THE TWO-SAMPLE SCALE PROBLEM WHEN LOCATIONS ARE
UNKNOWN!
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1. Introduction. Let X, X;, -+, Xpand Yy, Y5, -+, Y, be independent
observations from two distributions with edf F(x — v)/¢ and F(xz — »)/7 re-
spectively, where » and 7 are location parameters (for example medians), ¢ and
7 are scale parameters and F is an absolutely continuous distribution function.
The problem is to test the hypothesis H: ¢ = 7 against one- or two-sided alterna-
tives. In addition to the classical F-test, there are several tests available for this
problem (see Klotz [6], [7], Sukhatme [11], [12], Ansari and Bradley [1], Barton
and David [2], Siegel and Tukey [10] and Mood [8]). Some of these tests assume
the knowledge of the location parameters » and 5 and some the equality of » and 1.
For the general problem where the location parameters are completely unknown,
the possibility of applying the usual tests to the deviations of the observations
from certain consistent estimates of the unknown location parameters has been
recognized by several workers in the field. See for example [1]. Sukhatme [12] has
constructed a test for this case which is asymptotically distribution-free under
certain conditions on the underlying distributions. Crouse [4] has recently shown
that the test proposed by Mood [8] when modified in the above manner is asymp-
totically distribution-free under certain conditions.

In this paper we consider the normal scores test proposed by Klotz [7] for the
case v = 7 (unknown) and modify it to apply for the case when the location
parameters are completely unknown. The limiting distribution of the modified
test statistic is shown to remain unchanged by this modification if F is symmetric
and satisfies certain regularity conditions. It follows that the modified test is
asymptotically distribution-free for a fairly general class of distributions. In
Section 4 it is shown that the relative asymptotic efficiency of the proposed test
and the Studentized F-test also remains unchanged. In the same section this
efficiency has been studied for some standard distributions.

2. Assumptions and notations. Let X;, X,, - -+, X,, be independent random
variables with common continuous cumulative distribution function F(x — »).
LetY,, Y., ---, Y, be independent random variables with common continuous
cumulative distribution function G(x — 7). We shall assume throughout that
the distributions ¥ and @ have densities f and g respectively and that » and 5 are
the medians of F and @ respectively. Let N = m + n; Ay = m/N and assume
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TWO-SAMPLE PROBLEM 1237

that for all N the inequalities 0 < Ay < Ay £ 1 — X\ < 1 hold for some fixed
Ao = 3. Let

Fn(z) = (number of X, such that X; — » < z)/m,
(2.1) G.(x) = (number of Y¥; such that Y; — n < z)/n,
Hy(z) = MFu(z) + (1 — Ay)Ga(z).

Thus F,., G. and Hy are the sample cumulative distributions for the X, ¥ and
the pooled samples respectively. Let (X, -+ , X») and 4(Y1, Yo, -+, Y2) be
consistent estimates of » and » respectively, such that N —») and N Ya— )
are bounded in probability. Define

Fn*(z) = (number of X; such that X; — » < z)/m,
(2.2) G.*(z) = (number of Y; such that ¥; — 4 < xz)/n,

Hy*(z) = MFo"(z) + (1 — M)G.*(2).
Let
(2.2) H(z) = MWF(z) + (1 — M)G(2),

h(z) = \f(z) + (1 — M)g(z).

Consider the combined sample X; — v; Y; — 9, (¢ =1, -+ ,m;j = 1,2, -+ ,n)
and define Zy; = 1 if the 7th smallest in the above combined sample is an X and

= 0 otherwise. Define similarly Zy. for the combined sample X; — #; ¥; — 4
(1=1,2,---,m;j=1,2, ---,n). Define also

(2.3) mTy = 2 vy ExiZyi, mTy" = D Y1 EniZy:
where
(2.4) Ey: = Jy(i/N) = {&7'[/(N + D]}~

Here &' is the inverse of the cdf of the standard normal distribution. We shall
extend the domain of definition of Jx to the interval (0, 1] by letting J» be con-
stant on (i/N, ( + 1)/N]. Let J(H) = limy.oJx(H) = [®{H}" As in
Chernoff and Savage [3], T'v and Tx* have the following integral representations

Ty = [Codw(Hu(z)) dFu(z), Tx* = [2uy(Hy*(z)) dFn*(z).

