SOME BASIC PROPERTIES OF THE INCOMPLETE GAMMA
FUNCTION RATIO

By Sarem H. Kuaamis
Food and Agriculture Organization of the United Nations

1. Introduction and summary. We define the incomplete gamma function
ratio for positive N by

(1 P(N,b, X) = [ %™ dt/[3 " e dt
= [T D(N,b,t)dt, say,

where N and b are positive real numbers and 0 < X =< . In what follows, we
generally use the notation Py to denote the same function, unless b or X are given
some specific values. It should be noted that the notation P(N, b, X) does not
mean that the function is one of three variables, since we have P(N, b, X) =
P(N, 1, bX). The positive real number b is only a scale factor. The function Py is
of appreciable importance in probability and statistics and it is known as the
gamma distribution and for b = % as the chi-square distribution. It is also of
importance in many other branches of applied mathematics. Like the incomplete
beta distribution, it is also a special case of the more general confluent hyper-
geometric function. During the last decade, interest has been revived in the
development, use and application of these functions and a number of publica-
tions, such as Erdelyi et al. (1953), Tricomi (1954) and Slater (1960), appeared.
In these publications, the function treated is defined as the numerator in the
middle part of (1) with b = 1, and the definition is generally extended for all
complex values of N such that R(N) is not a non-positive integer. Many of the
properties of Py are derived in these publications. Bancroft (1949) derived some
new properties of the incomplete beta function (particularly, recurrence relations)
from the more general properties of the parent hypergeometric function. Similar
methods may also be used to derive new properties of Py of use in statistical
work. In this paper, however, we derive such properties directly from the well-
known difference-differential properties of Py given by

(2) (9"/0X")Py = (—=b)'APw,,

= (87'/dX")D(N, b, X), N>,
wherer = 0,1,2,3, --- and where °
(3) APy = A’(AP7) = A"(Pry — Pr)

are the advancing finite differences of Py with respect to N and with a unit dif-
ference interval. Property (2) for » = 1 may be used, in fact, to define the func-
tion Py itself, as in Milne-Thomson (1933). This property was also used in
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1947 by Khamis in an unpublished Ph.D thesis (1950) to derive, inter alia,
a series expansion in terms of chi-square integrals to approximate to statistical
distribution functions and also to formulate a computational method for the
tabulation of the chi-square distribution itself. This method was later used by
Hartley and Pearson (1950) in computing a five decimal table for this distribu-
tion. The chi-square series expansion was later generalized by Khamis (1960a)
into an expansion in terms of incomplete gamma function ratios and the com-
putational method was employed by Khamis, (1964a) and (1965) to prepare
a six decimal table of the chi-square integral and a master ten decimal table, for
very fine N and X intervals, of the incomplete gamma function (1) for b = 1
(a description of this table is given by Khamis (1964b).

In this paper we make further use of the property (2) to derive other new and
useful properties of the function (1). In Section 2 we derive a simple recurrence
relation for P(T,b, X) for T = N, N + 1 and N 4 2. In Section 3 we derive new
N-wise sum formulae as consequences of this recurrence relation. We then give
in Section 4 an X-wise sum formula based on the Taylor expansion of (2) in the
neighbourhood of X. This is made possible by extending the definition of
P(N, b, X) for N < 0, and thus enabling the removal of the condition N > r
in (2) above. Other examples of the use of property (2) are given in Section 5
where in particular, the Laguerre polynomials are expressed in terms of the
differences of the function P(N, b, X). Section 5 contains also examples of some
numerical applications of the previous results.

The importance of the properties derived here and the simplicity inherent in
such derivations due to the nature of property (2) are further enhanced by work
recently carried out by Wise (1950) and developed further by H. O. Hartley
and E. J. Hughes (in process of publication) where the incomplete gamma func-
tion ratio is shown to provide quite satisfactory approximations to the incomplete
beta function ratio and to many other statistical functions. We note finally, that
the notation used in (1) is only one of many notations used by different authors.
The references given above include most of the different notations used for the
function Py and other related functions.

