LARGE-SAMPLE ESTIMATION OF AN UNKNOWN DISCRETE
WAVEFORM WHICH IS RANDOMLY REPEATING IN
GAUSSIAN NOISE!

By MeLviNn Hinicu

Carnegie Institute of Technology

1. Summary and introduction. Suppose we have an input X(¢{) made up
of an unknown waveform 6(¢) of known length, which is repeated randomly, and
is imbedded in Gaussian noise with a known covariance function. The rate of
recurrence of the waveform is a known small constant. In addition, the signal-to-
noise ratio of the input X (¢) is quite low. We wish to estimate the waveform 6(t)
and its autocorrelation ¢ (7) = f 0(t + 7)6(t) di. Restricting ourselves to discrete-
time observations on X (t), we shall derive an optimal estimator of the discrete
version of ¥ (7). This estimator is a weighted average of the sample autocorrela-
tion and the square of a linear estimator of the time average (the zero-frequency
or DC value) of the waveform. For the estimation of 6, the problem is more com-
plicated. The optimality concept (asymptotic efficiency) used in this work is
based upon large-sample theory and the Cramér-Rao Inequality (Chernoff [2]
and Cramér [4]).

The problem stated above was motivated by a problem of electronic surveil-
lance of an enemy communication system based upon pulse position modulation,
PPM. To illustrate this system suppose station A is sending a message, which we
wish to intercept and decode, to station B by PPM over a certain FM bandwidth.
A continues to repeat a fixed pulse-type waveform 6(t) = 2 i1 60.H[t — (1 — 1)T]
where

H(t) =1 if 0=5¢t< 7T,
=0 otherwise.

The vector 6 = (61, -+, 6,), the parameter n, and T—the pulse width—are
known to both A and B. Notice that nT is the time duration (length) of 6(¢).

Since 8, n, and T are known to the receiver B, one may ask what the coding
scheme is for the information that A is sending. The answer is that the length of
time between successive recurrences of the waveform, is the variable which con-
tains the information.

In many applications the average length of time between successive occur-
rences of 6(¢) is around 10” times nT. While the intervals between repetitions are
fundamental in the transmission of information, someone who does not yet know
the waveform may regard the recurrences to be purely random in time.

This modulation technique has the effect of spreading the power in the FM
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bandwidth over a wider swath of the frequency scale. This makes surveillance
more difficult because it requires that we somehow determine the actual band-
width being used. Moreover, the spreading of the power makes jamming of the
channel difficult. To further complicate matters, A transmits the pulses with low
power so that B picks up an input X (¢) with low signal-to-noise ratio.

Since B knows 6(¢), he uses matched filtering to detect the times of occurrence
of the ¢’s. If the noise is assumed to be additive Gaussian noise with known co-
variance, then matched filtering is optimal in a decision theoretic sense (Wain-
stein and Zubakov [8]).

But suppose that we are listening in on this channel without knowing 6 and we
wish to find out what A is saying. First we must determine the frequency band of
the channel which A is using. Then we must detect the times of occurrence of the
6’s, although we do not know 8. However, let us assume that we have already
determined » and 7T, although it will turn out that n is not a vital parameter in
the estimator developed in this paper. .

Jakowatz, Shuey, and White [6] present a special discrete-time (sampled data)
system, called the Adaptive Filter, which estimates an unknown waveform which
is repeating in additive noise. The system uses a complicated stochastic iterative
procedure. The Filter obtains a crude estimate of the waveform from the initial
input and uses the discrete cross-correlation between this estimate and the input
to detect the times of occurrence of the waveform. When it decides that a wave-
form is present in the input, it refines the estimate by averaging it with the section
of input where the waveform is thought to be present. Provided the autocorrela-
tion of the waveform—y(7)—has ¢(0), its maximum, a good deal larger than the
relative maxima of ¢, and provided the noise is well behaved, then this iterative
procedure results in an asymptotically stable estimate for the waveform. This
stable estimate is then used as the matching element in matched filter detection
of the waveform. Thus we could call the Adaptive Filter an adaptive matched
filter. A partial analysis of this system is given by Hinich [5].

The estimate of the discrete autocorrelation of the waveform is helpful to the
analysis of systems which are based upon discrete-time cross-correlation such as
the Adaptive Filter, since the autocorrelation is a basic parameter in the dis-
tributions of the random variables (correlations) which arise in the operation of
these systems.

Suppose we can obtain an expression for 4 in terms of ¢, § = f(¥). Once we
have obtained an asymptotically efficient estimator of ¥, call it , then § = f(¢)
would be an asymptotically efficient estimator of 4. Unfortunately, there is a
multiplicity of 6’s which have ¢ as their autocorrelation. In Section 6 we will
present a method for obtaining the correct # (the one which appears in the input)
from ¢ by using the observations on X (¢). Unfortunately this method does not
seem to be sufficiently practical.

To conclude, let us outline the rest of this paper. In Section 2 we give a formal
statement and description of the problem posed above. In Section 3 we state the
Cramér-Rao theorem and derive the information matrices relevant to the esti-
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mation of 6 and ¢, as well as their inverses. In Section 4 we present the optimal
estimator of Y. We also show that while the normalized sample correlation is an
unbiased estimator of ¢, it is not efficient. In Section 5 we discuss three examples.
These are the general case white noise, the case of white noise when the discrete
waveform has only two components 6, 6;, and the case of Gaussian Markov
noise (EN(t + 7)N(t) = ¢'"',0 < p < 1). In Section 6 we discuss the problem of
estimating 6 after the autocorrelation ¥ has been estimated.

