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A LIMIT THEOREM FOR SUMS OF MINIMA OF STOCHASTIC
VARIABLES

By ULF GRENANDER'
University of Stockholm

1. Summary. We consider a sequence of independent and identically dis-
tributed positive stochastic variables #;, ., 3, - - - with the distribution func-
tion F(z). Let y, be the smallest of the values taken by the n first of these varia-
blesand S, = y;1 + ¥2 + -+ + y.. It is then shown that S,/log n tends in
probability to the value F = lim, ,o ¢{/F(¢) assumed to exist as a finite or infinite

number.

2. The main result. The limit relation can be formulated in the following
simple way.

TuaEOREM. Consider the independent and non-negative stochastic variables x, , . ,
x5, - - - with the common distribution function F(x). Then the expression
(1/log n)[x: + min (x;, 22) + min (z;, 22, 3)

+ -+ min (xl)x2,x3) )xﬂ)]
converges in probability to the value F = lim, o t/F(t) assumed to exist as a finite
or infinite number.

Proor. Let us start by examining the special case when the variables z,
have a rectangular distribution on the interval (0, 1). The variable y, =
min (2;, %2, - -+, Z») then has the frequency function n(1 — u)" " for 0 < w < 1
and the meéan value 1/n + 1. The ratio R, = S,/log n has the mean value

ER, = (1/logn)(3 + %+ 1+ -+ (1/n+ 1))

so that lim,.. ER, = 1. Now we consider the joint distribution of y, and
Ynik , & > 0. Writing v = min (21, @2, -+, 2,) and v = min (Tpy1, Toi2,
<o+, Znwx). We have

Yo = U
Yntx = min (u, v).
Since u and » have the joint frequency function
n(l — u)"ek(1 — )"

in the unit square 0 < u, » < 1 we get the mixed second order moment
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Eyayuin = [uzonu(l — w)"'[[imovk(1 — v)* 7 dv + [4_u uk(1 — v)*~" dv] du.
Elementary calculations reduce this expression to
Eynyri = {1/[(k + 1)(n + DI} — {n/[(k + 1)(n + &k + 1)(n + k + 2)]}.

The covariance is then C, v = Cov (Yn, Yntr) = {n/[(n + 1)(n + k 4+ 1)-
(n + k 4+ 2)]}. The variance is, by direct calculation, of the same form
Com = [n/[(n + 1)*(n + 2)]}. This gives us the variance of the ratio R,

Var (R,) = (logn)™ 20 (v/[(» + 1)’ + 2)1} + 2(logn)™
S D+ D+ +2)) < (ogn)? i (v 4+ 1)
+ 2(logn) > D iy (v + 2)7 £ (logn)™  [constant +2 log n].

This shows that the variance of R, tends to zero as n tends to infinity so that R,
tends to 1 in the mean and hence in probability.

Let us now deal with the case of a general distribution F(x) satisfying the con-
ditions of the theorem and with 0 < F < . Let & be independent and rec-
tangularly distributed over the interval (0, 1) and introduce the function

G(t) = inf{x =2 0|F(z) = t},

where we use the right continuous normalization of the distribution function
F(t). Then our variables «, can be represented as G(&,). Given a small neighbor-
hood (0, €) of zero it is clear that 7, = min (&1, &, - -, &) takes values in (0, ¢)
with large probability if  is large. Note that 7, is non-increasing in n. But then
the S, can be enclosed between bounds of the form

[F + 6] ’Sn,y

where 8, = 71 + 72+ -+ + 7. . But we know that Sn//log n tends to 1 in prob-
ability so that the first part of the theorem is proved. The cases F = Qor F = «
can be dealt with by making small modifications of the original distribution

function F( z).
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