A HYBRID PROBLEM ON THE EXPONENTIAL FAMILY!

By ArtHUR COHEN

Rutgers—The State University

1. Introduction and summary. It is frequently of interest to an investigator to
decide whether an unknown parameter lies in some interval and also to obtain a
point estimate of the parameter. There are many instances in practice where
one does this by first testing a hypothesis and then estimating. Sometimes the
investigator will even allow the result of the hypothesis test to effect his method
of estimation. Theoretical work on the procedure, where one follows a test of
hypothesis by estimation, has been generally reviewed by Kitagawa [10]. In-
cluded in Kitagawa’s review are references and discussions of other approaches
to what we will call a hybrid problem. That is, we describe a hybrid problem as
follows: Suppose we take n observations on a random variable whose distribu-
tion is known to belong to a one-parameter family. Then, on the basis of these
observations we decide whether the parameter (or some function of it) lies in a
given interval of the parameter space (or the range space of the function of the
parameter). Secondly, we estimate the parameter (or some function of it).

In the next section we will explicitly state a decision theory formulation for a
hybrid problem. Following the statement of the problem, we will give examples
of situations where a hybrid problem is defined and for which the given formula-
tion is appropriate.

The formulation will be given for a hybrid problem when a single observation
is made on a random variable whose distribution is of the exponential type, and
when the decisions are made with regard to the expected value of the random
variable. We decide whether the expected value, which is a function of the un-
derlying parameter of the exponential distribution, lies in some given interval
and we also estimate the expected value. For a large subclass of the exponential
family, including the normal distribution with unknown mean, complete classes
of procedures are found for the case when the given interval consists of a single
point. These complete classes consist of procedures called interval-monotone
procedures defined as follows: If the observation falls in a particular interval of
the sample space, then decide that the expected value of the random variable
lies in the given interval consisting of a single point and estimate it to be precisely
that point. If the observation lies outside that particular interval of the sample
space, decide that the expected value lies outside the given interval and estimate
it by some monotone analytic function of the observation.

Another result for the given formulation is concerned with the case when the
distribution is normal with unknown mean and the given fixed interval is any
symmetric interval about the origin. Here, a class of admissible procedures is
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1186 ARTHUR COHEN

found, where each procedure is a symmetric interval-monotone procedure, the
symmetry pertaining both to the interval and the estimate. Furthermore, in-
cluded in this class is the following intuitively appealing procedure: If the ob-
servation falls in some particular symmetric interval about the origin, then de-
cide that the parameter lies in the given fixed interval of the parameter space
and estimate the parameter by zero; while if the observation falls outside the
particular interval of the sample space, then decide that the parameter lies out-
side the given interval and estimate it by the value of the observation. It is
interesting to note that the estimate resulting from the above procedure was
proved to be an inadmissible estimate for the squared error loss function. (See
[5])-

The analogue of the admissibility result for the normal case is next found for
the cases where the probability distribution of the random variable is binomial,
Poisson and gamma, and the left end point of the given interval of the parameter
space is zero.

In the next section then, we state the problem and give examples. In Section 3
we give complete class theorems. The admissibility results for the normal case
and binomial, Poisson, and gamma, cases follow in Sections 4 and 5, respectively.

2. Statement of the problem. Let y be a single observation on a random vari-
able whose density is of the exponential type dPs(y) = B(8)e” du(y), where u
is a o-finite measure defined on the real line, whose spectrum is denoted by Y.
To avoid trivialities we assume Y is non-degenerate. The parameter space is

Q= {6:fre” du(y) < w},

and it is known to be an interval of the real line ([6], p. 67), while 8(6)™" =
fy ¢ du(y), is positive and analytic at each interior point of Q. Let h(9) =
Ey(y), and denote the range space of h(8) by R . Also let I = [, 6,] be an ar-
bitrary but fixed interval in @ and let I, = [A(6,), h(6:)]. From the well known
relations ([6], p. 67),

h(8) = —B'(6)/8(0), and K'(8) = B'(6)" — B(6)8"(0)/8°(8) = &’ > 0,
h(0) is seen to be a continuous increasing function of 8 and therefore 6 ¢ I if and
only if A(0) e I, .

Now on the basis of the single observation, (note that there is no loss of
generality if we restrict ourselves to a single observation), we would like to

(2.1) decide whether h(6) ¢ I},
(2.2) estimate h(8).

We require that if it is decided that A(6) € I, then () must be estimated by
some constant h*, where h* is some preassigned point in I . We choose a loss
function for this problem to satisfy the following:

(1) If it is decided that h(6) & I and k() is estimated by h*, then the loss is
zero when 6 £ I'; and (h* — h(6))’ when 6 ¢1.
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(2) If it is decided that h(6) £ I, and h(0) is estimated by some function of
y, say a(y), then the loss is (a — h(6))* + M, for M a positive constant, when
6el;and (a — h(8))* when 6 2 1.
Before justifying the formulation for this problem we find it convenient to make
some definitions and to present the loss function in tabular form. Therefore,
suppose we let
x(h(8)) = 0 if h(8) eI,
=1 if h(@)el,.
Also, let us define a function b(y) such that

b(y) = 0, if after observing y we decide #h(8) eI,

b(y) = 1, if after observing y we decide h(0) g1,.

If we let a(y) denote a nonrandomized estimate of h(6), and set {(y) = (a(y),
b(y)), the loss function W (8, t) for this problem is presented in Table 2.1.
Note that the requirement that A(8) be estimated by h* whenever it is decided
that 8 £ I, , and the table of losses, Table 2.1, could both be derived if we stated
the problem (that is, to be (2.1) and (2.2)) and defined the loss function to be

W, t) = (a — bh(8) — (1 — b)h*)2
+ max [M(b — x(h(8)), (x(1(6)) — b)(h* — h(8))’].

The table of losses derived from (2.3) is Table 2.2.
Now it is obvious that any procedure where b(y) = 0 and a(y) # h* can be
improved by choosing a(y) = L*. Therefore, the problem can be reduced to one

(2.3)

TABLE 2.1
Loss function in tabular form
o)
0 1
x(h(8))
0 0 [a — RO+ M
1 [B* — h(0)]? [@ — R(6)]
TABLE 2.2
Loss function derived from (2.3) in tabular form
) |
0 1
x((0))
0 [a — h*]? [a — RO+ M
1 la — h*] + [b* — R(O)] e — R(O)]
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in which we need only consider procedures with a(y) = h* whenever it is decided
that 6 € I, , and where the table of losses is Table 2.1.

We now turn to the motivation and justification of the hybrid problem stated
above. We will cite three examples for which the formulation is appropriate.
Then we will briefly discuss the idea of using 2*, and some variations of the loss
function.