2. A recurrence relation for P(N, b, X) and the extension of its definition for
N = 0. The relation (2) for r = 1 implies a simple and useful recurrence rela-
tion. We have, for r = 1 and with N 4 1 instead of N,

(4) D(N + 1,b, X) = —b(Py+1 — Py).
We also have from (1),
(5) D(N +1,b, X) = b"P X" ™/T(N + 1),

where T'(7) is the ordinary (complete) gamma function. Similarly, we have
from (5) and from (4), with N 4 1 instead of N and for r = 1,

(6) D(N +2,b, X) = bX/(N + 1)ID(N + 1, b, X)
= —b(Pyt2 — Pyy1).
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Eliminating D(N + 1, b, X) from (4) and (6), we obtain the recurrence rela-
tion

(7) (N +1)P(N + 2,5, X)
= (N + 1+ bX)P(N + 1,b, X) — bXP(N, b, X),

which holds for all N > 0. Equation (7), although very easily derivable from
(2), is also derivable from a related recurrence relation for the more general
hypergeometric function #;(1, N + 1, X) (cf. e.g., Slater (1960) formula
2.2.2). The author has been making use of (7) for over 10 years in overcoming
many difficulties in the use of the function Py for approximation to other sta-
tistical distributions. While illustrations of the use of (7) and of its implications
are given in the following sections, we give here an immediate example of its
use in overcoming the restrictions N > r in equation (2). Such restrictions are
quite limiting in numerical applications of the function Py and the associated
expansions referred to in Section 1 above, while in fact they could easily be re-
moved. This may be achieved simply by extending the definition of Py for all
X > 0 to cover values of N < 0 as follows: For all X > 0, the function Py is
defined by equation (1) for all real N > 0. For all real N < 0 and X > 0, the func-
tion Py s defined by the successive N-wise backward application of recurrence
relation (7) starting with values of N in the interval 0 < N < 2.

" Asa simple consequence of this definition we have,

(8) P(N,b, X) =1,

for all X > 0 and all non-positive integral N.

It should be noted that apart from the special and degenerate case of integral
N, Py, as generalized here, is not a distribution function over the range X = 0
for non-positive values of N, as the value of P(N, b, X) may be made as large as
one pleases by choosing a sufficiently small X > 0. In fact P(N, b, X) thus de-
fined has a singularity at X = 0. Interpreted as a distribution function over the
range X = 0 we of course define Py as identically zero for all X < 0. The ex-
tended definition makes it possible to retain the finite difference-differential
property of Py for all X > 0 by providing a definition for N < 0 which preserves
the property (2). It is well known that the numerator in the middle part of (1)
may be generalized for all N except non-positive integers, but the function Py
may be generalized for all values of N. There are other generalizations of Py
which include the values of X less than zero, but we are not concerned here with
these generalizations. '

3. N-wise sum formulae. We give in this section some immediate consequences
of the difference-differential property (2) and of the recurrence relation (7).

We note that by applying equation (7) successively we obtain for any positive
integer R,

(9) Puyr = Py + APy 2 7 [T(N + 1)/T(N + r)](bX),
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where APy = Py — Py . Equation (9) for R = 2 is a sum formula giving
P(N + R, b, X) in terms of P(N, b, X) and P(N + 1, b, X). Similarly, successive
applications of the recurrence relation (7) backwards leads to the sum formula
for R = 1,

(10)  Pyr=Py— APy P yN(N —1) --- (N —r + 1)(bX) ™,

where Py_r = P(N — R, b, X) is the generalized incomplete gamma function
ratio. When N is a positive integer and B > N, the terms in the summation on
the right hand side of (10) for » = N + 1 vanish. Again (10) is another sum
formula expressing Py_z in terms of Py and Pyy; .

When B — «, the N-wise sum formula (9) leads to the well known infinite
series expansion of P(N, b, X). Similarly, when R — =, it may be shown that
formula (10) leads to the well known asymptotic expansion of P(N, b, X).
Some of the uses of (9) and (10) are indicated in Section 5 below.

Another class of useful N-wise summation formulae, not necessarily inde-
pendent of those given above, may be obtained directly from property (2) for
r = 1. These are obtained from the identity

(11) Py = Pyipp — Z:LOAPN-H-
which, by virtue of (2) and (1), reduces to
(12) Py = Pyiri + b2 70 Pyyra

where the prime denotes differentiation with respect to X. Since for all 7
(13) P(T + 1,b,X) = D(T + 1,b, X) = " PX"/T(T + 1)}¢%,
we have by substitution from (13) into (12)
(14) Py = Py + 07X 206 X¢/D(N + 7 4 1)

= Priri + 07X X LIC( + /TN + 1 + DI
Applying (2) again to the last term in (14) under the summation sign we obtain
(15) Pyiryn = Py + "X 2200 [T(r + 1)/T(N + r + 1)]AP,

where P(0, b, X) = 1 for all X > 0, according to the generalized definition of
P(N, b, X). The sum formula (15) gives Pyyz41 for any N > 0 and non-negative

integer R in terms of Py and the values of P, forr = 0, 1,2, --- , R + 1. Taking
R = 01in (15) one obtains the special relation

(16) Py = Py + B"X"/T(N + 1)])(P, — 1)

or

(17) Py = Pyp + ["XY/T(N 4+ 1))(1 — Py).