2. Statement of the problem. We shall develop a formal statement of the
problem. First let us discuss it informally.

We observe a process X (t) which consists of a randomly occurring unknown
waveform plus noise. The noise process N () is assumed to be stationary and
Gaussian with mean zero and known covariance. Without loss of generality we
may normalize so that the noise has variance ox) = EN(t) = 1.

The waveform 6(¢) has known specified length and can be represented as a
step function as follows:

0(t) = > " 0H[t — (s — 1)T], =n, T known,
H() =1 if 0st<T,
=0 otherwise.

The parameter 7 represents the width of the steps of the step function, i.e., the
pulse width. The number of equally spaced steps corresponding to the waveform
6(t) is given by n.

We assume that the time intervals between repetitions are large compared to
the length of the waveform. Let v be the rate of repetitions measured in units of 7’
seconds (pulse width). Then T seconds is the average time between wave-
forms, and thus, v is small.

The ultimate objective is to estimate 8’ = (6;, - - - , 6,). However, the discrete
autocorrelation ' = (Y1, -+ , ¥n) defined by:

Yo =360+ 6"+ o + 0.7,
Yo = 002 + 0265 + -+ + Onifn,
(1) !:03= 6105 + 001 + -+ + Ons6n,
Yo = 00,
is an especially useful function of 6. Also ;lseful is the discrete time-average
(2) Yo = D.1m06; (DC value of 6).
We assume that [|6]] = (D 7= 6:")! is small compared to the variance of the

noise. We can state this in terms of R,, the signal-to-noise ratio of X(t). By
definition, Ry = 0" D i=1 6/ [Zw Sn(f) df where Sy(f) is the spectral density
of the noise N (). But [Z Sx(f) df = EN*(t) = o = 1 by the normalization
of N. Thus, Ry = n™" 271 67 = ||6]*/n and we assume that Ry is small.
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Now we will discuss the sampling procedure. For large m and a fixed integer w,
we will take m groups of w successive discrete observations on X (t); the succes-
sive observations being 7 seconds apart. That is for each ¢ such that
h<t< -+ <tn weobserve X(t; + T), X + 2T), ---, Xt + wT). The
intervals between the t’s (¢;;1 — &) are all substantially greater than w7 and
nT (the time duration of the waveform). Let X“ = (X(t: + T), ---,
X(t: + wT)),i =1, ---, m. We thus have a sample of m vector observations
on a w-dimensional random variable.

This sampling scheme may be regarded as opening a sequence of windows of
width wT seconds, through which we observe the process at m different stages of
time.

There are several different possibilities which can occur when a window is
opened. There may be no part of the waveform present during the w7 second
“look’ at X(t). In that case we observe only noise. However, the window may
open just as the front part of the waveform is “visible”. In that case only the
head of the vector 8 plus noise is observed. Similarly, we might observe only the
tail of 4 plus noise, or perhaps the middle of 6 plus noise. Incidentally let us sup-
pose that wT <« v 'T since we wish to exclude the possibility of catching two
successive waveforms in the window.

Since the window has w components and 6 has n components, there are
n + w — 1 ways of catching part of 8 along with the noise. We can represent these
n + w — 1 possibilities for 8 in the window by defining

(3) (Sﬁ), = (0.1'-(-1 y " 0j+w);

where 0, = 0ifk £ Qork=n+ 1.

For example (S,_10)" = (6,,0, ---,0) and (S_,110)" = (0,0, -+, 6:,). There
is no way of knowing in advance which case is occurring. Each of then + w — 1
possibilities may be regarded as equally likely. Figure 1 gives an example for
w = 3, n = 2 where the noise has been removed.

We will catch some part of 6 in the sth window if and only if 6(¢) commences
at timety : —nT + &, + T < ty < t; + wT'. Thus, the probability of this event is

©
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F1a. 1. Example of sampling system with noise removed and n = 2, w = 3
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approximately (n + w — 1)~ where v is the recurrence rate. The probability for
observing a specific one of the n + w — 1 possibilities is simply 7.

Since the distances between windows are greater than nT, a single waveform
cannot appear in two successive windows. Moreover, suppose that for some
10, EN(t + 7)N(t) = 0 for 7 > 7o. Then if we take the windows further apart
than 7, seconds, the X‘”’s are independent. The above restraint on the covariance
of the noise holds approximately for many colored noise processes which occur in
applications. Of course, for white noise, 7o = 0.

We then can sum up this discussion with a formal statistical statement of an
idealized version of the problem:

We have m independent w-dimensional random vectors X®, X® ... X™
each identically distributed as X where

X =N+ S_uif with probability -,

=N 4 S_u4ef with probability «,

(4) :
=N + S0 with probability -,

=N 4+ S, with probability +,
=N with probability 1 — (n + w — 1)y

and S is defined in (3).

The vector random variable N has a w-dimensional multivariate normal dis-
tribution with mean zero and known, non-singular covariance matrix =. We
express this by £{N} = 91(0, Z) where £{N} is the distribution function of the
random variable N.

We desire to estimate the n-dimensional vectors 6 and v, (Y1 = % D 7 0.2 ¢s =
D0 00i41, -, ¥n = 0i6,), where it is assumed that v is small, [|6] =
D262 is small and the sample size m is large.

3. Information matrix. The Cramér-Rao theorem gives a bound for the asymp-
totic variance of estimators in terms of the inverse of the information matrix
(defined below). In this section we will compute the information matrix and its
inverse for the given problem.