Let us suppose then that an investigator is interested in some unknown param-
eter. If he decides that the parameter lies in some interval (which he has chosen
before making any observations) it might be easier, more convenient, and no less
beneficial for him to estimate the parameter by some constant in that interval.
If he decides that the parameter lies outside that interval, then he wants a good
estimate of the parameter. Furthermore, if he decides that the parameter lies
outside the interval, when in fact the parameter lies inside the interval, he
incurs a loss that consists of his error due to estimation plus an additional penalty
factor. We cite three examples.

ExampLE 1. Suppose a pharamcologist is investigating a drug that might
effect the cholesterol count of an individual. From past experience the average
cholesterol count of an individual belonging to a certain group is known. The
pharmacologist wishes to decide if the drug changes the average cholesterol
count and he would also like to measure the amount of change. He feels that if
he decides that the drug does have an effect and he estimates the amount of
change in the cholesterol count, when in fact the drug does not have any effect,
then he should incur a penalty factor in addition to his loss due to estimation.
The penalty factor is due to the inconvenience of notifying physicians, preparing
literature, alerting the public, and perhaps injuring the reputation of the pharma-
cologist’s company. If the pharmacologist correctly decides the drug has an
effect, then his loss is due only to estimation. If he decides correctly that the drug
has no effect, he loses nothing, whereas if he decides that the drug has no effect,
when in fact it does, then he feels that the loss due to poor estimation is severe
enough.

ExaMpLE 2. Suppose a jobber is interested in the proportion of good items in a
lot. If the proportion of good items is less than some number p,, say, then the
proportion is too small to be of practical significance to him, and as far as he is
concerned, the proportion might just as well be zero. On the other hand, if the
proportion exceeds po, then the jobber would like to purchase the lot and he
would be willing to pay according to the proportion of good items. Hence, he
would be interested in a good estimate of the proportion. The jobber feels that if
he decides that the proportion exceeds po , when in fact it does not, his loss should
consist of an error due to estimation and an additional penalty factor. The penalty
factor would account for the inconvenience of unnecessarily informing store-
keepers, and perhaps the adverse effect on the jobber’s relation with these store-
keepers. As in the previous example, the jobber feels that if he correctly decides
that the proportion of good items exceeds po , then his loss is due only to estima-
tion. If he decides correctly that the proportion is less than p,, then heloses
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nothing, whereas if he decides incorrectly that the proportion is less than p,,
then his loss due to underestimating the proportion is severe enough.

ExaMPLE 3. Suppose we consider a polynomial regression model. That is, we
assume that y;, 7 = 1, 2, -- -, n are observations which are independent and
normally distributed, such that

E(y:) = 2 31 Biei(zs),

where the @8; are parameters, the z; are fixed, and the ¢; are orthogonal poly-
nomials of degree j. A problem of interest then is to simultaneously decide on
the degree of the polynomial and to predict a future observation at a given
value of the fixed independent variable. A loss function for such a problem can
take into account both errors in predicting and errors in deciding on the degree
of the polynomial. In fact, it is reasonable to assign a penalty factor whenever
one overestimates the degree of a polynomial regression since it is an advantage
to represent the data by a polynomial of low degree because the curve is smoother,
the presumed ‘explanation’ is simpler, and the function is more economical.”
([1], p. 256). Now one can define, in some sense, the degree of a polynomial by
some function of the parameters 81, 82, - -+ , Bp, given in the regression model.
Such a function, say, would equal j, if j were the largest index for which B;
was “large”. In the author’s dissertation [4] such a function is defined when
formulating a problem of simultaneously deciding on the degree of a polynomial
and predicting. The idea of a penalty factor is incorporated in this formulation.
When p = 1 and ¢i(x) = 1, the loss function in tabular form for the polynomial
problem reduces to Table 2.1 with h(8) = 6, = I, = (—6o, 6), and B* = 0.
Here M plays the role of the penalty factor, while x(8) is the function, defining in
some sense, the degree of the polynomial. We recognize that it would not be
difficult to alter Example 3 so that it defines the interesting problem of including
or deleting the pth variate of a pth order regression to be used for prediction.

The idea of using h* is explained by the requirement that whenever it is
decided that h(8) & I, then h(6) must be estimated by some constant in the
interval I, . The only restriction then on &* is that 2* & I, . Hence, the inves-
tigator, in setting up his problem, may choose an h* ¢ I; that makes the practical
aspect of the problem more meaningful or more convenient.

Although the ensuing development of this problem in Sections 3 thru 5 will
be based on the loss function given in Table 2.1, we remark that no major changes
in methods or results would be required if the following changes in Table 2.1 were
made:

(1) In the cell (b(y) = 0, x(h(8)) = 1), replace (h* — h(6))* by
(h* — h(8))* + K, for K a positive constant.

(2) 2In the cell (b(y) = 0, x(h(8)) = 0), put C, a positive constant or put
(R(6))".

Other variations of the losses could be made so that the development would not
require major changes. We also remark that if M = 0, no major changes will be
required. If M = «, by always choosing b(y) = 0 we are assured of a finite, but
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not necessarily a bounded risk function, whereas if we do not always choose
b(y) = 0, the risk function is infinite for all § ¢ I.

We make one final remark before turning to the development of the hybrid
problem. The problem defined here is concerned with decisions regarding k(8) =
Es(y). However, many of the results hold if we wish to make decisions regarding
6 itself, or perhaps other functions of 6. The problem defined in terms of A(9)
however, is felt to be a problem of considerable interest.

3. Complete classes. In this section we will start out by noting that the pro-
cedures with nonrandomized estimates of 4(8) form a complete class. Then we go
on to characterize the Bayes procedures. After this, we find a complete class of
procedures for a large subfamily of the exponentlal family. This complete class
is B*, where B* consists of procedures which have nonrandomized and finite
estlmates of h(6) and are also Bayes or the limit of a sequence of Bayes pro-
cedures. We give a characterization of those procedures in B* for the normal
case (that is 2(8) = 6) and for other distributions (that is, for other functions
h(8)). Finally we finish this section by describing a complete class for the case
when the interval I consists of a single point. This complete class consists of
interval-monotone procedures only.

