A NOTE ON THE RECIPROCAL OF THE CONDITIONAL EXPECTATION
OF A POSITIVE RANDOM VARIABLE!

By Tim ROBERTSON
University of Missours

1. Introduction and summary. Brunk [3] discusses conditional expectations
given o-lattices. This note is concerned with the observation that the reciprocal
of the conditional expectation given a o-lattice with respect to some measure u
of a positive random variable X is the conditional expectation of 1/X given the
complementary o-lattice with respect to another measure. (For the case of a
o-field this result is equivalent to the familiar result about the reciprocal of a
Radon-Nikodym derivative.) Associated with this property of conditional ex-
pectations is a mapping of the set of all convex functions on (0, « ) into itself
which leads to alternative ways of formulating certain extremum problems.

Let (2, @, ) be a measure space with u(2) < «. Let I, denote the indicator
function of a set A. We shall let £ denote a o-lattice of subsets of Q(£ C @).
A o-lattice is, by definition, closed under countable unions and intersections and
contains both @ and the null set . If £ is such a o-lattice then £° will denote
the o-lattice of all subsets of Q@ which are complements of members of £. We say
that a random variable X is £-measurable if {X > a} ¢ £ for each real number a.
Let L, denote the class of square integrable random variables and Ly(£) the class
of £-measurable, square integrable random variables. Later we shall want to
restrict our attention to strictly positive random variables, so for any set S of
random variables we let S* denote the set of all those members of S which are
strictly positive. Let ® denote the class of Borel subsets of the real line. The
following is one of several available definitions for the conditional expectation,
E, (X | &), of X given £ (see Brunk [3]).

DermNiTION. If X € Ly then Y ¢ Ly(£) is equal to E,(X | £) if and only if ¥V
has both of the following properties:

(1) J(X=Y)Zdu <0  foreach Z e Ly(£)
(2) fs(X —Y)du=0 foreach Be Y (®)
(Brunk [3] shows the existence of such a Y and that it is unique in the sense that
if W is any other member of L.(£) having these properties then W = Y[u].)
2. Some equivalent definitions for E,(X | £). We may replace (2) in the
definition of E.(X | £) by:
(3) J(X = Y)e(Y)du =0 for every Borel
- function ¢ of a real variable such that ¢(Y) ¢ L, .
This can be shown by approximating ¢ by simple random variables.
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We also remark that:
(4) fa(X—Y)du=0 foreachdesg

may replace (1) in the definition of E,(X | £). This can be shown by approxi-
mating Z by simple random variables and using (2) and (4) together with the
identity

Z’f-x G;IA; = Zlf:i (as' - G.‘+1)IB,- + akIB,,

where a; > a2 > -+ > a, A: = [Z = ai, B = Q@ and B; = ZleA;
(j=1y27".yk-—'1)' ’

3. The reciprocal of the conditional expectation of a positive random variable.
TueoREM 3.1. Suppose X ¢ L,', Y = E(X | £) and 1/Y ¢ L, . If the measure
v 1s defined by v(A) = fA X du for each A € Q then

E,(1/X | &) = [E(X | )]

Proor. Since X ¢ Ly it follows from (2) that Y & L,"(£). From this and
the hypothesis we can conclude that 1/Y e L,"(£°). Suppose now that
Be(1/Y)(®). Then B is also a member of Y '(®) and since X is the Radon-
Nikodym derivative of v with respect to u we have:

Jo (/X = 1/Y)dy = [5(1/X — 1/Y)X du
- [ (X - V)(1/Y)I5 dp.
However, by (3) ‘this integral must vanish so that:

fs(1/X — 1/Y)dy = 0  for each Be (1/Y)7Y(®).

It remains only to verify that f (1/X — 1/Y)I,dy £ 0 for each 4 ¢ £°. We
have:

I

/X —1)Iidy = [(X — Y)(=1./Y) dp.

But, I, is non-negative, 1/Y is strictly positive and both are measurable £°
so that T4/Y e Ly(£°) and (—14/Y) € Lo(£). However, by (1) this integral is
non-positive and by (4) the proof is complete.