Given a parameter vector ¢’ = (g1, -+, ¢n) and a random variable X with
density function p(z | ¢), the information matrix for p and ¢, I(¢) is defined by :

(5) I(p) = E,[(3/d0) log p(X | ¢)1[(8/3¢) log p(X [¢)]':n X n,
where
[(8/d¢) log p(x [@)] = [(8/d¢1) logp(x|e), <=+, (3/d¢s) logp(z|e)]

and E, represents expectation with respect to p(z | ¢).
Consider a random vector T(X)" = (Ty(X), -+, Ta(X)). T(X) is called an
unbiased estimator of ¢ if E,T(X) = ¢. Furthermore we call K, =
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E,T(X) — E,T(X)[T(X) — E,T(X)] the covariance of T, thus if 7 is an un-
biased estimator of ¢, Kr = E[T(X) — o|[T(X) — o]’

The Cramér-Rao inequality states that if 7' is an unbiased estimator of ¢,
Kr = I''(¢) where the inequality between these matrices means that for any
vector a, d' Kra = a'I ' (¢)a.

But suppose we have a random sample X;, -+, X,, of m independent ob-
servations from a population with density p(z|¢). Let {Thw(X1, -+, Xn):
m = 1,2, ---} be a sequence of estimators of ¢ such that Lim(Tyn — @)} —
91(0, K) as m — . That is the distribution functions of M Tw(Xy, -+, Xn)]
converge to an n-dimensional multivariate normal distribution with covariance
matrix K. Then K is called the asymptotic covariance matrix of {7} .

Paraphrasing Stein’s generalization of the Cramér-Rao theorem (see Theorem 1
in Chernoff [2]), there does not exist any estimator of ¢ which has an asymptotic
covariance matrix K such that for some vector a, o’ Ka < a'I *(¢)a, for all ¢ in
some open set S. Thus I () is “essentially” the lower bound for the asymptotic
covariance of estimators of ¢. Thus we shall call the sequence {T',} asymptotically
efficient if K = I '(¢). Cramér [4] shows that under mild conditions, the maxi-
mum likelihood estimator is asymptotically efficient.

We will now deal with the information matrices of interest in this work. How-
ever, to facilitate the algebra we make the one-to-one transformation,

(6) Z =3'X,

where 7" is the inverse of =, the covariance matrix of the Gaussian noise vector
N. From (4) we have

(7) Z=N*+27S# with probability ~ for each
j=—-w+1 - ,n—1,
= N* with probability 1 — (n 4+ w — 1)y

where £{N*} = 9(0, =7).
Let f(z | 6) be the density of Z, parameterized by the waveform vector §. There-
fore from (7) we have

(8) f(z]0) =1 = (n4+w—1n|0,27) +v2 i unn(z|278;6,27),
where
n(z|e, C) = 2m)IC[ exp[—4(z — ¢)'CT (2 — 0)]

is a w-dimensional normal density with mean ¢ and covariance matrix C.
Notice that f(z | 8) is a convex combination of multivariate normal densities,
but it is not in general multivariate normal itself. We shall handle it by making
Taylor series approximations with 6 in the neighborhood of zero.
Let I(6) be the information matrix for f(z | 6) and 6. Asin (5),

(9) 1(6) = Eq[(8/06) log f(Z | 6)][(/06) log f(Z | 0)]'.
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But we also wish to deal with the information matrix for the autocorrelation ¥
given in (1). We see that ¢/(8) is not a one-to-one transformation for all 6. Let J
be the Jacobian matrix of the transformation, J;; = d¢;/80; with 2,7 = 1, --- | n
It is easy to see that

01 O+ 6 - Oon+ On
62 O+ 60 - O3—n t Ouna
10 : : :
(10) A + Oita c 0 Ointr F+ Gitna| ]
On On—1 + Ont1 -+ 0 + O2n—1
where we recall that 6, = 0if k < Oor k¥ = n + 1. It is not difficult to see that
(11) W] = [228 01220 (—1) 0P s(6),
where P,_,(6) is a homogeneous n — 2 degree polynomial in the 6.’s. Therefore
the set of #’s such that |J| = 0 form surfaces which divide the n-dimensional

Euclidean space into at most 2" regions where J does not vanish. We will restrict
ourselves to 8 vectors such that J does not vanish. Thus J " exists for these 6’s.
Moreover given a 8 such that |J| = 0, there exists a neighborhood of 6, in which
¥(0) is one-to-one.

Now we will deal with the approximations of f(z | ). From (8) we have

felo) _ . _ & onlz]27'8;0,27Y)
(12) o) = 1—(n+w—1)y++ j=§+1 0.5

since f(z ] 0) = n(z |0, ™). By expanding in Taylor’s series about ¢ = 0 we
have

(13) n(z]Z7%, Z7)/n(z]0,27) = 1 + 2o + 3¢'(22' — 27)e
+ 2 Viam1Ga(2 | 4, 4, B)es(d, 5, k)ewsen
+ Z?J,k,l=1 G4(Z l i} j} k; l)&;(’i, j7 ka l)‘Pi¢j‘Pk¢l + ”¢”5K*(2) ¢)7

where the ¢’s are constants and |K*(z, ¢)| < dexp t:*es] + -+ + t,%[2u| for
some ;¥ > 0 and d > 0. Thus E[K*(Z, ¢)]” exists and is bounded by some
number independent of ¢ for each » = 0. With the notation =™ = (¢%),

(14&) G3(Z l i, j, k) = RRikr — aijzk - G'iij — G'iji ,
(14b) G4(Z l ’L., j, IC, l) = ZRjRKe1 — 2¢1ijzkzl - 20iijZz
— 26'%z, + 06" + %" + oo™

From page 39 of Anderson (1], BoZ:Z;Z4Z1 = o™ + o™¢" + o¢''6™ BoZ.:Z; = .
Moreover all odd moments of the Z,/s are zero. We then have the following
orthogonality relationships:

(15) EOZz(ZJZk - O'Zk) =0 for all 7:7 j: k:



496 MELVIN HINICH

EZGs(Z |5, k1) =0  foralls,j, ki
EZG(Z |,k I,m) =0 for all 4, 7, k, I, m,
EWZ:Z; — ¢")G5(Z |k, 1, m) =0  foralli,j, k1, m.
Putting ¢ = S;# in (13) and summing, we have from (12)
F(210)/f(z]0) = 1 4+ 7' (22;88) + $2; (86) (22" — =7)(89)
(16)  + 2w Ga(z | 4,4, OUOI) 4+ 2iswa Gulz 15, 5, k, DO([I0]]*)
+ K(z, 0)0(|l6]")].