Before proceeding, we remark that the decision theory terminology and defini-
tions are more or less those of Wald [13] and LeCam [11]. Now we note that the
action space, which we denote by T, for this problem, is a subset of Euclidean
2-space; namely the line segment where b = 1, and a ranges over R, , and also
the point (a = k¥, b = 0). Hence, the most general type of decision procedure is
one which assigns a probability distribution ¢/(¢ | y) on T for every y. Con31der1ng
such a y(¢ | y), let (1 — ¢(y)) be the probability which y(t|y) assigns to the
point (@ = h* b = 0). That is, (1 — ¢(y)) = Pr {b = 0] y}. i o(y) = 0, let
Yi(t|y) be the conditional distribution function on R, given b = 1. We will
consider only those ¢(¢|y) such that fT u(t) dy(t|y) is a measurable function
of y, where u(?) is any bounded continuous function which is zero outside a
compact set. Suppose then that we are given a procedure ¥(¢ | y) such that for
every y in some set of positive u measure, ¢(y) is positive and ¢4 (¢ | y) is positive
on some non-degenerate set in Ry . It i 1s easy then to prove that the procedure
vt y) is better than y(¢ | y), where ¢*(¢ |y) is deﬁned as follows: let o*(y) =
ga(y), and for all those points y where ¢(y) # 0, let ¢,*(t|y) = 1 at the point
a*(y) = [madys(t]|y). The proof follows immediately from convexity by
consideration of the risk functions which for the procedure y(¢|y) is

p(6,¥(t]y)) = [¥{[[rla — h(O)F dya(t|y) + M1 — x(h(8))]le(y)
+ [x(h(8)) (R* — h(8))’I(1 — o(y))}B(6)e” du(y).

The fact that ¢*(¢| y) is better than ¢ (¢ | y) implies

THEOREM 3.1. The class of procedures whose estimates of h(8) are nonrandomized
18 complete..

Theorem 3.1 implies that the most general type of procedure that we need
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consider is ¢(y), where we write

t(y) = (a(y), 1) with probability ¢(y)
= (h*, 0) with probability (1 — ¢(y)),

to denote that the procedure takes action (a, 1) with probability ¢(y) and action
(h*, 0) with probability (1 — ¢(y)). Sometimes, for convenience, we write
{(y) = (a(y), ¢(y)) to denote such a procedure, since #(y) is completely de-
termined by the pair (a(y), ¢(y)). Now we characterize the Bayes procedures in

THEOREM 3.2. A procedure t(y) = (a(y), ¢(y)) is Bayes with respect to the
a priort distribution £(6), if and only +f

ty) = (Jah(8)B(8)¢" d£(6)/ o B(8)e” dE(6), 1)
when w(y) < 0, or with probability \ if w(y) = 0, forany \,0 = X\ = 1, and
t(y) = (2%, 0)
when w(y). > 0, or with probability (1 — \) if w(y) = 0; where
w(y) = —[fa (h(8) — h*)B(0)e” dE(6)/ [a B(B)€” dE(6)F
22 [(h(8) — k™)' + M1B(8)¢” d(6)/ Ja B(6)e” di(6).

We omit the proof.

From here on we will restrict the class of distributions to those for which R, is
closed and bounded, half-closed and open at infinity, (for example [c, «) for
some real ¢), or the entire real line, that is (— =, « ). Then for these distributions,
if we let B* be a subset of the class of all decision procedures (those with ran-
domized estimates of h(9) included), such that each procedure in B* has a finite
estimate of h(8) and each procedure lies in the closure, according to the topology
3 (See [11], p. 74), of the class of Bayes procedures, then it follows that the class
of procedures B* is complete. Furthermore it follows that the class of procedures,
which is the intersection of B* and the class of procedures with nonrandomlzed
estimates of h(8) is complete. For convenience we retain the symbol B* to desig-
nate this latter class. We now set out to characterize the procedures in B*. We do
so by generalizing a result of Sacks [12] in giving a necessary and sufficient con-
dition for a procedure to lie in B*. Although this characterization is proved below
for the case where h(8) = 8 (that is when y is normal) and 6, and 6, are finite,
indications of other cases for which the characterization is true are given. Before
stating the theorem giving the necessary and sufficient condition, we need to state
some definitions.

Let K be the class of real valued, bounded, continuous functions defined on
T, which are zero outside a compact set. Denote the elements of K by w. Let L be
the class of all measurable functions f(y) on Y to the real line such that they are
u-integrable. Let ||f]| = [v|f(y)| du(y) be the norm of f. We now restrict slightly
the class of distributions to which the development applies by requiring that L
be separable. (L is separable whenever the probability distribution is discrete or
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admits a density). This condition on L implies that convergence with respect to
the topology 3 is equivalent to regular convergence defined in Wald [13]. (See
[11], p. 78). A sequence of decision procedures y"(¢ | y) is said to converge regu-
larly to a limit ¢/(t | y), if foreveryu e K, fe L,

(81)  limnew [v [rf(m)u(t) d¥™(t|y) duly) = [v [2f(y)u(t) dp(t|y) duly).

It is clear then that if ¢.(y) = (a.(y), ¢x(y)) is a sequence of procedures such
that ¢.(y) converges to ¢(y) a.e. p and whenever ¢(y) = 0, a.(y) converges to
a(y) a.e. u, then ¢,(y) converges regularly to t(y) = (a(y), o(y)).

Now we are ready to state

THEOREM 3.3. Assume h(6) = 6 and that 6, and 8; are finite. Then a necessary and
sufficient condition for a procedure t(y) = (a(y), o(y)) to lie in B* is that there
exists a non-decreasing, non-constant function F(0) such that

JaB(8)¢” dF(6) < o,

and
t(y) = (Ja8(6)e” dF(8)/ [ B(6)e" dF(6), 1)
fw (y) <0, and with probability N, for any 0 < X\ £ 1, if w(y) = 0;
t(y) = (6% 0)

if w(y) > 0, or with probability (1 — \), if w(y) = 0; where
(32) w(y) = —[fa (8 — 6%)8(0)e” dF(6)/[a B(6)e" dF(6)]

01 [(6 — 0%)* + M1B(6)e” dF (6)/[a B(6)e" dF ().

Before proving this theorem, we give the following two lemmas.

Lemma 3.1. The function w(y) given in (3.2) s not identically zero.

Proor. If dF(6) is positive only outside the interval [6; , 62] then w(y) is nega-
tive except possibly for a single value of y for which w(y) = 0. This follows, since
from a lemma due to Karlin ([8], p. 116) the function [q (6 — 6*)8(6)e”’ dF (6)
has at most one zero. Now consider

w(y) fa B(0)e” dF(0)/ 32 [(6 — 6%)° + MIB(6)e” dF (6)
—[Ja (6 — 6%)B(6)e” dF (6)/ [o B(6)e” dF (6)
Jo2 (0 — %) + MIB(6)e” dF(8) + 1

9(y)
(3.3)

and call the first term of the right-hand side of (3.3) —gi(y). Hence w(y) is
identically zero if and only if g:(y) is identically one. Suppose next then that
dF () is positive only on [6; , 82]. Then it follows by applying Schwartz’s inequality
that gi(y) < 1 for all y. Therefore the only remaining case to consider is when
dF (6) is positive on [0, 62] and positive outside the interval. Suppose then that
dF(6) is positive within [6;, 6] and also positive on some set (6, §”) where
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.< 6 < 6”. We show that g1(y) tends to « as y tends to « . For we may write
(34) gi(y) = {Ja (8 — 6%)B(0)¢” dF(0)/[a B(6)¢” dF(6)}
{fa (6 — 6%)8(8)¢” dF (8)/ 31 [(8 — 6%)* + MIB(6)e” dF(6)}.

