ON THE LIKELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE
TESTING PROBLEM II'

By N. Girt
Unaversity of Monireal

0. Introduction and summary. Let the random vector X = (X;--- X,)
have a multivariate normal distribution with unknown mean ¢ and unknown
nonsingular covariance matrix =. Write T = =7 = (I, I';, I;3)’, where Iy,
T, and T; are subvectors of T containing first ¢, next p’ — ¢ and last p — p’
components of T respectively. We will consider here, the problem of testing the
hypothesis Ho : T's = T, = 0 against the alternative Hy : T, = 0, 'y ¢ 0 when
p > p > qand & = are both unknown. The origin of the problem and its likeli-
hood ratio test have been discussed in Giri (1964a, 1964b). It has also been
shown there that for p = p’ > ¢, the likelihood ratio test of H, against H, is
uniformly most powerful invariant similar. In this paper we will prove that the
likelihood ratio test of H, against H; is uniformly most powerful invariant
similar for the general case, i.e. p > p’ > ¢. A corollary that the likelihood ratio
test is uniformly most powerful similar among the group of tests with power
depending only on A(H,) (defined in Section 1) will follow from this.

The problem of testing H, against H, remains invariant under the group G of

p X p nonsingular matrices
gu 0 O
g=|g2 g2 O

J13 (23 (33,

operating as (X, £, 2) — (gX, g, gZg'), where gu , g2 and gss are ¢ X ¢, (p — q)
X (p — ¢) and (p — p') X (p — p’) submatrices of g respectively. We may
restrict our attention to the space of minimal sufficient statistic (X, S) of
(¢, 2). A maximal invariant in (X, S) under G isR = (R:, R, , Rs)" and a corre-
sponding maximal invariant in (¢, =) under G isA = (8, 8, &) where R; = 0,
8; = 0 are defined in Section 1. In terms of maximal invariant the above prob-
lem reduces to that of testing Ho : 63 = 8, = 0, 8, > 0 against H, : §; = 0, §; > 0,
61 > 0 when £, 2 are both unknown.

It has been shown in Giri (1964a) that on the basis of N random observations
the likelihood ratio test of H, against H, is given by reject H,, if Z =
(1 — Ry — Ry)/(1 — Ry) £ Zy, where the constant Z, is determined in such a
way that the test has size @ and under H,, Z has beta-distribution with param-
eters (N — p')/2, (p' — q)/2.

In Section 1 we will find the maximal invariants £ and A along with the dis-
tribution of R. Actually, we will first find here the maximal invariant in (X, S)
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1062 N. GIRI

under a more general group G (to be defined in Section 1) and its distribution.
The maximal invariant R under G and its distribution will follow from this as a
special case. In Section 2 we will prove the theorem that the likelihood ratio test
is uniformly most powerful invariant similar.

1. The maximal invariant and its distribution. As remarked in the previous
Section, we first consider the group G; of p X p nonsingular matrices

gu 0 0 --- 0

0 --- 0

Je = g:n g:n : :
gk Gr2 - Gk

where g;; is di X d; submatrix of g, and D i1 d; = p and find the maximal in-
variants in (X, S) and in (%, =) under G, . Then we find the distribution of the
maximal invariant in (X, S). The maximal invariant under @ and its dlstrlbutlon
will follow from this by taking ¥ = 3,d; = ¢,ds = p’ — gand d; = p — p’. The
reason for considering the above case is that we get a more general result at
practically no extra cost.

Let X* = (Xa1 -+ Xap), @ = 1--- N be N random observations on X,
NX =25.X,,8= 2% ,(Xx*- X)(X" — X)'. Denote for any p-vector
Y and any p X pmatrix B; Y = (Y, ---'Y3), Yy = (Y3 --- V) and

Bun --- B By -+ Bu
B=|\: : ], Bug =1 : : s
Bkl cte Bkk Bil cte Bii

where Yi(¢ = 1--- k) d; X 1 subvectors of ¥ and By;(¢ = 1 --- k) and d; X d:
submatrices of B. If a function ¢ of (X', S) is invariant under G, in the usual
fashion, then ¢(X, 8) = ¢(g.X, guSgi’) for all X, S and g . Since S is positive
definite symmetrlc with probability 1 for all £, 2, there exists an F and G, such
that S = FF'. Letting

gl 0 0
g = + 0 gz 0 0 F,_1
0 0 0 gk

where g;* is d; X d; orthogonal matrix having the property that ¢.*(F'X).is a
d: X 1 subvector whose first component is C; and the rest are zeroes, we see
that ¢ is a function of |Cy| or equivalently C, 7 = 1, - - - k. Now,

(1.1) 2iaCf = NX[iJS[—me , (z=1, k).

