summation intervals 4, and B;
respectively. But the S,; are independent and identically distributed with mean
value K[T'(k — p)/(k — 1)!] so that

13 s 15 rk—p) K
pi Sa = 2 Sa I A
in probability as n — . On the other hand the non negative terms Sp, have
expected value & [T'(k — p)/(k — 1)!] so that
s—1

En_I;1 Sp; = [k(s — )I'(k — p)l/[n(k — 1)1]

which is small if K is large enough. Hence Z tends in probability to
(B — a)[T'(k — p)/(k — 1)!]. One can now proceed as in the last section and get
the following result.
TavoreM 3. Consider the modified estimate
n—k
32, @ + )/ (@t — )7
M:,k — y=1 -

;_1 1/($y+k - xu)p

with 1 < p < k. Under the given conditions, and if f(z) = 0(1/[z|°), 8 > 1,
for x — 4= 0, it follows that M :k is a consistent estimate of the parameter

My = /_: af " (z) da / f_:f”“(w) da.

It is conjectured that if & > 2p the estimate is asymptotically normally dis-
tributed since the sums involved will be close to sums of k-dependent stochastic
variables with finite variance. It would be useful to have asymptotic expressions
for the bias and standard deviation of M} ; .
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