ON THE ASYMPTOTIC THEORY OF FIXED-WIDTH SEQUENTIAL
CONFIDENCE INTERVALS FOR THE MEAN
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Purdue University and Columbia University

1. Introduction. Let #,, 2., --- be a sequence of independent observations
from some population. We want to find a confidence interval of prescribed width
2d and prescribed coverage probability « for the unknown mean u of the popula-
tion. If the variance o” of the population is known, and if d is small compared to
¢°, this can be done as follows. For any n = 1 define

G=n"2lw, o=t —d&+d,
and choose a to satisfy
en)H e du = a
Then for a sample size n determined by
(1) = smallest integer = (d’s”)/d’,

the interval I,, has coverage probability

P(uel,) = P(\N/n|Z — pl/o < d\/n/e).

Since (1) implies that limgo (d*n)/(d’e®) = 1, it follows from the central limit
theorem that

lima,o P(pel,) = (20) 2% e du = o

We shall be concerned with the case in which the nature of the population,
and hence ¢°, is unknown, so that no fixed sample size method is available.
Define

(2) ve = 0201 (20 — &)’ 4 07 (n = 1),
let a;, az, --- be any sequence of positive constants such that lim,.. a. = @,
and define

(3) N = smallest £ = 1 such that » < (dk)/a’.

The object of the present note is to prove the following
TueoREM. Under the sole assumption that 0 < o* < o,
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(4) limg.o (°N)/(d%") = 1 a.s.,

(5) limg,o Pluely) = (asymptotic “consistency’),

(6) limg, (’EN)/(d’0") = 1. (asymptotic “efficiency”).
REMARKS.

1. In case the distribution function of the x; is continuous, Definition (2) can
be replaced by, e.g.,

(7 ’ v = T (25 — T’

2. As will become evident from the proof, N in (3) could be defined as the
smallest (or the smallest odd, etc.) integer =n, such that the indicated inequality
holds, where 7, is any fixed positive integer.

2. Proof of the theorem. .
Lemma 1. Let y, (n = 1, 2, - - ) be any sequence of random variables such that
Yo > 0 as., limn,oyn = 1 a.s., let f(n) be any sequence of constanis such that

f(n) > 0; ﬁmn—»wf(n) = «©, hnln—»oof(n)/f(n - 1) = ly
and for each t > 0 define

(8) N = N(t) = smallest k = 1 such that y, < f(k)/t.
Then N s well-defined and non-decreasing as a function of t,

(9) limpw N = ©  as., lim;,, EN = 0,

and

(10) lime f(N)/t =1 as.

Proor. (9) is easily verified. To prove (10) we observe that for N > 1,
yy = f(N)/t < [f(N)/f(N — 1)lyy_1, whence (10) follows as t — o,
Lemma 2. If the conditions of Lemma 1 hold and if also E(sup, y,) < o, then

(11) lim,, Ef(N)/t = 1.

Proor. Letz = sup, y, ; then Ez < ». Choose m such that f(n)/f(n — 1) <
2, (n > m). Then for N > m

JIN)/t = [f(N)F(N — 1)]/[f§N — D] < 2yya < 2.
Hence fort = 1,
(12) JIN)/E = 2+ f(1) + -+ + f(m).

(11) follows from (10), (12), and Lebesgue’s dominated convergence theorem.
Proor oF (4) anp (5). Set

(13) Yn = va/0" = (1/na") (201 (v — &)’ + 1),
(14) f(n) = (nd)/a’,  t = (") /d;



FIXED-WIDTH SEQUENTIAL CONFIDENCE INTERVALS 459

then (3) can be written as
N = N(t) = smallest k = 1 such that v < f(k)/¢
By Lemma 1,
(15) 1 = limgpo f(N)/t = limae (&°N)/(d’”) a.s.,
which proves (4). Now
P(uely) = P(lzi 4+ -+ 4+ 2y — Nu|/on/N = d\/N/c).

By (15), d\/N/oc — a and N/t — 1 in probability as ¢t — o ; it follows from a
result of Anscombe [1] that as ¢ — oo,

(#1 + -+ + ay — Nu)/o/N ~ N(0, 1).
Hence .
limy P(uely) = (20) 7% ¢ du = a,

which proves (5).
It remains to prove (6). This is an immediate consequence of Lemma 2
whenever the distribution of the z; is such that

(16) E{SUPn (n—IZ? (xi - 3_77»)2} < o,
for then
(17) 1in’lt—»u:o [Ef(N)]/t = 17

and from the fact that the function f(n) defined by (14) is n + o(n) it follows
from (17) that

1 = limg, EN/t = limg,o ("EN)/(d’%).

For (16) to hold it would suffice for the fourth moment of the z; to be finite;
however, we shall in the following prove that (6) holds without such a restric-
tion. For this we need

Lemma 3. If the conditions of Lemma 1 hold, if lim,. f(n)/n = 1, if for N
defined by (8),

(18) EN < « (allt > 0), lim sup:.. E(Nyy)/EN £ 1,
and if there exists a sequence of constants g(n) such that

g(n) >0, limpeug(n) =1,  yo = g(n)Yna,
then
(19) lim,e EN/t = 1.