4. E.(X | £) as a solution to certain extremum problems. Suppose X is any
member of L, Y = E,(X | £) and 1/Y ¢ L, . Let & be any real valued function
of a real variable whose domain includes (0, « ) and which is convex on this
interval. Then for any Z ¢ L," we define the function Js(Z; X, u) by:

(5) Jo(Z; X, p) = [B(X) — &(Z) — (X — Z)o(Z)] du

where ¢(Z) denotes any derivative, say for the sake of definiteness, the left
derivative of ® at Z. We still require that u be totally finite. Jo(Z; X, u) always
exists as a positive real number or 4 «. Brunk [2] shows the following:
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(6) minzer,+o Jo(Z; X, u) = Jo(Y; X, u).
However, by the same token, for any such convex & we have:
minze,+e0 Ja(Z; 1/X, v) = JolE,(1/X | £°); 1/X, ~].

But by Theorem 3.1, E,(1/X | £°) = [E.(X|£)] so that ¥ = E (X |£)
solves another minimum problem (other than (6)), namely:

(7) ming.r,+e) Jo(1/Z;1/X, v)
or equivalently:
minze,+o [ X[®(1/X) — ®(1/Z) — (1/X — 1/2)e(1/Z)) dp.

The question arises: is this actually a new minimum problem or is the func-
tional He(Z; X, u) = Jo(1/Z;1/X, v) of the form Jz+(Z: X, u) for some other
convex function ®*. The answer is the latter. Let ®*(\) = M®(1/)). It is easily
verified that ®* is also convex on (0, ) and that:

2% (X) — 2%2) — (X = 2)e"(2)
= X[®(1/X) — ®(1/2) — (1/X — 1/Z)e(1/2))].

Note that since & is convex if and only if —® is concave and sinceJ _s(Z; X, u) =
—Jo(Z; X, u), (6) implies that for any concave O:

(8) maxze,+) Jo(Z; X, p) = Jo(Y, X, p).
Let 6 denote the left derivative of ®. Then [(X — Y)8(Y) du = 0 and if we
let M denote the class of all those members Z of L,"(£) for which
[ (X —2)0(Z)du = 0
and ©(Z) is integrable then
(9) maxzeu [— [ O(Z) du] = — [ O(Y) dp.

It is assumed that @(X) and ©(Y) are integrable.

To illustrate these comments suppose we are given two k-tuples (n;, ns,
-+-,m) and (a1, @2, -, a) of positive real numbers and let ny + ne + - -+ +
. = n. In certain estimation problems (for example see [4]) we wish to find that
k-tuple (p;, p2, -+, p), if it exists, of positive real numbers which satisfies

(10) DZPZ =
(11) apr + @p: + - Fape = 1
and p,"epy"te - - op™* = rMery"%e ... on™ for every other k-tuple (ry, 72,

-+, 1) of positive real numbers which satisfies both (10) and (11).
Let @ = {1,2, ---, k}, @ be the collection of all subsets of @ and £ be the
o-lattice of left intervals in Q:

£ = {d” {l}: {1:2}7 e, {2, ’k}}
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The k-tuples p = (p1, p2, -+, px) of reals can be thought of as functions on
Q and p satisfies (10) if and only if p is measurable £.

Then using @(\) = log () in (9) with X and g defined on @ and @ respectively
by X () = nea:;/n; and p(i) = n;/n it follows from the above remarks that the
solution for Z is E,(X | £°), and hence for 1/p, [E,(X | £°)]"". By Theorem 3.1,
this coincides with E,(1/X | £). In this approach to the problem we made use
of the assumption that n,’s were non-zero.

In some applications some of the n,’s might be zero. Considerations mentioned
above suggest rephrasing the problem in terms of ®(A) = X log (1/X). With
this approach using (8) instead of (9) our solution is given by E,(Y | £) where
Y and v are defined by Y (7) = ni/n+a; and v(7) = a; . Here we need to assume
that the a,’s are non-zero. ‘

Representations of E(X | £) and methods for calculating it are given in [1],
in [5] and in [4] where an elegant graphical interpretation is given.
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