E|K(Z, )] exists and is bounded by some number independent of 8 for each
r = 0. Moreover the O(||6]|*) and O(||8]|*) terms are functions of 8 which do not
involve z.

Applying (1), (2), and (3) we have

(17) Z}:-l-w+l SJB = 51/0 lw l}

where 1,/ = (1, ---, 1) is a vector of w ones, and for any symmetric w X w
matrix A = (ai;)

(18) 325720 (88) A(S8) = (D ¥-1au)ds + (Zg:ll @s,i41)¥2
+ o4 ’f-_'.'l"+1 @i itn—1)¥n ,

where a;; is understood to be zero when 7 or j is greater than w or less than 1.
Thus, if w < n, the coefficients of Yy11, - - - , ¥» vanish and 2> _; (S,0)'A(S,0) =
(Zg;l ai)pr + o0+ e -

Applying (17) and (18) to (16) we have the following result.

LemMa 1. Define Y(2)" = (Yi(2), -+, Ya(2)) by

(19) Yi(z) = 205 (2zipp — o™, k=1, ,mn.
Then
F(210)/f(2]0) = 14+ v[('L)o + Y (2)'¥ + 2i50 Gz | 4,5, K)O(|6])
+ 2 iiwa Ga(z |4, 4, k, DO8]Y) + K(z, 6)0(]|6]*)].

It is understood that z; = 0if 7 < Oor< = w + 1, and thusif w < n, Y,41(2) =
v+ = Y,(2) = 0. We then define forw < n, Y(z|w) = (Yi(2), -+, Yu(2)).
We now introduce the n X n matrix.

(21a) D = EY(2)Y(Z) = (dy).

If w < n we can write
D, 0
b= (0 0)’

where D, = EY(Z | w)Y(Z | w) is aw X w matrix. From (19) we can show for
1,7 =12, -+, nthat

(20)
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(21b) dij — Zz;—f’%—l ';);lj+1 (o_kla_k+i—l,l+j—l _|_ O_k,l+j—10_k+i—-1,l)’

where it is understoon that ¢*' is zero if k or [ is greater than w or less than 1.
LeEmMA 2. For w = n, D is positive definite. For w < n, D, is positive definite.
Proor. Let w = n and notice that EyY(Z) = 0. Thus D is the covariance

matrix of Y (Z) and is therefore non-negative definite. Suppose D is singular.

Then there exists a non-zero vector a such that ¢'Y(Z) = 0 with probability

one, which implies that,

20Uy + a2Uz + -+ + a,U, = constant,

where
Ur = $2°04 24,
Us = 2205 ZiZy,
Un = 205" ZiZnyns s
U.w = Z1Zw .
We see that U(Z)" = (U, -+, U,) results from an autocorrelation operation

on the random vector Z. Therefore the Jacobian matrix of the transformation
U(Z) is given by (10) with n replaced by w and 6, by Z; .

As in the case of the transformation from 6 to y, there exists a point 2, in a
neighborhood of which (i) the Jacobian is non-zero, and (ii) restricted to this
neighborhood U is a one-to-one transformation mapping w-dimensional open
sets onto w-dimensional open sets.

Now Z is a non-degenerate w-dimensional multivariate normal random variable
and every region in the Z space has positive probability. Hence there is a neigh-
borhood in the U space such that every w-dimensional cube in that neighborhood
has positive probability. But then it is impossible that U be on the hyperplane
2q,U; + aUz + -+ + a,U, = constant, with probability one. Hence D is
non-singular.

For w < m, a similar argument holds for the hyperplane 2a;U; + a:U; +
-+« + a,U, = constant.

We will now approximate I(6). From (5) we rearrange terms and write

(22) 1(6) = A(9) — B(6) + C(9),
where '
A(0) = Eof[f(Z | 0)7'0f(Z | 6)/96}{[f(Z | 0)'0f(Z | 6)/96}’,
B(6) = Eof[f(Z | 0)]"'0f(Z | 6)/90}{[f(Z | 0)]0f(Z | 6)/06}’
(23) 1f(Z16)/f/(Z]0) — 1],
C(6) = Eof[lf(Z | 0)'9f(Z | 6)/06]l1f(Z | 0)"'0f(Z | 6) /6]
Af(Z10)/f(Z]0) — 1T4(Z | 0)/f(Z | 6)}
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and
[6/(Z | 6)/86 = (af/d6s, -+, 8f/36a).
The Taylor expansion argument which gave (20) in Lemma 1 also yields
[f(z] 0)] " af (= ] 6)/36
= 7 [(L'2)1Ls + JY(2) + 2isu Galz |4, 5, K)O(l6]*)
+ ik Ga(z ], 4,k DO + K(z 0)O([0]Y)],

where J = (0y;/00;) is the Jacobian given by (10). Using (24) in (23) and
noting that f(z0)/f(z|0) £ [1 — (n + w — 1)4]™", we have

A(6) = ¥[(1,’Z71,) 1.1, + JDJ 4+ 0(Jlo]|*)],
(258) B(9) = v'{[Eo(1,'2)"Y(Z) W(1,1,")
+ W E(1,/Z)*Y (Z)1) + LE(1,/Z2)'Y(Z)T] + o(|8l*)},
(25b) B(6) = ~'0(||6]"),
(25¢)  C€(6) = ~'O(|je[*),

since the G’s and K have bounded moments with respect to n(z | 0, ™). Hence
from (22),

(26)  I(0) = ¥[(1.= .11, + JDJ' + O(+[j6]*) + o(|l8])].