Throughout our proofs K will denote a generic constant which will not depend
on m, n, N. Statements involving o, or O, will always be uniform in the interval
0 < N =M =<1—2X < 1. Let Iy* be the (random) interval in which
0 < Hy*(z) < 1, and throughout the paper let J(z) = [&7'(z)

3. Asymptotic normality. Using the theorem of Chernoff and Savage [3],
Klotz [7] showed the asymptotic normality of the statistic T'x given by (2.3). In
this section we prove that the limiting distribution of T»* defined by (2.3) is the
same as that of Ty under fairly general conditions on the underlying distributions
F and @G, namely that

(3.1) fand g are symmetric about their respective location parameters,
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and

(3.2) f(@) /@ (F(2)}],  9(2)/el®{G(2)}]

are bounded. Here o(x) = (2r)* exp (—2*/2). The assumption of symmetry of
fand g was also made by Sukhatme [12] to prove a similar result on U-statistics.
Condition (3.2) will, in particular, be satisfied if (i) f and g are bounded and
(i) f(x)/e[® ' {F(x)}] and g(z)/[®"{G(z)}] are bounded as z — = . Con-
dition (ii) is the same as the one given in (b), Lemma 3 of Hodges and Lehmann
[5]. It can easily be checked that condition (3.2) is satisfied by the usual dis-
tributions such as normal, double exponential, logistic and Cauchy.

Our statistical results will be based on the following principal theorem.

"THEOREM 3.1. If assumptions (3.1) and (3.2) hold, then

limyae P{(Ty* — ux)/ox S 8} = [t (2n) P exp (—2%/2) dx
where
(3.3) uy = |2 J{H(x)} dF (z)
and
Now' = 2(1 = M){ [ [-scocrc G(2) (1 = G())
(34) -(H@W'H(y)} dF(2) dF(y) + [(1 — )/ [ [ cococy<o F(2)
(1 = F(y)J'{H(@)WJ'(H(y)} dG (=) dG(y))}.

Proor. Without loss of generality, we can take v= 4 = 0. We first state two
lemmas and indicate their proofs.

Lemma 3.2. If (3.2) holds, then h(x)/o[® {H(x)}] is also bounded, where h(z)
and H(x) are given by (2.2").

INDICATION OF PROOF. From the concavity of o[®@ {H(z)}], —» < z < =,
it follows that

h(2)/o[@ " {H(2)}] £ max (f(z)/¢[®{F(2)}], g(2)/el® " {G(2)}]).

Lemma 3.3. Let Xy, Xo, -+, Xn be independent and identically distributed
rv’s with continuous cdf F(x — v), where v is the location parameter. Let
5(X1, -+, Xm) be a consistent estimate of v such that m*(» — v) 1s bounded in

probability as m — . Let M(z) be a real-valued function defined on (— o, )
such that the derivative M’ (x) exists and satisfies [M'(x — t)| £ KT(x) uniformly
in tfor |t| < ¢ (c and K are constants) and &[{T(X)}?] < « where X has the cdf
F(z — v). Also assume §[M'(X — v)] = 0. Then

Ln=m™ 20 {M(X: — ») — M(X: — 5)} — 0 in probability.