Now if we write the numerator of the second factor on the right-hand side of (3.4)
as the sum of two integrals, one of which has (— «, 8,) as limits of integration, it
is then possible to show that the entire second factor tends to « as y tends to «.
The first factor on the right-hand side of (3.4) can be shown to approach a posi-
tive value as y tends to « by showing that the ratio

[ (6 — 6%)8(8)¢” dF(8)/[%% (6 — 6%)B(8)e” dF(8)

tends to « asy tends to . Thus, it follows that gi(y) tends to « as y tends to
o . For the case dF(6) positive on values less than 6; a similar argument would
show that-g:(y) tends to « as y tends to — «. These facts then prove that g;(y)
cannot be identically one which suffices to prove the lemma.

LemMa 3.2. The function w(y) given in (3.2) equals zero on at most a set of
u-measure zero.

Proor. Consider the two expressions

(3.5) JoB(0)e” dF(8),  J821(6 — 6*)* + MIB(8)e” dF (6).

By the conditions on F(6) each is a finite LaPlace transform with a non-decreas-
ing determining function. Therefore, by a theorem of Widder ([14], p. 273) each
is analytic in the entire complex plane. Also since the first expression of (3.5) is
positive, it follows from elementary properties of analytic functions that w(y) is
analytic. Hence, by the identity theorem of complex variables, if w(y) = 0 on
some subset of the real line, where this subset is of positive Lebesgue measure,
then w(y) is identically zero. But from Lemma 3.1, w(y) is not identically zero
and thus it is zero at real values on at most a set of Lebesgue measure zero. Now
since u for Theorem 3.3 and the generalizations to follow is absolutely con-
tinuous, this implies that w(y) = 0 on at most a set of u-measure zero. This
completes the lemma.

Proor orF THEOREM 3.3. First sufficiency. That is, suppose there exists an
F(6), with the stated properties, associated with given ¢(y) and w(y). Then define
ta(y) = (an(y), ¢a(y) according to

a.(y) = [2.08(6)¢” dF(6)/ 2. B(6)e" dF(6),

and wa(y) = —[[2 (6 — 6%)8(0)e” dF(8)/[2. B(8)e" dF (8)]°
+ [camne ey [(8 — 8%)° + MIB(6)e” dF (6)/
[2.8(8)e” dF(8).

Now from Theorem 3.2, ¢,(y) is Bayes. Also Lemma 3.2 implies that if w.(y)
converges to w(y) a.e. u then ¢.(y) converges to ¢(y) a.e. u. Hence it is obvious
that a,(y) converges to a(y) a.e. u and ¢,(y)} converges to ¢(y) a.e. g, which iti-
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plies that ¢(y) is the regular limit of a sequence of Bayes procedures and therefore
t(y) lies in B*,

The necessity part of the proof is essentially the same as the proof given by
Sacks [12]. That is, the function F(8) can be constructed as in Sacks [12]. Since
only minor modifications of that argument are needed for the proof here, we omit
the details. This complete Theorem 3.3.

From the proof of Sacks’ Lemma 3 and his Corollary 1, Theorem 3.3 can be
generalized to distributions other than the normal. For example, one such
generalization is

THEOREM 3.4. Let Y = (— o, ), (that is the spectrum or support of u is
(=0, 0)),0=(—w, ©), R, = (—o, ©), and 61, 0, finite. Consider those dis-
tributions for which

limg.,. h(8)e™"

limg,_o h(8)e”

0 forevery r >0,

0 forevery r > 0.

Then a necessary and sufficient condition for a procedure t(y) to lie in B* is that
there exist a non-decreasing, non-constant function F(8) such that fn B(6)e” dF(6)
18 finite and

t(y) = (Jah(6)B(6)e” dF(6)/[a B(0)e” dF(8), 1)
if w(y) < 0, and with probability \ for any 0 < X £ 1, if w(y) = 0;

t(y) = (h*,0),
if w(y) > 0, or with probability (1 — \), if w(y) = 0; where
(3.6) w(y) = —[fa (R(8) — k*)B(6)¢” dF(8)/ [a B(8)e” dF ()]
+ [31 [(h(6) — 1™)" + M1B(0)e” dF (8)/fa B(6)" dF (6).

At the end of Section 2 we remarked that it may be of interest to make
decisions with regard to the parameter 8 and not h(8). If this were the case, then
of course the class of distributions to which Theorem 3.3 is applicable is the same
as given in Sacks [12].

We conclude this section by deseribing complete classes of procedures for the
case when I consists of a single point. We will again assume the conditions of
Theorem 3.3 since generalizations will either be obvious or will be indicated. The
following lemma is needed.

Lemma 3.3. If I is a single point, say 6, then w(y) of Theorem 3.3 crosses the
y axis at most twice, and if it does cross twice, it is positive between crossings.

Proor. Let us consider the following function g(y) which has the same sign

as w(y),
g9(y) = w(y)[fa B(8)e” dF(6))e".
Let » be the saltus of F(0) at § = 6*. Then
(3.7) g(y) = —{lfa (8 — 6%)8(6)e” dF (6)]'/e"" [a B(6)e” dF(6)} + MB(6*)».
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Call the first term on the right-hand side of (3.7) —g¢1(y) and notice that MB(68*)»
is a constant. Hence, if we show that the derivative of ¢g;(y) has at most one zero,
then by virtue of Rolle’s theorem it follows that g(y) and hence w(y) has at most
two zeros. But the numerator of the derivative of ¢:(y) can be shown to equal

& [a (0 — 6%)B(6)e” dF(6){2 [a B(0)e” dF(6) [o 6°8(6)e” dF(6)
— 2[[008(8)e” dF(8)] + [fa (8 —6%)B(8)e*’ AF (60)T}.

Since, by an application of Schwarz’s inequality the term in brackets is positive,
it follows that the derivative of ¢g:(y) has as many zeros as

(3.8) fa (6 — 6%)8(0)¢” dF (6).

But from the lemma and remarks due to Karlin [8], (3.8) has at most one zero
and it changes sign in the same order as (6 — 6*) does. This proves that g(y)
and hence w(y) has at most two zeros, and when it does have two, it is positive
between them and negative otherwise. This completes the proof of Lemma 3.3.

Now we prove A

THEOREM 3.5. If I consists of a single point, then any procedure in B* is an
tnterval-monotone procedure.

Proor. The proof is a consequence of Theorem 3.3 and Lemma 3.3.