Applying the chain rule (of differentiation with respect to 8) to o = (27 ¢:)"*
= D 6; we have ¢, J1, = 1, and consequently J ‘1, = ¢ '1,. Combining
this with (26) we have

LeEmMmA 3.

1(6) = +J[(L,/'='L,/¢) 1,1, + D 4+ 0(y) + o(Jl6|)}J".

If I(9) is non-singular, then /'(8) is the lower bound for the asymptotic
covariance of estimators of 6. To calculate I7*(8) we shall make use of the follow-
ing lemma which we state without proof.

LemMma 4. Let M = o '11" + R where R is positive definite. Then,

M =R — [RMUR/(a + 1'RT)]

= R — [R'IWR/UR™M] + [RT1IU'R™/(I'R71)’la + 0()

as a — 0.
Now let =y, denote the Cramér-Rao lower bound for the asymptotic co-
variance of estimators of the » 4 1 parameters ¥1, e, -, ¥n, ¥o.-

In order to obtain 2.y, from I(6), let us now state a result which was
originally derived by a procedure called the delta method, (Mann and Wald [7]).

Let {T,} be a sequence of estimators of ¢* = (¢, -+, ¢.") such that
L{m} (T — ™)} — 90, K) as m — . Let g be a vector-valued function of ¢
continuously differentiable at ¢*. Then
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(27) {m'lg(Tw) — g(e™)1} — (0, [99/9¢] K[dg/d¢]),

where [dg/d¢] is a matrix whose (7, j)th element is given by (8¢;/0¢:)peps . If
we let =, denote the lower bound for the asymptotic covariance of estimators of
g(6), then if I(¢p) is non-singular

(28) 2, = [99/3¢] T (¢)[09/9¢].
We then have from (28) if 7(8) is non-singular,

(29) Swwo = [0(¢, )/ T (8)[8(¥, ¥v)/06),

where d(y, ¥0)/00 is the Jacobian matrix with elements ay;/d8; for j = 1, 2,
-,mn,0ands =1, .-+, n
Thus we can write

(30) (¥, ¥0)/00 = (J, 1a).

Applying (29), (30), and Lemmas 2, 3, and 4 we have

TueoreM 1. If w = n, then Zyy, = v K[I + 0(v) + 0(||8]]")], where I
18 the identity mairiz and K = (ky) isa (n + 1) X (n + 1) symmetric matrix
such that given the notation that e, = (0, --+,0,1,0, -+, 0) is a vector of zeros

with a one only in the zth position,
ki = e/De; — (1,’D7%;)(1,'D7%;)/(1,'D7'1,,)
fore,7 =1, ,nand
ke = (1 D7) /(1,27 1) (1,/D7'1a)
Eoinmin = (Lo'Z71,)7

CoROLLARY 1.1. Let o7, denote the Cramér-Rao lower bound for the asymptotic
variance of estimators of ¥o . Then

oy = v 1(L/'Z7L)T 4 0(y) + O(Jj6|)].

CoroLLARY 1.2. Let 2y denole the Cramér-Rao lower bound for the asymptotic
covariance of estimators of y. Then

Zy = 77D — (DT'L,L/D7Y/1,/D7'L,) + 0(v) + 0(]8])].

If w < n the main part of 7(6), as represented in Lemma, 3, is a singular matrix.
From (20) we see that for 8 in the neighborhood of zero, f(z | 6) has (¢1, - - , ¥w)
as natural parameters. We will obtain the lower bound for the asymptotic
covariance of estimators of the m parameters y1, -+, ¢¥u_1, Yo, which will
then give as a corollary the lower bound for the asymptotic covariance of es-
timators of Yo, Y1, * -+, ¥w.

If welet 7 = (Y1, -, ¥m1, %) denote the parameter vector, f*(z| )
denote the density of Z parameterized by 7, and I*(7) be the information matrix
with respect to f* and 7, then from Lemma 3 it can be shown that when w < n,
I'* is singular.
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However, let us define the pseudo-inverse with respect to P by
(31) [0 = limao[I*(r) + NPT,

where P is a symmetric matrix such that I* 4+ AP is positive definite for A > 0.
Chernoff [3] shows that the (7, 7)th element of I,* is independent of the choice
of P if the ith and jth diagonal elements are finite. The submatrix of these in-
variant elements is the lower bound for the asymptotic covariance for estimators
of the y; corresponding to these finite diagonal elements.
Using Lemmas 2, 3, and 4 and by use of matrix inequalities, we have
THEOREM 2. If w < n,

[D,;l R, 0 1
7z R/ R R; I + 0(v) + o(Je|™)],
[ 0 Ry (1w'2—11w)—1J

were we leave the matrices Ry , Ry , and R3 unspecified.
CorOLLARY 2.1. If w < m,

oo Z v L(L/Z7L,) 7 + 0(y) + O(Jlo|)].

CoROLLARY 2.2. Let Zyw,) be the Cramér-Rao lower bound for estimators of the w-
dimensional vector y(w) = (Y1, -+, Yw). Then

Svw = 7 Du 4+ O(y) + 0(JI8])].