The k-vector (Cy® --- C%’) is thus a maximal invariant if it is invariant under
Gy which is easily seen to be the latter. We will find it more convenient to work
with the equivalent statistic R = (R, - - - R;)’ where,

(12) 2iaR = L0 /(1 + Tiacd) (i=1,---k).
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It may be verified that R; = 0 and D_f R; < 1. A corresponding maximal in-
variant A = (& - - - &)’ in the parametric space of (£ Z) under G, is easily seen
to be given by > 8; = N&aZiibm, i = (1, --- k). Here §; = 0.

We now compute fa(r), the probability density function of R and fy(r), the
probability density function of R when 8; = 0(¢ = 1, - - - k). Since fa depends on
(£, ) only through A, we may put £ = I and take N* = N'P = N¥ (P, --- P;)
such that NP.P, = &;. From Giri, Kiefer and Stein (1963), p. 1529, it follows
that,

(1.3) folr) = TEN)/IT3(N — p))[If = T(3ds)]

.H’: -1 ri%d{—l( 1 — ’: - /,_i)%(N—p)—l‘

To compute fa(r), we compute the ratio fa(r)/fo(r) using Stein’s method (1956)
based on invariant measure. It can be verified that a left invariant measure under
G, in (N'X, 8) is d(N*X, 8) = (set 8)***® d(N*’X) dS and a left invariant Haar
measure in G is u(dgi) = [[%-1 [det (gi)|™ dgi , where o; = > i dj(s = 1,
.-+ k) and g9 = 0. From (2.4), p, 186, Giri (1964a),

(14) Ja(r) /fo(r)
_ JPea(ge & g sgi’) TTiea |det gus ™ J1igs dgss

Jpo.1(gx %, ge sgi”) 1Li=1 |det gie|™* TLi<s dgis

where, pei(Z s) = C(dets)™ exp[—3tr(s + N(& — £ (& — £)') with
C = NP T2, T(4(N — ©)) and po s is p,r with £ = 0. Let A be the
matrix belonging to G; for which A(S + NXX')A" = I. Then A’A =
(S + NXX)™" = S — NS7'XX'S7'/(1 + NX'S'X), so that NX'A'AX =
NX,S—IX/(I +NX,S——IX) = Zl;=l Rj. Since A[ii](S[ii] + NX[,]XE{])A;,',‘] =
I[i] , We obtain similarly NX;i]AEi,']A[i,']XE,'] = NXEQS[—,’;]X[Q/(I + NX-;Q]S-[_,I,] .
Xw) = 2i_1R;. So, we can now define N*AX as vector ¥ = (Yy--- Y3)
where Y'Y, = Ri(i = 1, --- k). Writing gA™ = h, fa(r)/fo(r) can be expressed
as I;/I, where

(15) L= Jexp[~§ 25 o] 1o [det (hahia) 75
cexp [—3tr { Dk cics hishi; — 2 D_i<i PiYhis)] dh,

where the integration is from — « to « in each variable and I, is the value of
I, when §; = 0(¢ = 1, - - - k). Proceeding exactly the same way as in Giri (1964a)
pp. 186-187 we obtain,

(1.6) fa(r)/fo(r) = exp [—3(2518; — 25 Ry Doini 8]
103N — oi), 3d:, 3R:S:)

where ¢ is the confluent hypergeometric function

é(a, b, z) = 250 [T(a + j)T(B)/T(a)T(b + 5)jlz’.
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Hence from (1.3) and (1.6),
Ja(r) = exp [—3( 20518 — 251 Ry Dooi 0) [ 15t 6(3(N — 0i1),

(L.7) 3di, 33 [TAN) /TN — p)) [TE o T(3d0)]
'Hf=1 R;%d"_l(l — Z?ﬂ Ri)%(N—p)—l.
From now on, we will specialize k = 3, d, = ¢,d, = p’ — gand d; = p — p’. The

group G in this case reduces to G. Hence the maximal invariant in (X S) under
Gis R = (R, Rz , Rs)'. The corresponding maximal invariant in (& =) is
A= (6,6, 83) In terms of T and 2, the components of A can be written as