This last special case is of interest in connection with tables of the function P
as will be shown in Section 5.
The sum formula (15) is only one variant of a larger class of formulae that
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could be easily derived from (12) and (13). Instead of taking outside the summa.-
tion sign in (14) the power N of X as a factor, one may take out any other con-
venient factor. For example, one may rewrite (12) in the form

Py = Pyyry + b7 XD B bV XY NN 4+ 4+ 1)

= Py + U7X TG [I(N — ¢ + r + 1)/T(N + 7 + 1)]Pycirps
or
(18) Primyn = Py 4+ bX 270 [T(N — ¢+ 7+ 1)/T(N + r + 1)1APy—csr

where N 2 ¢ and P(0, b, X) = 1. Equation (18) reduces to (14) by taking
N = c. Other variants are obtained by choosing other values for ¢ < N. One
form that immediately suggests itself is to take ¢ = N — [N], where [N] is the
largest integer contained in N. The resulting sum formula expresses Py in
terms of Py and Pj4r,r = 0,1, --- , R 4 1.

Noting that Pyir — 0 as R — « for any finite and fixed X > 0, a number of
useful relations may be immediately deduced from the N-wise sum formulae
involving N + R. Thus from (9) we obtain

=1 [[(N + 1)/T(N + n)](bX)™ = (Pwir — Py)/(Pwy1 — Py),

or
(19) 27 [NV + 1)/T(N + r + DI(bX)" = (Prinss — Px)/(Prs — Py),
and as R — « and X > 0 is held fixed, we have
(200 Xo[T(N + 1)/T(N + 7 4 1)](bX)" = Py/(Py — Pyy),
and by (2) we obtain the equivalent formula
(21) 2ore0 BX)/T(N 4+ 7 — 1) = (bX)™"é*Py.

Similarly, (19) may be rewritten in the equivalent form:
(22) 2 (X)/T(N +r+ 1) = (bX) ™™ (Py — Pyynp).

Sums of the form (21) and (22) (or of the form (19) and (20)) are thus ob-
tained in terms of the functions P and the related exponential function. In fact
formula (21) is nothing but the well known expansion of Py used to evaluate
the corresponding sums on the left hand side when the function Py is assumed
known. Tables for P(N, %, X) or for P(N, 1, X) are available. Khamis [(1964b)
and (1965)] gives P(N, %, X) correct to 10 decimals for fine fractional intervals
in N and for fine intervals in X over a wide range of these two variables. Such
tables may therefore be used to evaluate sums of the forms (19) and (20) or of
the corresponding forms (21) and (22). Special numerical cases of formulae
(19) to (22) are obtained by giving X numerical values. In particular, for
X = b~ one obtains, from (21) and (22) respectively, the two results:

(23) Drol/T(N 4+ r+1) = eP(N, b, b7
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and
(24) 2 F0l/T(N 4+ r + 1) = [P(N, b, b") — P(N + R + 1, b, b™)].

Both sides of (23) and (24) are obviously indeperident of the scale factor b.
We note incidentally that formula (22) with N = 0 leads to the interesting
result

(25) D ro (bX)/T(r + 1) = 1 4 bX/1! + (bX)*/21 + --- + (bX)*/R!

= ¢*(1 — Pry1)

which is a closed expression for the partial sums 6f the Taylor expansion of
", a result already well known in a different context. In fact, the last sum hap-
pens to be formally nothing but another form of Molina’s (1915) relation be-
tween the Poisson and the chi-square distributions obtained here as a special
case of the more general relation (21) above. Such sums, and more generally
sums like those involved in (19) to (24), are met in applied problems in proba-
bility and statistics as well as in other branches of pure and applied mathematics
and hence they may be dealt with numerically through tables of the function
Py . (For example, cf. Feller (1957) pp. 144 and 417.) We note that the second
set of N-wise sum formulae and their special cases may also be derived directly
from the sum formula (9) but we have preferred to give here a separate proof to
illustrate the various methods that may be used.