If w = n — 1, we can determine ¢, from = because

(32) Yo = B0 — 20
Let o}, be the Cramér-Rao bound for estimators of ¢, . Then
(33) U = (Yn/37)'T* " (4n/0r).

Thus we have from (33) and Theorem 2,
COROLLARY 2.3. If w = n — 1, 0%, = v [LnaDy Loy + O(v) + O(|I6])].

4. Estimation of ¢ and . The random vector Y(Z) defined in (19) as
Yi(Z) = M (ZiZ ik — o) could be called the autocorrelation
statistic of Z = Z7'X. An important example is the case where = = I, the
identity matrix. Then

Yi(X) = (X2 = 1) 4 -+ + (X2 — 1),
(34) YZ(X) = X1 X, + o 4 Xon w

Ya(X) = XX + -+ + XoonpiXo .

In this section we will give asymptotically efficient estimators of ¢ and .
These estimators are functions of Y(Z) and 2’1, .
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In order to demonstrate efficiency, we will need the mean and covariance
matrix of the n + 1-dimensional random vector (Y(Z)’, Z'1,).

LEMMA 5.
Y(Z)\ _ Dy
E0 ( Z,]-w ) =9 (110/2‘—1110#/0) .
Proor. For any o,

J @ =227, 27) de = (27%)(27%) = Z7pp' =7
Thus from (7),
(35) Eo(ZZ — =) = 427 [ D 0t (8,8)(8,0) 127
The (r, s) element of v "Eo(ZZ" — =) is then,
(36) Ef(Z.Z, — ") = D i i P (a7 4 o7,

Thus from (19), (21b), and (36) it follows that EsYi(Z) = v =1 dist; and
therefore

(37) EyY(Z) = vDy.
Now [zn(z| =%, 27') dz = =7 for any . Thus from (7),
EoZ = v27 (2032041 89)
= (270 .

Thus BeZ 1y = v(1, =2 1u)¢0 .
Lemma 6. Let C be the covariance matriz of (Y(Z)', Z'1,). Then

= D YO0(%0) )
€= (70(%) lw’z‘ll) + vO([l6I).

Proor. EY(Z) — ¥DYIY(Z) — w'D] = EY(Z)Y(Z) — +'Dyy'D.
From (20) and (21a), we have

EY(2)Y(Z) = EY(Z2)Y(Z) + ~O(|6|]")
= D + yO([I8II")-
From (36) it is easy to show that
(38) By(Z'1,)" = 1,271, + 71./Hy,
where H* is a w X n matrix with elements
hij — 1:=1 llv=—1.7'+l (a_'ila_s.l+j—1 _|_ a'i'l+j-10'3l).

We then have the indicated variance term for Z'1,, .

ElY(Z) — vDyliZ'1w — v(1./Z 710
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= EY(Z2)(Z'l.) — Y(L.'T1.)DWe = E(Z'1.)'Y(Z) + O(Jj6]")]

from (20). We thus have the desired result.

In the beginning of Section 2 we introduced the concept of asymptotic effi-
ciency. However, in this section we will use a somewhat weaker concept of
efficiency. A sequence of estimators {7',,} will be called efficient near zero if for
every vector a, limy .0 (¢'T ' (¢)a/a’Ka) = 1.

Let [Y(Z)] = m™ 2 it Y(Z") where Z% = =7'X®. Then we have

THEOREM 3. If w = n, § = v "D *[Y(Z)] is an unbiased estimator of ¢ but
it 1is not asymptotically efficient near zero.

Proor. From the central limit theorem and Lemmas 5 and 6,

e{m'[*[Y(Z)] — ¥Dyl} — (0, Ky),

where Ky = D + yO(||6|*) is the covariance of Y. Hence £{m!(y — ¢)} —
37(0, Ky) as m — o, where Ky = v "D 'KyD™" = 7 [D™" + ~0(||6]*)] is the
asymptotic covariance matrix of ¥. From Corollary 1.2, for any vector a,

a'2ya = v ld'D7'a — [(a'D7'1,)%/1,'D7'L.] + O(y) + O(||6]*)].
Thus
a'24a/d' Kya = 1 — [(¢'D7'1,)*/(1./D71,) (a'D7"a)] 4+ O(y) + O(Jl6]]")

and therefore, lim, s (a'Zya/a’'Kya) < 1. This lack of efficiency is surprising
since ¢ is a linear function of the sample autocorrelation Y (Z) and one could
expect that it would be efficient in estimating the waveform autocorrelation .
However, if w < n, we do have this “naive” estimator efficient in the estimation
of the first w partial correlations ¢1, - - - , ¥» . We have

THEOREM 4. If w < n, then ¥(w) = v "D, [V (Z | w)] is an asymptotically
efficient estimator near zero, of Y(w) = (Y1, -+, V) where *[Y(Z |w)] =
(2, -, Yu(2)])

Proor. By applying the central limit theorem in a manner similar to that
used in the proof of Theorem 3, we have from (21a) and Lemmas 5 and 6,
e{miP(w) — ¥(w)]} — 90, Kyw) as m — o, where

Kyw = v Dw " + vO(|8])]

is the asymptotic covariance matrix of ¥(w). Comparing Ky with the lower
bound for Zywy as given in Corollary 2.2, we have the desired result.

Let us digress and derive an efficient estimator of o . This estimator will be
part of the efficient estimator of ¥ when w = n.