= N(Zuli+ 2l + Zuls) 210 (2uly + Zele + 2Z1ls),

Zult + 2l + 2T\ _y [Zult + 2Ty + 24T
51 + 52 = N 2[2 1 )
Zal'y + Zgls + 29T Zallt + Zgol'y + 23T

, Zi\’ 1 2
= NI'a 233 - 2[22] Ps.
223 223

Thus the maximal invariant in (£ Z) under G when H, is true is A(H;) =
(81, 82, 0). The corresponding maximal invariant under H, takes on the value
A(Ho) = (61,0, 0). Let fac,) () be the probability density of R under H.(s = 0,
1). Then
(1.8) famy(r) = exp [—38é(5N, 3¢, 3m1d1)

ATGN)/ITG(N = p))TGOTG( — O))TG(p — p'))]}

—1 ! —q)—1 —p7 )1 ) —
.riq rg(p Q) rg(p ') (1 — r)%(N »-1

g=

REMAREKS. 1. From (1.8), R, is sufficient for A(H,).
2. The probability distribution of Z and R; under H, is

2 (1 rde-1 _ Y- -1AW—p )11 Hp'—g)—1
exp (_ 151) > (3. 81) 17'1 (1 17'1) ?" '(11 ,Z) »
27/ = rBGW — 9,3+ ) BGW — p), 30" — )

where B is the beta function. Hence under H, Z is independent of R, .
3. The distribution of R; under H, is

exp (—33)(3N, 3¢, $né)[TGN)/TGOTGN — o)1 —

Hence, from Giri (1964a) p. 188, the family of distributions {P; (1), & = 0} is
boundedly complete.

" ) %(N—q)—l'

2. The uniformly most powerful invariant test of H, against H; . Let ¢(r)
be any invariant level o test of H, against H; . Since R; is boundedly complete,
it is well known that ¢ has Neyman structure with respect to B, (see for example

Lehmann (1959), p. 134), i.e.
(2.1) Eny(é¢(r)/R =11) = a.
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Now, to find the uniformly most powerful test we need the ratio,
faap(r/By = 11)/fawy(r/By = 11)
= [fawp (1) /fawy () faay (1) /facy (r1)]
(2.2) = [fawo (r1)/fay (r1)]-exp [—38:(1 — n1)
2 oreo [(ra38:) /P ITB(N — @) + nTG(p" — )Y/
TGN — TGO — @) + )l

Since the distribution of R given R; = r; is independent of A(H,), the Condition
(2.1) essentially reduces the problem to that of testing the simple hypothesis
8, = 0 against the alternative 6, > 0 on each surface B; = ;. In this conditional
situation, by Neyman and Pearson’s fundamental lemma, the most powerful
level a invariant test ¢(r/Ry = r1) for testing 8, = 0 against & = &, is, from (2.2),
given by

0 1 r
o(r/Ry=m) =1, if Z(“r;f“

r=0

TGW =) + ) TGO =~ 0) & o,

2.3
(23) T3 = 9 F DTN =)
=0, otherwise;
where C(r;) is chosen in such a way that E;,_o¢(r/R1 = r1) = a. Since

R:; = (1 — Ry)(1 — Z) and Z is independent of B, under H, the above condition
reduces to ¢(r/Ry = ) = 1if Z £ C'; = 0, otherwise; where C” is independent
of r; and is given by Es, =o(¢(r/R1 = r1)) = a. Furthermore, ¢ is independent
of 8, . Hence we have the following theorem:

TuEOREM 2.1. Given the observations X' -+ XY (N > p), the likelihood ratio
test of Hy : Ty = T'y = 0 against the alternative Hy : T3 = 0, Ty 5% 0 when &, Z are
both unknown, is uniformly most powerful invariant simalar.

Since there exists a right invariant Haar measure on G (i.e., du(g) =
(det gu1)?- (det gas) ™2 (det gs3) ® 7 -dg) from the above theorem and from
Lehmann (1959), p. 226, it follows that the likelihood ratio test in this case is
uniformly most powerful similar among the group of tests with power depending
only on A(H,).
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