We conclude this section by noting that, by similar methods, the sum formula
(10) leads to the following result:

(26) 2NN = 1)(N =2) --- (N =7+ 1)(dX)”
= [[(N + 1)/(bX)"¢"|(Py—z — Pw),

where Py_r is the generalized function for N < R. When N is a positive integer
less or equal to R, the finite series summation formula (26) leads to the finite
series results

(27) =1 (bX)T7/(N — r)! = (bX)"e*(1 — Py),
and (letting X = b™),
11/(N —r)! = e(1 — P(N, b, b")).

These last two relations together with (25) and (23) may be used to derive
other useful algebraic finite series summation formulae dependent on the funec-
tion Py .

]

4. X-wise sum formulae. An X-wise sum formula for the numerator of Py
in the middle part of (1), known as the Nielsen sum formula, has been used in
conjunction with tables of the incomplete gamma function (cf., for example,
Tricomi, (1954), p. 165). This formula, when rewritten for the function Py
itself, becomes
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(28) P(N,b,X + Y) = P(N, b, X)

— AP(N — 1,b, X) 27 C(X)P(r, b, ¥),
where
(29) C(X) =(N—=1)(N—2)--- (N —r)(bX)™".

The sum formula (28) is derivable directly by applying the bincmial theorem
to P(N, b, X 4+ Y') and it holds for all | Y| < X.

We derive here another sum formula by writing down the Taylor expansion
of P(N, b, X 4 Y) in the neighbourhood of X and making use of the property
(2). Thus, writing & = bY, we immediately obtain
(30) P(N,b,X+7Y) =2 7o (=1)(W/r)AP(N —r,b, X) 4+ Rup1,
where R, is the remainder term in Taylor’s theorem. Using the Lagrange form
of RB.i1, we may write

(31)  Rpu = [Y""/(n + 1)1 P"™(N, b, X,)
= (=)™ /(0 + DIAPP(N — n — 1, b, Xo),
where X, is strictly between X and X + Y.
Formula (30) provides a finite X-wise sum formula with a remainder term for
the function Py . In this paper we assume that B, ., — 0 as n — o« for sufficiently

small Y or h. This and the convergence of the sum formula (30) will be taken up
in a further communication where it will be shown that the sum formuls

(32) P(n, b, X +Y) = 270 (=1)(K/r)AP(N — r,b, X)

holds for all |¥V| < X.
Formula (30), after simple algebraic manipulation, may be rewritten in the
form

(33) P(N,b,X+7Y) = reo (B /r1)SpP(N — r, b, X) + Rops,
where
(34) Suer = 203 (=1Y(W/51) = Sucoms + (=) /(n — 7)1

and where A = bY. Noting that S, , — ¢ = ¢ asn — » for a fixed 7, we
may rewrite (33) in the form

(35) P(N,b, X + V) = ¢ 2 (W/r)P(N — 7,5, X) + Kuy,

where K, is a new remainder term. Using the Lagrange form of the remainder
term in the Taylor expansion of ¢~ in conjunction with (33), one obtains

(36) Kuiz = Baya — [/ (n + 1)1 2270 (= 1)" " ("HP(N — 1, b, X)e™ ™,

where U, is strictly between 0 and h. Applying the same procedure to (32) when
Y| < X, one may easily derive the equivalent formula

(37) P(N,b, X +Y) = ") 2y (W/r)P(N — 1, b, X).
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This is another form of the same X-wise sum formula (32) and holds for all
|Y] < X. Convergence properties of the sum formulae (32) and (37) and upper
bounds for R,4; and K, will be dealt with in a further communication. We may
note here that, since Py = 1 for all non-positive integers N, the sum formula (37),
and hence (32), will be absolutely convergent for all Y when N is an integer,
because the sum of the terms on the right hand of (37) beginning with r = N
will be at most equal to ¢*”.

Examples of the use of the X-wise and the N-wise sum formulae are given in
the following section. We conclude this section by noting that Tricomi [(1954),
p. 165] derived an X-wise sum formula for the numerator of Py in the middle part
of equation (1) which is equivalent to formula (37) above. His result is obtained
from a more general X-wise sum formula for the corresponding confluent hyper-
geometric function. Our method, apart from its direct dependence on property
(2), has the advantage that it also leads to finite forms of the sum formula, as
in the case of equations (30), (33) and (35), with exact remainder terms. Further-
more, our results hold for all real values of N. It is possible, however, to generalize
Py by an alternative procedure dependent upon its relation to the known generali-
zation of the numerator in (1) for all N = 0, —1, — 2, --- . In fact the gamma
function I'(N) assumes infinite values for non-positive integral N and hence
1/T(N) has zeroes at these values of N. If we interpret the denominator in the
middle part of (1) as the factor b"/I'(N) multiplied by the numerator in the
same part of (1), one may be justified in defining P(N, b, X) = 1 for all non-
positive integers N. This, together with the usual generalization of Py for the
other values of N, leads to a generalization of Py equivalent to that obtained
from our recurrence relation (7).