An immediate corollary to Theorem 3.5 is that the class of interval-monotone
procedure is a complete class. Also we make the following remarks.

(1) Lemma 3.3 is true for w(y) as given in (3.6) provided for every y,

Ja 61(8)B(0)e” dF (8) — [o08(6)e" dF(0) [o h(6)B(6)€" dF(6) Z O.

(2) When I reduces to a single point the hybrid problem is analogous in some
sense to ‘“testing” a simple hypothesis and estimating.

(3) The class of all interval-monotone procedures is a relatively large class.
Many of these procedures of course will not lie in B*. For any particular interval
there may be several estimates associated with it, such that the resulting pair
lies in B*. However, with each estimate there can exist at most one interval
associated with it. This latter fact follows since the estimate

a(y) = [o08(8)e” dF(6)/[a B(8)e” dF () = dllog [o B(6)e"” dF(8)],

and by the uniqueness theorem for the bilateral Laplace transform, there exists
only one such F(8) that will give such an a(y).

(4). In selecting a procedure for use one needs to also consider the fact that the
class of procedures that lie in B* and that are Bayes in the wide sense is a smaller
complete class than B*.

(5) Suppose we define a procedure, {(y) = (a(y), ¢(y)) to be symmetric if
a(y) = —a(—y) and ¢(y) = ¢(—y). Then for the special case where y is normal
and I = 6* = 0, we can prove

(i) For any given symmetric interval, there is a symmetric interval-
monotone procedure with the given interval that is admissible.
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(ii) The class of symmetric interval procedures is complete among the
class of all symmetric procedures.
The proof of (i) follows by the construction of an a prior: distribution for which
the given interval is part of an interval-monotone procedure that is a unique
Bayes procedure. The proof of (ii) is an immediate consequence of some in-
variance properties as outlined in [2], pp. 223-224. We omit the details of the
proofs of (i) and (ii).

4. Admissible procedures for the normal distribution. In this section we as-
sume that y is normal with unknown mean 6, and known variance, which without
loss of generality, is taken to be one. The interval I and hence I; is taken to be
[—60, 8] for 0 < 6, < « and k* = 6™ is chosen to be 0. Now consider the pro-
cedures G,(y) = (ay(y), ¢4(y)), for 0 < v = 1, where

ay(y) = 0,0,(y) =0 if |yl <k,
1 if |y > ky,

Il

a,(y) = 1Y, e4(y)
and k., is the unique positive solution of the following equation.
— (W)L = @((8 — W)/7) + &(— (6 + vy)/7))]
(41) + (M + 7)[B((8 — v9)/¥") — &(— (6 + 1)/7))]
— 7'y/(2m)Hexp [— (6 — v9)"/2v] — exp [— (60 + v9)"/2¥])
— 6"/ (27)*{exp [— (80 — vy)*/27] + exp |— (6 + vy)*/27]} = O.
In (4.1) &(z) = [Z.exp (—2'/2)/(2r)} do.
We now state
TaeOREM 4.1. The procedures G,(y) are admissible.
Before giving the proof we need the following two lemmas..
LEMMA 4.1. There is exactly one positive value of y that satisfies equation (4.1).
Proor. Call the left-hand side of (4.1) w(y). Notice that, by applying the
identity ®(x) = 1 — ®(—=z), it is easy to check that w(y) is symmetric in y.
Also, since w(0) > 0, and w(y) tends to — «, we need only verify that w(y)
crosses the y axis at most once for some y > 0. But now consider the derivative of
w(y), which is
w'(y) = — (7)) (v)}/(2r)} {exp [— (6 —7y)*/27] — exp [— (60 + 7¥)"/27]}
—27"yl1 — (8 — vy)/7") + &(— (6 + 1)/
— (M + v)/(2r)}{exp [— (60 — vy)*/2v] — expl— (60 + vy)*/2]}
—'y/(2m)*{(80 — vy) exp [— (80 — vy)*/27]
+ (60 + vy) exp [— (6 + 7y)*/27]}
—v'/(2r)* {exp [— (60 — 79)"/27] — exp [— (60 + v¥)"/27])
—00v/(2m)*- (6 — vy) exp [— (6 — v¥)"/27]
— (60 + vy) exp [— (60 + )*/27]}
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—29"y[1 — &((6 — v9)/7") + &(— (6 + vy)/7")]
— (M +7)/(2m)} {exp [— (60 — vy)"/27] — exp [— (60 + vv)"/27]}
—v'/(2r)* {exp [— (60 — 79)"/27] — exp [— (60 + v¥)*/27]}
—60°y*/(27)* {exp [— (60 — 7v¥)*/27] — exp [— (60 + vy)*/27]}
—29"y[l — &((6 — v9)/7") + ®(— (6o + vy)/7*)]
—7/(@m)' (M + 6 + 2v)

~{exp [— (60 — vy)*/2v] — exp [— (60 + vy)*/27]}.

Clearly for every y > 0, w'(y) is negative, which implies that w(y) will cross the
y axis exactly once for y = 0 and thus the proof of the lemma is complete.

LeEMMA 4.2. Let fo(y) be a sequence of functions defined for y = 0, such that for
each n, fu(y) is continuous, strictly decreasing, and f.(y) has a zero denoted by k., .
Also let f(y) be a function defined for y = 0, such that f(y) is continuous, strictly
decreasing, and with a zero denoted by k. Then if limn. f2(y) = f(y), it follows
that limy.e kn = k.

Proor. Suppose that the sequence k, does not converge to k. Then there exists
a subsequence k,; and a positive number 8 such that for every n;, either

(42) (kw; — k) > 8,
or
(4.3) (k — kn;) > 6.

Suppose then that (4.2) is true. We have by hypothesis lim,,, fo(k + 8) =
f(k 4+ 8) <0, yet fa;(k 4+ 6) = 0 and 80 limuew fa; (K + 8) = 0. Therefore
lima,o fa;(k 4+ 8) £ f(k + 8). This is a contradiction. Similarly for (4.3), and
so we conclude that the lemma is true.