InpicaTION OF PROOF. Apply Tchebychev inequality.
Proor or THE THEOREM. From the results of Chernoff and Savage [3] and
Klotz [7], it follows that

limyow P{(Tw — pw)/on S 8} = [Lo (27) P exp (—27/2) da,
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where uy and oy are given by (3.3) and (3.4) respectively. To prove the theorem,
we shall show that the limiting distributions of Ty and T»™* are identical. We can
write
Ty* = [Zadu(Hy") dFn*(z) = [ocay 1 Un(Hy™) — J(Hy®)] dFo*(2)
+ focmy 1 J (Hy™) dF ¥ ().
Proceeding as in Chernoff and Savage [3], we can write
Ty* = A* + By + Biv + 2ia Cly
where
* = f0<H<1J(H) dF(z),
Blv = [wnaJ(H) dIFa*(z) — F(2)],
Biy = fo<a<1 (HN* - H)J,(H) dF (z),
Clv = M Jocnar (Fn® — F)J'(H) d(Fn*(2) — F(x)),
Civ = (1 = M) Jocuar (@™ — G)J'(H) d(Fn*(z) — F(2)),
Ciw = [u [(Hx* — H)'/20" (vHy" + (1 — v)H) dFn* (=), 0<y<1
Civ = [my-1 (=J(H) — (H¥" — H)J'(H)) dF,* (),
Csv = fz;, Un(Hx™) — J(Hy")) dFn*(z),
Cov = [mym1In(Hy") dFn*(z).

A*¥ is the same as A of Chemoff Savage [3] and is finite. It is shown in the Ap-
pendlx that Cly, ¢ = 1, 2, , 6 are of order 0,(N*) for ¢ = 1, 2, , 6. It
remains to show that N *(Bm + B3y) has the same limiting normal dlstnbutlon
as that of NT'y . Proceeding as in Chernoff- Savage [3], we obtain

NY(Bfy + Bix) — N*(Bw + Bu)
= N1 — a){m™ 8 [B(X: — 9) — B(XJ)]
— 07 23 [D(Y; — 4) — D(Y)]
where
B(z) = [{J'{H(y)} dG(y),
D(z) = [§J'{H(y)} dF (y),
Biy + By = (1 — M) {m™ 227 [B(X;) — 8B(X)]
—n7 23 [D(Y;) — &D(Y)]}.
Let
Ly = N7 2% [B(X: — 5) — B(XJ)].
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Using Lemma 3.2 and the mean value theorem it can be shown easily that
|B'(X — t)| < K{|®"{H(x)}| + K} for |t| £ C. Also

2o [@7{H(z)}' dF (z) < K [Z.[87{H(2)} dH(z) < .
Further

&B'(X) = 2 [Z. {¢7{H(2)}/¢l&{H (2)}]}f(2)g(z) dz = 0

since f(z) and g(z) are symmetric about zero so that ® {H (z)}/¢[® {H (z)}] is
an odd function in z. Also 8B’ (X) < «. Thus B(z) satisfies all the conditions of
Lemma 3.3. Hence Ly — 0 in probability. In a similar manner it follows that
N>, [D(Y; — 4) — D(Y;)] — 0 in probability, from which it follows that
N}(Biv + Biy) has the same asymptotic distribution of N*(Bw + Bay). From
the results of Chernoff-Savage [3] and Klotz [7] N*(Biy 4+ Bax) has the same
limiting distribution of N*T'y . This completes the proof of the theorem.

4. A Normal Scores test for the general two-sample scale problem. For the
two-sample scale problem defined in Section 1, Klotz [7] proposed a nonparametric
test when it is assumed that » and » are unknown but equal. The test statistic is
Ty defined by (2.3). It was also shown by Klotz [7] that the asymptotic efficiency
of his test relative to the F-test is unity when the underlying distributions are
normal. For the general case, when » and 5 are completely unknown, we propose
the test based on Tx* defined by (2.3). From Theorem 3.1, it follows that the
modified test is asymptotically distribution-free for the class of distributions
satisfying (3.1) and (3.2). It also follows from the same theorem that for the
class of distributions covered by the conditions of the theorem, the limiting dis-
tributions of Tx and Tx™ are identical for fixed alternatives ¢ and r. However, to
obtain the efficacy of the Ty *-test, we need to derive the asymptotic distribution
of Tx™ for a sequence of alternatives. The identity of the limiting distributions of
Ty and Tx* in this case follows from the following corollary.

CoRroLLARY 4.1. Let G(x) = F{(x — )8}, 0 < 0 < o, in Theorem 3.1. Then
the asymplotic normality of Tx™ holds uniformly in Ay and for 6 in some neighbor-
hood of unity.