6. Some numerical examples and other remarks. We give in this section a few
numerical examples illustrating the use of recurrence relation (7), the generalized
definition of Py and the sum formulae derived in the previous sections. We give
also further brief indications of other uses of the methods described above.

Tables of Py usually give the values of the function beginning with a small
N, > 0 and with a given tabular interval of N and a range of tabular values of
0 < X = . In such tables, Lagrangian and other polynomial interpolation
methods usually lead to satisfactory results of X-wise interpolation, but unless
the interval in N is small (say less than 0.5) polynomial interpolation does not
lead to accurate results for N-wise interpolation at least near the beginning of
the range of values of N. This difficulty is completely avoided through the use
of recurrence relation (7). This recurrence relation makes it possible to transfer
the interpolation from the interval 0 < N < 1 to values of N in the interval
1 < N < 3. Thus, for a non-tabular N = m where0 < m < 1, particularly when
m is nearer to 0 (including the case m < N,), one need only interpolate for P+
and P, for the given X and then by recurrence relation (7) compute the value
of P,, . An alternative procedure is also possible by using equation (17), where one
has to interpolate only for P,.; and then compute P,, making use of a table of
the (complete) gamma function. Interpolation for P,; (and, if the first alterna-
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tive is used, for Pn+2) may be carried out by ordinary polynomial interpolation
methods. A third interpolation method is also possible through the generalized
definition of Py for non-positive N. This consists of the use of recurrence rela-
tion (7) backwards fo tabulate Py , where r = 1, 2, 3, 4, say, and % is the
tabular N-interval. This may require the computation of Py for non-positive
values of N. The computed values of Py together with the tabular values enable
the use of ordinary polynomial interpolation to compute P,, . This last method
involves relatively more computational work than the former two alternatives,
but the computational work is generally limited in all cases, and it is easy to
undertake on an ordinary desk calculator. It should be noted that these methods
apply to interpolation as well as extrapolation for a non-tabular positive N < N,
where N, is the first tabular value of N. As a numerical illustration, we consider
the extrapolation for P(0.05, 3, 6) in a table assumed to begin with Ny, = 0.1
and an N tabular interval ¥ = 0.1. For this purpose we quote from Khamis
(1965) the following tabular values of Py for b = 3 and X = 6:

Py, = 0.9984347283, Py = 0.9962968282, Pys = 0.9935096273;
Pos = 0.9673945375, Py, = 0.9593279040, Py = 0.9502129316;
Py, = 0.9400246207, Pis = 0.9287479250, Py3; = 0.9163779717;
P,s = 0.8386630191, Py, = 0.8201865134, P,y = 0.8008517265;
Py, = 0.7807243274, P, = 0.7598756671, P,3 = 0.7383818433.

Using a six-point Lagrangian polynomial interpolation, we may compute
Pigs and P, and then use recurrence relation (7) to compute Pygs . For this
purpose, the two sets of 6 values of Py, one beginning with N = 0.8 and the
other beginning with N = 1.8, given above, are used in the interpolation. The
second alternative procedure using equation (17) is based on interpolating di-
rectly for Py s , using the six values of Py beginning with N = 0.8 in conjunction
with I'(1.05) = 0.9735042656. The third method requires the use of recurrence
relation (7) to compute from tabular values of Py for N = 0.1 and 0.2 the values
of Py for N = 0, —0.1 and —0.2. These values, for X = 6, are found to be
P_,, = 1.0017229424, P_,, = 1.0010703212 and P, = 1. Using these values,
together with the three values of Py for N = 0.1, 0.2 and 0.3, in a six-point
Lagrangian interpolation one computes Po.gs . The application of each of the
three methods leads to at least nine decimal accuracy. If a lower accuracy is
desired, a lower degree Lagrangian polynomial will be needed. The exact value of
Po.os for X = 6 and b = % to ten decimals is 0.9992840946. In general, the first
and the second methods are to be preferred to the third because of the lower
amount of computations involved. We may note here that these methods are the
best available when X is neither very small nor very large. For small and large
values of X, a direct computation of Py from the corresponding expansion and
asymptotic expansion, respectively, is also quite easy because only a few terms
are needed; and, for sufficiently small or large X, the amount of computation is
comparable to that involved in either of the first two methods.