Proor oF THEOREM 4.1. From Lemma 4.1 we may conclude that the procedures
G,(y) are well defined. Now for 0 < v < 1, G,(y) can be shown, by use of
Theorem 3.2, to be the essentially unique Bayes solution with respect to the
a priors distribution d£(0) = M exp (—*/2)/(2x)* do, for A = (1 — 7)/7.
This implies that for 0 < v < 1, G,(y) is admissible. For v = 1, we need to
use an argument due to Blyth [3]. That is, suppose Gi(y) is inadmissible. Then
there exists a procedure H(y) = (h(y), ¢x(y)) which is better. That is,

(4.4) p(6, Gi(y)) — p(6, H(y)) 2 0,

for every 6, with strict inequality for some 6. Now the risk function for any pro-
cedure ¢(y) = (a(y), ¢(y)) is

p(6, t(y)) = [r{l(aly) — 0)" + M1 — x(0))le(y) + 6x(8)(1 — o(y))}
-(2m)"texp [— (v — 6)*/2] dy,
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and so, although it is not continuous in 6 for every fixed ¢(y), still every point 6
is a point of either right or left continuity. Therefore, since (4.4) must be strictly
positive for at least one value of 6, there must exist some interval, (¢, 6”) say,
such that p(6, Gi(y)) — p(8, H(y)) = efor e > 0, for every 6 in (6, 6”). This
means that, if d£(9) denotes an a priori density for 6, then the difference in ex-
pected risks is such that p(£, Gi(y)) — p(§ H(y)) = ¢ fg d£(0). If in fact we let

dt.(0) = (2mn) %2 do,
then
(4.5) p(ny Gi(¥)) — p(n, H(y)) = K/n,

for K a positive constant. Now if we denote the Bayes solution with respect to
£.(0) by t.(y) = (aa(y), ¢a(y)) and show that

(4.6) p(Eny Gi(Y)) — p(&n, ta(y)) = o(1/n),

“then it follows by the reasoning used by Blyth that the theorem is proved. That

is, if (4.6) is true then the ratio of the left-hand side of (4.6) to the left-hand side
of (4.5) would tend to zero, contradicting the fact that ¢,(y) is a Bayes solution
with respect to £.(8). But from Theorem 3.2 the Bayes procedures t,(y) are as
follows:

a.(y) = 0, ¢a(y) =0 if |yl < ka
a(y) = ny/n + 1, 0a(y) =0 if |yl 2 ka
where k, is the unique non-negative solution of
—(ny/n + 1)L — &((6 — ny/n + 1)(n/n + 1))
+ &(— (6 + ny/n + 1)(n/n + 1)7)]
+(M + n/n + DR((6 — ny/n + 1)(n/n 4+ 1)7)
(47) = (= (8 + ny/n + 1)(n/n + 1)7H)]
—(n/n + 1)}(27) ylexp [— (n + 1/20) (60 — ny/n + 1)°
— exp [—(n + 1/2n) (6 + ny/n + 1)°]}
— (nfo/n + 1){exp [—(n + 1/2n) (6 — ny/n + 1)°]
+ exp [—(n 41/2n) (6 + ny/n + 1)°)} = 0.
Therefore the risk function for ¢,(y) reduces to
p(6, ta(y)) = n/n + 1 — [ [(ny/(n + 1)—06)
+ M(1 = x(6)) — x(0)6'(2m) " exp [~ (y — 0)"/2] dy,
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and hence after we reduce and interchange the order of integration,
p(én, G1(y)) — p(&n, ta(y)) = 1/(n + 1)
— J8 [Ze (y/n + 1)*@mn/n 4 1) Fexp [— (n + 1/20) (6 — ny/n + 1)7]
‘27(n + DI exp [—3"/2(n + 1)] do dy
— 2[5, [Za (y/mn + 1)(ny/(n + 1) — 0)(2mn/n + 1)
cexp [—(n + 1/20)(6 — ny/n + 1)J2x(n + 17
(4.8) cexp [—y/2(n + D]dddy — [, [Zol(ny/(n 4+ 1) — )
+ M(1 = x(8)) — Ex()](2xn/n + 1)
-exp [—(n + 1/2n) (6 — ny/n + 1)"]2r(n + DI
- cexp [—37/2(n + 1] dody
+ [5 [Zal(ny/(n + 1) — 6)" + M(1 — x(0)) — 6'x(9)]
“(2en/n + 1)7 exp [~ (n + 1/20) (60 — ny/n + 1)'i2n(n + DI
-exp [—*/2(n + 1)] df dy.
We notice that
JRallng/(n + 1) — 0)* + M(1 — x(8)) — €x(8)](27n/n + 1)

-exp [—(n + 1/2n) (6 — ny/(n + 1))7 d6
is the same as the left-hand side of equation (4.7), which we now call wa(y).
Also notice that the third term on the right-hand side of (4.8) is zero. Therefore
we reduce the right-hand side of (4.8) to

1/(n + 1) = [% (y/n + 1)’2r(n + DI exp [—9"/2(n + 1)] dy
(4.9) — [B, wa@)2r(n + DI exp [—¢%/2(n + 1)] dy
+ [t wa(y)2r(n + 1)1 exp [—47/2(n + 1)] dy.

Clearly the second term in (4.9) is bounded by 1/(n + 1). Also if we denote
k. = max (k., k1), k» = min (k,, k1), C; and C; positive constants, it follows
from (4.8), (4.9), the properties of w,(y), and Lemma 4.2 that

ot Gi(W)) = p(En, tn(y)) _
< 2/(n 4 1) + 2C: i 2n(n + 1) exp [—97/2(n 4 1)] dy
= 2/(n + 1) + 2C1Ca(kn — ka)/(n + 1)} = o(1/n}).

This shows (4.6) and hence the theorem is proved.

6. Admissible procedures for the binomial, Poisson, and gamma distributions.
In this section we obtain the analogue of Theorem 4.1 for the cases where the
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distribution of y is binomial, Poisson and gamma. For some of these cases we
modify the loss function given in Table 2.1 by replacing every squared error
term by a term which is squared error divided by a factor proportional to the
variance of y. These modified loss functions correspond to loss functions con-
sidered for estimation problems by Hodges and Lehmann [7]. Analogues of the
results given here however, can be obtained even when the loss funection is not
so modified. The fixed interval of the parameter space in all cases will be denoted
by I and I will be taken to be an interval [0, 6o} where 6, is a positive finite num-
ber, and in the binomial case, 6, < 1. When we decide 6 ¢ I, then we will always
estimate 6 by zero. For each of the three distributions considered in this section
we find specific admissible procedures. Some of these procedures may be such
that they allow 6 to be estimated by zero even when the observation is positive.
At first, this may seem unreasonable since if 6 is zero, then the probability of any
observation being positive is zero. However, we agree to estimate by zero when-
ever we decide 6 ¢ I, since this is a convenient way of stating that 8 is too small
to be of practical significance.