Proor. From the results of Chernoff and Savage [3] and Klotz [7], the limiting
normality of the Ty-statistic is uniform in Ay and for 6 in some neighborhood of
unity. To prove the corollary, it is, therefore, enough to show that (i)
N’(BTN + By — N*}(Bw + Bay) — 0 in probability, uniformly in Ay and for 6
in some neighborhood of unity and that (ii) N*C#y — 0 in probability, uniformly
in Ay and for 6 in some neighborhood of unity (¢ = 1,2, -+, 6). As in the proof
of Theorem 3.1, assume » = n = 0. Note that, when G(zx) = F(x0),
g()/@{G(z)} = 6f(20)/¢[®{F(26)}]. Since f(z)/pl® " {F(x)}] is bounded
and 6 lies in some neighborhood of unity, we have g(x)/¢[®{G(x)}] is bounded
uniformly in 8. Hence, by Lemma 3.2, k(z)/¢[® {H(x)}] is bounded uniformly
in 6, for 0 lying in some neighborhood of unity. A perusal of the proof of Theorem
3.1 now proves (i) and (ii). (Uniformity in Ay throughout is clear from the as-
sumption 0 < A £ Ay < 1 — X\ < 1.) This proves the corollary. It now follows
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that for the distributions satisfying the condition: f(x)/o[® *{F(z)}] is bounded,
and f symmetric about zero, the asymptotic efficiency (Pitman sense) of the
Tx*-test is the same as that of the Tx-test. The expression for the efficiency
ers,.» is therefore the same as ery,» given by Klotz [7].

APPENDIX

6. Higher order terms. In this appendix, the proof for the negligibility of the
C-terms of Theorem 3.1 is briefly indicated. The full details are given in [9]. The
method adopted to achieve the result is to replace # and 4 occurring in these terms
by nonrandom #,/N* and #,/N* and to show that the resulting terms are 0,(N )
uniformly in t; , ¢, for || < Crand |to] < Ca. Let Sye = {z: H(1 — H) > nMo/N}.
Since f and g are assumed to be symmetric about zero, the interval Sy, is sym-
metric about zero. Let Sye = (—ax, ax). Define Sye = (—ay — t/NY ay —
t/N*) and Si. = (—ay — max (t1, t)/N*, ay — max (41, t)/N*?). Ciy can be
shown to be 0,(N 4 by using the general technique mentioned above and by
employing the method of Chernoff-Savage. To deal with C3y, define

w = [2.1G3" () — Q@) (H(2)} diF2*(z) — F(2)]

where G¥*(z) = Gu(z + t/N?) and Fi¥(z) = Fn(z + t;/N*). Splitting the
range of integration into Sy. and S¥:, and in the integral over She, writing
G¥*(z) — G(z) = {GF*(z) — G*(2)} + {G*(z) — G(x)} and Fr*(z) — F(z) =
(F**(z) — F*(z)} + {F*(z) — F(z)} where F*(z) = F(z + /N') and
G*(z) = G(z + t/N*), and collecting the terms it can be shown as in Chernoff-
Savage [3] that Crv = 0,(N ). For the consideration of the Ciy term, define

5 = focapa HE @) — H@ (vHE (2) + (1 — v)H(2)} dF2*(z),
;‘;* = Jwap@<i [H;;*(x) - H(x)]zJ”{H(x)} dF:*(x)’

where Hx*(z) = MWFR¥*(x) + (1 — W) GE* (2).

It can be shown that

(i) NY(Cix — C3F™) = 0p(1) uniformly in ¢, ¢ for || < c1and |t < c.,

(i) N O™ = 0,(1) uniformly in ¢, , &2 for || £ crand |t £ ¢,
where ¢; , c; are constants. This completes the discussion of the C3y term. The
discussion of the terms Ciy , Ciy and Cay is analogous to the argument used by
Chernoff and Savage [3] in their treatment of the terms Cav, Csv, Con respec-
tively. This completes the discussion of all the C-terms.
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