Similarly, the X-wise sum formulae (30), (33) and (35) may be used for X-wise
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interpolation. When N is an integer or N > n = 6, say, these formulae may be
used without difficulty. However, when N is small, one may have to compute
through recurrence relation (7) a few values of Py for non-positive N for the
given value of X. Again in this case, the computation of Py for non-positive
values of N may be avoided by interpolating for Puyysx and Pxyu+1, where M
is an integer selected so as to have N + M large enough. One may then compute
Py from Pyiy+1 and Pyyu by successive backward application of recurrence
relation (7). When N is small and is not an integer, however, one may also use the
Nielsen sum formula (28). These methods are usually resorted to in the absence
of a table of polynomial interpolation coefficients. For N > 6, the use of poly-
nomial interpolation or of the sum formula (35) usually leads to the same
accuracy for the same number of terms used. As a humerical example we in-
terpolate for P(2, %, 0.98) using the following values of Py for X = 0.97: P, =
0.0856896628, P, = 0.3843028032, P = 1 and P_; = 1. Here h = Y/2 =
0.5(0.98 — 0.97) = 0.005, and the first four terms of formula (35) yield the
interpolated value 0.0871866727 which is correct to 10 decimals.

The use of property (2) and of the generalized Py in connection with the
application of the function Py may take various forms in addition to the results
given in this and in the previous sections. We give below a few such examples:

(i) By comparing the Laguerre polynomial series expansion of a distribution
function with the equivalent incomplete gamma function expansion, Khamis
(1960a) expressed the Laguerre polynomial in terms of the differences of the
function Py . This result is in fact more directly derivable from property (2).
Thus, defining L,(N, b, X) by

Lu(N, b, X) = (9P~/8X)™(3/0X)"(X"(8Px/0X))

and noting that X"Py’ = [['(N + n)/T'(N)](8Px4n/0X), we immediately ob-
tain from (2) the relation

Ln(N,b,X) = (=b)"[['(N + n)/T(N)JA"™"P(N — 1,b, X)/AP(N — 1,b, X)].

The case N < 1 is now defined through the generalized definition of Py .

(ii) Property (2) is also useful in the inversion of series expansions in terms of
Laguerre polynomials or of the equivalent series expansions in terms of incomplete
gamma functions developed by Khamis (1960a). This is best done through the
Taylor series expansion of the function inverse to the expanded function as out-
lines by Khamis (1960b). This method is particularly useful in calculating per-
centage points of the incomplete gamma function distribution. Again, the
generalization of Py enables the use of this method for all values of V.

(iii) We define the ratio By for all N > 0 by

In view of property (2), the ratio Ry may be computed directly from a table
of Py as we have

(39) RN = b(PN__l bt PN)/PN = b(PN_l/PN —_ 1)
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For 0 < N < 1, the recurrence relation (7) leads to the more convenient ex-
pression

(40) Ry = (N/X)(1 — Pwu/Pw),

which also holds for all N > 0. In statistical applications, however, the ratio
My , known as Mills’ ratio for Py and defined by

(41) My = (1 — Py)/D(N, b, X) = (1 — Py)/PxRx

is more frequently used than Ry itself. In view of equations (39) to (41), we
have

(42) My = (1-— PN)/b(PN—l — Py)
and
(4:3) MN= X(]. —PN)/N(PN'—PN+1).

Some authors define Mills’ ratio as the reciprocal of My and equations (42)
and (43) lead to expressions for this alternative definition given by the reciprocals
of the right hand sides of (42) and (43). Equation (43) is more convenient
computionally for 0 < N < 1, while (42) is more convenient for all N = 1.
In any case, equations (42) and (43) provide simpler methods for the calcula-
tion of My or its reciprocal from tables of Py for all values of X, N > 0.

By analogous methods, many other similar results may be obtained which
render the computational work involved in the use of the function Py much less
involved. Equivalent expressions for other known results may also be obtained.

In concluding, the author wishes to express his thanks to Dr. H. P. Mulholland
for reading an earlier draft of this paper and for his useful suggestions and also
to the referee for his helpful comments.
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