For the binomial distribution, that is p(y, 8) = (;)6*(1 — 6)"™,0 < 6 < 1;
y=1,2, ---,n,let us first consider the case where the table of losses is as given
in Table 5.1. Now consider the procedures G,(y) = (a,(¥), ¢x(¥)), 0 < v = 1,
where

a,(y) = 0, er(y) =0 if y < k,, and with
probability (1 — v) if y = &,
a,(y) = vy/n, oy(y) =1 if y > ky, and with probability
vify = ky;

for each given v, » can take on every value between zero and one; k., is the integer
lying between one and n for which »(y) = 0, if such an integer exists; otherwise
k. is any non-integral number, if it exists, such that 0 < k, < n, and v([k,]) > 0,
and v([k,] + 1) < 0, where [k,] is the smallest integer less than or equal to k., ;
otherwise k., is any number greater than n; here

(5.1) v(y) = —vy/n + [(n — vy)/(n + VIMIe(y + 1, (n/v) —y + 1)
+ [7(?/ + 1)/(” + 'Y)]I%(y + 2; (n/'Y) - y):

TABLE 5.1
Table of losses

b(»)

x(6)

0 0 [(@ —0)7/6(1 — 0)] + M
1 /(1 — 6) (a — 0)%/6(1 — 6)
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where

I.(s, t) = [T(s + t)/r(s)l‘(t)]fﬁ P (1 = p)dp,

for0 <p<1,s>0,t>00 =<z < 1; that is I,(s, t) is the ratio of the in-
complete beta function to the complete beta function.

Note that »(0) > 0, and in Lemma 5.1 below we show v»(y) decreases as y
varies over the integers from 1 to n, thus insuring that k, is uniquely defined.
Finally we can state

THEOREM 5.1. The procedures G,(y) are admissible.

We need the following lemmas.

LemMma 5.1. As y increases over the integers 1 to n, the function v(y) in (5.1)
decreases.

Proor. From (5.1) we can write

v(y) = —vy/n + [vw/(n + Ve(y + 2, (n/v) — ¥)
(5.2) +(n—vy)/ (n+v)IMIg(y + 1, (n/y) —y + 1)
+ v/ (n 4+ V)Me(y + 2, (n/v) — ¥).

Now by use of partial integration we can derive the following recursion relation-
ship,

L(s+1,t—1) = I(s, t) — [[(s + t)/T(s + 1)T(¢t — D]’(1 — 2)".

This relationship enables us to conclude that as y increases one unit, the terms
L(y + 1, (n/v) — y + 1) and Is(y + 2, (n/v) — y) decrease. Hence the
last two terms on the right-hand side of (5.2) decrease. Furthermore the de-
crease in the first term on the right-hand side of (5.2), which is v/n, outweighs
the maximum increase of the second term which is v/(n + 7). Therefore v(y)
does decrease as y increases and the lemma is proved.

LeMMmA 5.2. Given v, 0 < v < 1 and the function v(y) of (5.1), suppose k, is an
integer, 1 < k, < n. For a given value of », 0 = v = 1, let G,’(y) denote the
procedure of Theorem 5.1 with these given values of v and v. Then given any pair
of numbers, v, v2 say, where 0 < v; < v = 1, G,"*(y) is not better than G,*(y),
nor 1s G,"*(y) better than G, (y).

Proor. Since G,"*(y) and G,*(y) agree for every y except y = ky, the dif-
ference in their risks is

(6.3) (6, G (¥) — o(6, G (y)) = ()61 — )"
A[(vky — 6)*/6(1 — 6)] + M(1 — x(8)) — 0x(8)/(1 — 6)} (v — »).

Now for 6 ¢ I, (5.3) < O indicating that @, (y) is better than G,"*(y) for all
0el.1f0 21, thatis6 > 6y, then (5.3) > 0, for at least all 8 > vk,/n. Hence, on
these values of 8, G,”*(y) is better than G, (y). Therefore, neither procedure can
be better than the other for every 6 and the proof of the lemma is complete.
Proor oF THEOREM 5.1. Lemma 5.1 assures us that the procedures G,(y)
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are well defined. Now for a fixed 1, it is easy to verify that G,(y) is a Bayes
solution with respect to the a prior: distribution

dty(8) = (nx + 1)(1 — 6)™ dp

where A = (1 — v)/v. That is, the procedures G,’(y), 0 < » < 1, are the only
Bayes solution with respect to £,(8). This fact, and Lemma 5.2 insure that each
G, (y) is admissible. This completes the proof of the theorem.

If we consider the case where the losses are those of Table 2.1, with h(8) = 6,
k* = 0, instead of those of Table 5.1, a theorem analogous to Theorem 5.1 could
be proved. The proof for 0 < v < 1 would be essentially the same as the proof of
Theorem 5.1. For ¥ = 1 however, it is not true that G;(y) is a Bayes solution and
a limiting argument is necessary to prove admissibility. The limiting argument
that is used is one given by Karlin [9]. However, since this type of argument is

TABLE 5.2
Table of losses
b(y)
0 1
x(0)
0 0 [(@a — 0)%/6] + M
1 0 (a — 6)%/90

easier to apply to the binomial case than to the Poisson case, to which it is ap-
plied below, we omit further discussion of the binomial case.
For the Poisson distribution, that is

P(y,0)=e—00”/y!, 0<0<°°;y=0,1,2s""

consider the table of losses to be as given in Table 5.2. Now consider the pro-
cedures Gy(y) = (ay(y), ¢4(¥)), 0 < v = 1, where

a,(y) =0, e, (y) =0 ify <k,, andwithprobability (1 —»)ify =k, ,
a(y) =7y, ey(y)=1 ify>k,, andwithprobability »ify = k, ;

for each given v, » can take on every value between zero and one; k., is the integer
greater than or equal to one for which w(y) = 0, if such an integer exists, other-
wise k, is any non-integral number, such that 0 < k, < o, and such that
w([k,]) > 0 and w([k,] + 1) < 0; and

w(y) = —yylexp (—0/v)(1 + 6o/v + 66°/2+°
(54) 4 -+ 6T/ (y + 1Y)
+ M[1 — exp (—6/7)(1 + 6/v + 6°/2" + --- + 6'/y")],

fory =0,1,2, ---. Now we can state
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TaEOREM 5.2. The procedures G,(y) are admissible.

For 0 < ¥ < 1 the proof of Theorem 5.2 follows the same line of reasoning as
the proof of Theorem 5.1. In this case G,(y) are Bayes solutions with respect to
dt, = N Mdp, for N = (1 — v)/v. We omit the details for the cases where
0 < v < 1. For v = 1, we need the following lemmas.

LeEmMMA 5.3. Suppose a procedure t(y) = (a(y), ¢(y)) is such that

lim inf,.. a’(y)e(y) < .

Then the risk for t(y) vs unbounded.
Proor. Let Y™* be an infinite set of points on which a(y)e(y) < K, for some
K = 0. Clearly such a K exists. Now for 8 > 6,,

p(6, 1)) = 2imo {[(a(y) — 8)"/0ke(y) + 6(1 — o(y))}e'6"/y!
(5.5) 2 2 (& (y)e(y)/0 — 2a(y)e(y))e "6 /yl + 02 ree 6" /y!
=60 pee6"/y! — 2K.
But since Y* is an infinite set, within ¥* there is a monotone increasing sequence

of integers, say y. , with y, — «, as n — . Therefore, if we let 6 tend to
through the sequence 6, = y,, we see from (5.5) that

(5.6) p(6n, t(y)) = [6ae "0./6,1] — 2K.