THEOREM 5. ¥ = ~v (1. '2_11 Y7 ¥Z) 1, is an asymptotically efficient es-
timator of Yo near zero, where *[Z] = m™" Zm z®,
Proor. From Lemmas 5 and 6 and the central hmlt theorem, £{m!(¥o — o)}

— 91(0, ko) as m — o, where ko = 7_2[(1 "57,) 7+ v0(|6])] is the asymptotlc
variance of ¥ . Comparlng ko with o5, as given by Corollaries 1.1 and 2.1, we
have the desired result.
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By combining *[¥(Z)] and §, we can obtain an efficient estimator of ¢ when
w=n.
TrEOREM 6. If w = n, then

¥ =77 D7 — (D71L,LD7/L/DTL)] *Y(Z)] + (D7'1a/1.' D7) 3 (%)’

s an asymplotically efficient estimator of ¥ mear zero.
Proor. Let T = ([Y(2)], *[Z]'1,) . From Lemmas 5 and 6 and the central
limit theorem,

£ {m% [Tm — (lw'EI_)fliw ‘//0)]} — 91(0,C) as m— oo.

Nowlet¢ = (o1, * -+, ¢ny1) and define a function g such that

®1
g(‘P) =H : + h¢3¢+l )
Pn

H=+D" - (D1,1,'D7/1,'D7'1,)),

h = (D™,/1,’D71,)4y7%(1,/2711,) %
Thus
9(Tn) = HYY(2)] + "[Z]'l, =

We refer to the discussion of the delta method in Section 2. We substitute
g(e™) = HyDy + hv*(1,/271,) "%’
=y — (D'1,/1,’D7'1,)Lv + (D7'1./1.'D7'1,) 2¢¢’
=y

since Ly” = 1,'y. Then £{m (¢ — )} — (0, Ky) as m — « where the asymp-
totic covariance of ¥ is given by,

K, = [3g/8y]'Clag/ay]

[H, 2hy(1."27"1,)%]C [%,7(1 g—ll )%]
= v7D7 — (DT'1,1,/D7Y/1,/DT'L,) + O([e|)].

Comparing K, with 2, in Corollary 1.2, we see that ¢ is asymptotically efficient.
In the special case that w = n — 1, using Corollary 2.3 we can prove as in
the proof of Theorem 6,
TaeoreM 7. If w = n — 1, then

¥n = 3(0)" — v D Y (Z | w)]

s an asymptotically efficient estimator of Y. near zero.

It

5. Examples. In this section we shall give examples for some of the results in
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Sections 3 and 4 for three cases: (A) white or uncorrelated noise, (B) white
noise with n» = w = 2, and (C) Gaussian Markov noise with n = w.

ExampLE A. If the noise N (¢) is white, the covariance matrix Z is simply the
w X w identity matrix, I, , since we have made the normalization o¥ = 1.
Thus Z = X and

Y(X) = (28 (X — 1), 2orm XiXewa, 0 2ot XaXignaa).
Ifw=n,
2w 0 0
0 w-—1
D=EYX)Y(X) =|: w— 2
0 0 w —On +1
Ifw < n,
2w 0 o 0
D.= BY(X|w)¥(X|wy=[ 0 “71 .
0 - 0 1

From Lemma 2 we have,
1(8) = YJI(w/¥") 11" + D + O(y) + O(|lo|") '

since 1,’27'1,, = 1,1, = w. Thus if we have w = n, from Corollary 1.2,

(Qw)—l . 0

e [
0 0 (w—n+1"

- c—l{(zw)—l, (w - 1)_1’ R (w —-n+ 1)—1},

A2w)7, (w =17, e, (w = n 4+ D)7 4 0(x) + 0(ll6lM)],

where ¢ = (2w)™ + D poa kL
ExaMPLE B. Let w = n = 2,

10) = v e (1 1)+ (5 1)+ o +odem ],

_ {6 6,
e (B8

Zy=7" [(5 0) = %(“;‘ 'i‘) + 0(v) + 0(|| 6 I|2>]

where

Thus
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= G (L] 1) om +odle,

w

Po = v (1 27,7 20 ¥[Zd = (29) 7 H( XL + Xw)],

1

X =m Y X, i=1,2.

k=1

. i
V= (w)

where,
$i = (57) X — 1 4 X — 1] = (XX + el
o = (5v) 7 ([XuXa] — X — 1] - YIX7 - 1)) 4 W
and

XE— 1] = m ' e (X% — 1) for i=1,2,
X1 Xe] = m ) XaO X%,

ExampLeE C. Let N(t) be Gaussian Markov noise with EN(¢ + 7)N(t) =
o™, 0 < p < 1. Then

1 a2 N N \?
A1 PRI
2= |3 A 1 Ao AR
AT ST
where A = p” with T being the pulse width.
1 —x 0 --- 0
- 14N - ) :
(39) ='=@1-=-N7 0 —x 1+3N = . 0
: . L4 N -
0 .- 0 - 1

Let w =n > 3.
We have for D = (d;;), from (21b),

dijiys = 0 fori=1,---,n— 3
dijpe = (1 = N)(n — ¢ — )N fori =2+ ,n—2,
= (1 —N)2(n — 2)N fori=1

dijgpn = —(1 = X)"2N(n — 9) + (n — i = N]

fori=2,---,n—2,n—1,
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I

—(1 =)\ (n — 1) + (n — 2)N] fors =1,
(1 = N)722n + 2(2n — 3)N + (n — 2))\ fori = 1,
(1= —1)+ (Bn— NN+ (n — 3\  fori =2,
(L=N)(n—i+1) +4n— N+ (n— i — 1]

forec=3,---,n— 1,

£
Il

== for ¢ = n.

6. Estimation of 8. We have shown that § and , are asymptotically efficient
estimators of ¢’ = (Y1, -+ - , ¥a) and o respectively. Unfortunately the problem
of estimating 6" = (6y, -- -, 8,) is much more difficult. In this section we will
discuss informally a method for estimating 6, based upon the estimates i and
Jo . However, this method seems not very practical to implement.