Proor. For any 0 < ¢ < 1 choose m so that

fln = 1) =2 (1 — &)f(n)
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fln—1) 2 (1 — e)n forn = m
gln) 21 —e
and E(Nyy) < (1 4 €)EN fort = m. On the set A = {N = m} it follows that
[(1 —¢)*/IN* = (1 — )N-(1 — )N/t £ g(N)Nf(N — 1)/t
< g(N)Nyy =

Nyw .
Hence
[(1 = &*/0(JaN) = (1= &)/« N* = [4 Nyx < E(Nyw),
(1 — /1[4 N < ENyw)/[4 N
[(1 — &)*J(EN —m) < E(Nyzv)/(EN — m).
From (9) and (18) it follows that
(1 — €)’ lim sUpr.e EN/t £ lim supss. E(Nyy)/(EN) =
so that
(20) lim sup;... EN/t < 1.
Now let 4,/ = min (1, y,). Then
0<wy =1, ¥ ZYn, liMpoy =1 as.
Define
N’ = N’(¢) = smallest k = 1 such that y. =< f(k)/t.

From Lemma 2, since sup, (y.') =< 1,

1 = lime [Ef(N)]/t = lim,.., (EN")/t.
But since y»' < yn, N’ = N, and hence EN' < EN. Thus

lim infy,., (EN)/t = lim inf,. (EN')/t = 1,

which, with (20), proves (19).
Proor or (6). Fix ¢ > 0, choose m such that f(n)/t = 1(n = m), choose

8 > 0 such that (n — 1)f(n — 1) = én’(n = 2), and define for any r = m,
M = min (N, r). By Wald’s theorem for cumulative sums,

B(XY (2 — w)) = BM-E(z; — p)* = EM-d"
Hence by (13),
(21)  E(Myux) = (1/)E(ZY (2. — &u)’ + 1)
< (/B (mi— ) + 1) = EM + (1/).
Putg(n) = (n — 1)/n, (n = 2); then



FIXED-WIDTH SEQUENTIAL CONFIDENCE INTERVALS 461

yn 2 (1/n6") 207 (2 — Zor)’ 4+ (U/nd”) = [(n — 1)/n)yas = g(n)yar.
Hence
E(Myx) = [wsnryr + [iw<n Nyw = [if(r)/JP(N > 1) + [eo<n<n Nyx
2 rP(N > 1) + [eswsn INg(N)J(N — D]/t
z tP(N > 1) + (8/t)fasn<n N
Hence by (21),
Jiwen N = (/0 fesnzn N* = (1/0") = (3/1)(Jeznzn N)' = (1/0),
and letting » — oo it follows that
EN = lim,.o [(v<n N < o,
which is the first part of (18). Again by Wald’s theorem,
E(Nyy) £ EN + (1/6%),

so by (9),

lim supe... [E(Nyx)l/(EN) = 1,

which is the second part of (18). All the conditions of Lemma 3 therefore hold,
and hence

1 = limp, EN/t = limg,o (°EN)/ (%),

which is (6). This completes the proof of the theorem of Section 1. As to Remark
1 following the theorem, it is clear that the only purpose of the term n ™ in (2)
is to ensure that y, = v,/d° > 0 a.s., this fact having been used in the proof of
Lemma 1 to guarantee that N — o a.s. ast — . If the distribution function of
the z; is continuous the definition (7) is equally good, the only change being that
the term 1/¢” in the proof of (6) disappears.

The method used in this note is a modification of that used in [3] to prove the
elementary renewal theorem. The theorem in this note has been proved when
the z; are N(g, o) by Stein [6], Anscombe [1], [2], and Gleser, Robbins, and
Starr [4]. Some numerical computations for a slightly modified procedure have
been made by Ray [5] who, apparently misled by having considered too few
values of d, doubts the validity of (5) in his case. Extensive numerical computa-
tions in the N(u, o°) case have been made by Starr and will soon be available.
They indicate, for example, that for « = .95 the lower bound for all d > 0
of P(Zy — d = u < &y + d), where N is the smallest odd integer & = 3 such that

(b — 17205 (2 — &) = (&%) /a,

is about .929 if the values a; are taken from the ¢-distribution with (¢ — 1)
degrees of freedom.



462 Y. S. CHOW AND HERBERT ROBBINS

REFERENCES

[1] AnscomBE, F. J. (1952). Large sample theory of sequential estimation. Proc. Cambridge
Philos. Soc. 48 600-607.

[2] ANscomBg, F. J. (1953). Sequential estimation. J. Roy. Stat. Soc. Ser. B 15 1-21.

[3] Doos, J. L. (1948). Renewal theory from the point of view of the theory of probability.
Trans. Amer. Math. Soc. 63 422-438.

[4] GLESER, L. J., RoBBINs, H., and StARR, N. (1964). Some asymptotic properties of fixed-
width sequential confidence intervals for the mean of a normal population with
unknown variance. Report on National Science Foundation Grant NSF-GP-
2074, Department of Mathematical Statistics, Columbia University.

[5] Ray, W. D. (1957). Sequential confidence intervals for the mean of a normal distribution
with unknown variance. J. Roy. Stat. Soc. Ser. B 19 133-143.

[6] StEIN, C. (1949). Some problems in sequential estimation. Econometrica 17 77-78.