Using Stirling’s formula, we see that as n — « the right-hand side of (5.6) tends
to (0,/27) — 2K, which tends to «. Hence p(6, {(y)) is unbounded and the
lemma is proved.

LeMMma 5.4. For any procedure t(y) = (a(y), ¢(y)) of bounded risk such that
o(y) < 1 on an infinite set, there exists a procedure t*(y) = (a*(y), o (y)) such
that ¢*(y) < 1 on at most a finite set and t*(y) s better than t(y).

Proor. We show that there exists an integer §, 1 < § < o, such that if

t*(y)':t(y) for y=071727"'7g_1

and

t*(y) = (a(¥)e(y), 1) for y 2§

then t*(y) is better than ¢(y).
First notice that for any § = 1, when 6 > 6y, t*(y) is as good as t(y), for

p(6, 1)) — (6, *(1)) = s {l(aly) — 6)%(y)/6]
+6(1 — o(y)) — (aly)e(y) — 6)*/6}66"/y),

and the term in brackets is always non-negative. For all 6 < 6,, we seek a §
such that

(5.7) p(6, Uy)) — 06, () = g5 {[[(ay) — 6)*/6] + Mle(y)
~ [[(a(y)e(y) — 6)*/6] + MI}e6"/y! > 0.



1204 ARTHUR COHEN

Rewriting (5.7) we seek a § such that for all § < 6,
(58) 227 (We(y)(1 — o)) 0/yt 2 225 (1 — o(y)) (6" + Mb)e’6"/yL.
But from Lemma 5.3 and the hypothesis of this lemma we know that

lim infy.. @*(y)e(y) = =,
which implies that there exists a sufficiently large integer y, say #, such that
(5.9) a(y)e(y) > 6 + Mo, > 6" + Mo,

for every y = 4 and every 8 < 6. Now (5.9) implies (5.8) holds and thus the
proof of the lemma is complete.

Proor or THEOREM 5.2. Suppose G1(y) is not admissible. Then there exists a
procedure H(y) = (h(y), ¢x(y)) which is better, that is

(5.10) p(8, Gi(y)) — p(6, H(y)) 2 0

for every 6, with strict inequality for some 6. Now let us partition the sample
space into the following disjoint sets,

Y = (pay) = Law(y) =1} Y9 = {y:eu(y) = 0, eu(y) = 0}
Y' = {yia(y) = 1, en(y) < 1 Y™ = {yiei(y) = 0, en(y) > O}.

(We assume k; is not an integer, since if it is, the proof is one step longer.) If
we write out the difference of the risk functions for the two procedures and use
(5.10) we are led to

2orw (h(y) — 9)%e 8 /yl £ 22 vy — h(y))(y — 0)e’¢/y!
(5.11) + 2ov+ {[[(y — 0)°/6] + M(1 — x(6)) — 6x(6)]
— a(I(h(y) — 6)*/6] + M1 — x(8)) — 6x(6)]}e’6"/y!
— 2 ([(R(y) — 0)°/6] + M(1 — x(6)) — 0x(8)len(y)e™6"/y!

Now consider the function ¥ (6) where dF(0) = df, let r, s be two reals numbers
such that 0 < r < s < «, and call the left-hand side of (5.11) T(#). If we then
integrate both sides of (5.11) with respect to 8 over the interval (r, s), and use
the same steps in Karlin [9], p. 413, we are led to

J1T(6) do < 2(sT(s))! + 2(rT(r))*
(612)  + [1 2+ {ll(y — 0)*/6] + M(1 — x(6)) — 6x(6)]
— a@)(h(y) — 0)°/6] + M1 — x(6)) — 0x(0)]}e™6"/y! do
— [1 220 [I(R(y) — 0)*/6] + M(1 — x(8)) — 6x(6)]en(y)e"6"/y! db.

Now fix r and notice that the last two expressions on the right-hand side of (5.12)
are bounded for every s. For Y is surely a finite set, it lies in the set 0 to [k4],
and Y must be a finite set by virtue of the fact that the risk function for Gy(y)
is bounded and Lemma 5.4. Since Y+ and Y~ are finite sets the last two terms
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on the right-hand side represent a finite sum of integrals, each of which is
bounded. Thus, for sufficiently large s we can find some constant K, such that,
by (5.12)

F(s) = [1T(0) do < K(sT(s))"
Again, if we follow Karlin [9], p. 413, we find that
(5.13) lim inf,,. (sT(s)) = 0.

Now consider Q(r) = f°,° T(6) db. By virtue of (5.12), (5.13) and following
Karlin again we are led to the conclusion that @(r) = 0, which implies T'(6) = 0,
which in turn implies h(y) = y for every y ¢ Y. This means that if H(y) is
better than G(y) we must have
0 = 25+ [T {ll(y — 0)%/6] + M(1 — x(8)) — 0x(6)]
(5.14) — a@)[(h(y) — 6)°/6] + M(1 — x(8)) — 0x(6)]}e”’¢"/y! db
— 2[5 (h(y) — 6)*/6] + M(1 — x(8)) — 6x(8)]
~on(y)e 0" /y! db.
But now note that Y7 is contained in the sets of points for which w(y) in (5.4) is
negative and Y~ is contained in the sets of points for which w(y) is positive.
Furthermore, w(y) has the same sign as
(515) [Tty — 0)*/6] + M(1 — x(6)) — 6x(6)le”’¢"/y! d8

and if h(y) replaces y in (5.15) the resulting integral is greater than (5.15) for
every y ¢ Y. But these facts contradict (5.14) unless Y+ and Y™ are empty.
Thus G(y) cannot be beaten by H(y) and we conclude G(y) is admissible. This
completes the proof of Theorem 5.2.

For the gamma distribution, that is

p(y, 0) = "¢ /(e — 1)6°, 0<6< o,y >0a>0,

consider the table of losses to be given in Table 5.3. Now consider the procedure
G(y) = (a(y), ¢(y)), where

a(y) =0, ¢(y) =0 fy <k
a(y) =y/a+1, o(y)=1 ifyzk,
TABLE 5.3
Table of losses
b(y)
0 1
x(6)
0 0 [(a — 0)%/0%] + M
1 1 (a — 6)2/62
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where k is the unique solution of the following equation,
—(1/(a + 1)) 4+ (M + 1)/a(a + 1)]f7, ¢ 0™ "/(a — 1)Idw = 0.

It is then possible to prove
TaEOREM 5.3. The procedure G(y) is admissible.
The proof is omitted.
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