Recall that ¢ is defined by the system of second order polynomials in the
6.’s by Equations (1) as follows:

Y= 307600 Ya= D207 08, -, Ya = 616,

withyo = D_1 6; . Remember that 6 is in a region such thatJ, the Jacobian matrix
of the transformation, does not vanish and thus J~' exists. However, given
Yo, ¥1, -+ , ¥ there is not a unique solution to (1).

For simplicity suppose that ¥, and ¢ are known and 6%, 6%, - .., 6 are the
corresponding real solutions. Then, let 8% = X'6%. With each observation,
depending on the position of the vector 8 in the “window” X, each of the r
random variables 8% are normally distributed. In fact 8% has mean 0 with
probability 1 — (n 4+ w — 1), or w; = (8,0)'6* with probability v for each
j=—w-+1,---,n— 1. Moreover given any position, B% has variance 6*'=6%®
which is a constant o® = 2[Yron + Yoo + -+ + Yaouw] if = corresponds to
stationary noise, i.e., if 6;; = 041,741 . The Cauchy-Schwartz inequality informs
us that u; achieves a unique maximum 2¢; when j = 0 and 6% = 9. Thus if
we set a limit ¢ = 2¢y + Ao, the proportion of observations 8% exceeding ¢ is
pe(N) = v 225 {1 — @\ + 2(%1 + we)} + (1 — (n +w — 1)7]{1 — 3\ + 204]},
where & is the cdf of a standard normal variable.

By making A large enough, the largest pi(\) corresponds to the k for which
6% = 6. Let the selection procedure be to select that 6% for which the correspond-
ing B® exceeds ¢ the most times in the m observations. This procedure produces 6
with probability approaching one providing (i) A is sufficiently large depending
on m, v, and u; ; (ii) m — o« and is sufficiently large depending on vy and the
Wi -

However, we do not know y and o, but we have the estimates { and g .
From Theorems 4 and 5, ¥ — ¢ and Jo — ¥, in probability as m — «. Then in
(1), for large m, replace ¢ by ¢ and also ¥, by o, and obtain the real solutions
6% ... 7. Asm — « each §* — 6% in probability. The above selection pro-
cedure will then select that §* such that §*% — 6 in probability as m — .
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As yet we have not given a method for determining the real solutions of (1).
As a possible contribution toward finding and counting the 6%, we now present
a lemma which describes the real 6 corresponding to (Yo, ¥).

LemMA 7. Given (%o, ¥), a real solution 6 of the system of equations given by
(1) with o= D_1 6., has the form

(40) 0* = n Ay,
where ¢ s a (complex) vector whose first coordinate is o , and such that

leil = {22 7=1 s cos 2x[(¢ — 1)(j — 1)/n]}}

Pn—jr2 = @j j=2y3y"'7n
and with p = exp (2wi/n),
(1 1 1 1
1 A pi 2<ﬂ:11>
A= 1|1 p - o
i pn.—l pz(h—:) ) : p(n—f)(n—l)

Proor. Applying (1) we have
(41) | > rt 6™ exp [20i(k — 1)o]]® = 2D 51 ¢ cos 2r(k — 1)w.

Setting w = (j — 1)/n in (41), withj = 1, - -+, n it follows that the absolute
value of the jth component of ¢ = A6 is 2{ D7 ¥, cos 2a[(¢ — 1)(j — 1)/nl}*.
Observe that ¢; = o . Since the nth roots of unity add to zero, we have 4™ =
n*A. Thus we have (40). Moreover since 6* must be real, * = n'4dp = n "4 ¢.
This implies ¢ = n'A’s. We can check that the jth row of A? has zeros in all
columns except for a one in the (n — j 4+ 2)nd column. Thus we have that
@i = Pnjt2,] = 2.
For example if n = 3,

301* = ¢o + 2(2¢1 - '//2 - '//3)* COs 27""’;
36" = o + 2(2% — ¥» — ¥s)" cos 2n(w + $),
30 = Yo + 2(21 — ¥2 — ¥u)* cos 2r(w — %),

where 0 < w < 1. Observe that 2¢1 — ¥» — ¥3 = 0. However, we do not obtain
a solution of (1) for all w, only for a finite number of w. By solving (1) forn = 3
in a straight-forward manner, it turns out that there are four possible real solu-
tions and thus there are four w (functions of ¥) which give 6,*, 6,%, and 6;*
as real solutions.

We conjecture that there are 2" possible real solutions to (1) such that
Yo = 2167

Finally, we must admit that in the formulation of the statistical problem we
have left out certain important aspects of the PPM communication system. The
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informed receiver B in the system has certain a prior? information, in addition
to 6 and v, at his disposal in order to detect the recurrences of the waveform,
measure the intervals between recurrences, and decode the message which 4 has
sent out.

However, we feel that there are three basic ways in which this work is a con-
tribution to the PPM detection problem. First, it gives a statistical formulation
in terms of sampling, estimation, and detection of unknown parameters. Secondly,
it shows that given the formulation, the basic parameter is the autocorrelation
vector of the waveform vector and the basic statistic is the sample autocorrela-
tion. Thirdly, using the tools of large-sample theory, it develops an asymptotically
efficient estimator of the discrete autocorrelation. The estimator is fairly simple
and it is hoped that it has good properties even if v is near one and the signal-to-
noise ratio is not small.

I wish to express my great gratitude to Professor H. Chernoff of the De-
partment of Statistics, Stanford University for giving- of his time, effort, and
experience to the development of this research. I would also like to thank Pro-
fessor M. V. Johns for his help.
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