CONDITIONAL EXPECTATION GIVEN A +-LATTICE AND APPLICATIONS
By H. D. Brunk

Unaversity of Missourt

1. Introduction. The applications discussed are applications of an extremizing
property of the conditional expectation given a o-lattice. It has been interesting
to the author to observe that a variety of problems of maximum likelihood
estimation of parameters, of functions, of probability densities, lead to a class
of extremum problems of which the conditional expectation given a o-lattice
furnishes the solution. By a o-lattice is understood a family of sets closed under
countable union and countable intersection, but not necessarily difference or
complement. In extending in a natural way to os-lattices [11] the concept of
conditional expectation given a o-field, one sacrifices a very useful property in-
deed, linearity. On the other hand, much carries over; in particular, some
theorems of martingale type are proved in Sections 2 and 3.

2. Projection on a closed convex set in a complete inner product space. Let
H be a complete inner product space: a complete metric space with distance
between elements X, Y given by |X — Y|, where |Z| =5 (Z, Z)* for Z ¢ H,
and where (-, -) denotes the inner product. If Y ¢ H, Z ¢ H, then seg YZ will
denote the segment joining ¥ and Z; ie., seg YZ =, {W:WeH,3a 50 =
aZ<land W = (1 — &)Y + aZ}. A subset A of H will be termed closed if it is
closed in the topology of the metric above. The set A isconvexif Y ¢ A, Z ¢ A =
seg YZ C A.

The following existence theorem is well known.

THEOREM 2.1. Let A be a closed convex set in H, and let X € H. Then there is a
unique closest point Y of A to X. For let { Y.} be a sequence of points of A whose
distances from X approach the infimum of such distances, and set U, =Y, — X.
From the fact that (Y, + Y..)/2 ¢ A for all n and m and from the equation

1Us = Ual®* = 20|UI* + |Uall®) — [Us + Ual?
it follows that {Y,} is Cauchy and hence has a limit ¥ ¢ A. Uniqueness also fol-
lows immediately from the convexity of A and the identity
I¥s + Ya)/2 = XIF = (Y2 = XIF + [V — XIP)/2 = V2 = Yalf/4

The notation P(X | A) will be used for the closest point of a closed convex set A

to the point X.
TueoreM 2.2. If X ¢ H and of A 1is a closed convex subset of H, then

Y = P(X | A) if and only if
(2.1) (X =Y, Y —2) 20 foral ZcA.
Proor. This is immediate from Theorem 2:1 and the observation that if
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1340 H. D. BRUNK

U eH,V eH, then Y is the closest point of seg UV to X if and only if (X — Y,
Y — Z) =z 0 for all Zeseg UV.

CoroLLARY 2.1. If X & H and if A s a closed convex subset of H then the element
Yof Ais P(X|A) if and only if
(2.2) IX = ZI" z X — Y| + |Y - Z|"

TuaEOREM 2.3. Projection on a closed convex set is a continuous, indeed, a distance
reducing, operator. That is, if X; e H, 1 = 1, 2, if A 4s a closed convex subset of
H,and if Vi = P(X:|A),7 = 1,2, then |[Y: — V4| £ || X: — X4

Proor. For by Theorem 2.2, (X; — Y1, Y1 — Yz) 2 0 and (X» — Y,
Y, — Y1) = 0. Then
X — XafP = [|Xe — Yo+ Vo — Vi 4+ Vi — X

=X — Yot Yi— Xa|" + V2 — Y1||2 +2(Xy—Y,,Y:— Y1)
+2(X; = Y1,Y:1—7)
2 [|Y: — Vi

(This simple proof was suggested by D. L. Hanson.)
CoROLLARY 2.2. If 0 ¢ A then ||P(X | A)| = | X]|.
Asubset Aof Hisaconeif Xedandk = 0= kX ¢ A.
CoROLLARY 2.3. If X e H and if A is a closed convex cone in H, then ¥ =

P(X | A) if and only f

(2.3) (X-Y,Y)=0
and
(2.4) (X —-Y,Z) 20 forall ZceA.

This follows from Theorem 2.2 on replacing Z by kY; first, with 0 < k < 1,
then with & > 1.

The following is a mean-square convergence theorem of martingale type:
one might call a sequence {X,, A,} a martingale if, for all n, A, is a closed con-
vex subset of H, X, e H, A, C A,1,and for k = 0, X, = P(Xuy1 | 4n).

TuroreM 2.4. Let {A,}, n = 0, £1, 2, --- , be a two-way sequence of closed
convex sets in H such that A, C A, n = 0, £1, £2, --- . Suppose {X.} is a
bounded sequence, ||X.|| < M for some positive constant M, n = 0, 1, +2,

-, of elements of H such that X, = P(Xn4x | An),n =0, =1, £2, --- k= 0.
Then liMys—o Xo = X—w and lim,., X, = X, exist, X, = P(Xeo|A4sn),n = 0,
+1, +2, -+, and X_ = P(X.| N+dr), for all n.

Proor. Suppose {X,}, n = 0, 1, 2, -- -, is not a Cauchy sequence. Then
there exist ¢ > 0 and pairs of integers ny < n' < mg < my < --- such that
| Xn;s — Xyl 2 65 =1,2, -+ . Since Xu; € Ay;r and Xy = P(Xa;,, | 4nj),
we have from Corollary 2.1 that || Xa,,, — Xu,|’ = [|Xa; — X, = €.

Using induction with Corollary 2.1, we have



CONDITIONAL EXPECTATION GIVEN A o-LATTICE 1341

4M2 g ”X”r+! - X”‘1”2 -—2— Z"';-l ”Xni+1 - X"6”2 g—

a contradiction for sufficiently large r. Thus {X,},n = 0,1, 2, - -+, is Cauchy,
and similarly {X,},n = 0, —1, —2, - - - , is Cauchy, so that lim,. o, X, = X_ -
and lim,., X, = X, exist. From the validity for fixed k and Z ¢ 4y of | X, — Z |{2
=z | X, — X’ + || X — Z|* for all n = k we have

1Xo — ZIP = X0 — Xill* + 11 Xe — 2]

sothat Xy = P(X, | Ai), k=0, £1, £2, .-+ . Also | X, — Z|> = || X, — X_o|
+ || X_w — Z|* for all n and for all Z & (}——wds , 50 that X_., = P(X. | eds).
This completes the proof of Theorem 2.4.

A conclusion of Theorem 2.4 is that every bounded martingale is of the form
{P(X | A,)} for some X ¢ H. On the other hand, if X, = P(X | 4,) for all n,
it does not follow that X, = P(X. | A») for £ = 0, so that Theorem 2.5 below
is more general.

TueorREM 2.5. Let {A.}, n = 0, =1, £2, -- -, be a two-way sequence of closed
convex sets in H such that A, C Apy1,n = 0, £1, £2, -+ . Let X ¢ H and set
X, = P(X|4.),n = 0, £1, £2, --- . Suppose there are an integer N and a

positive number M such that | X,|| < M for n £ N. Then limpse X» = X, and
My, o X» = X_o exist. Also Xoo = P(X | Ay) and X o = P(X.| A_s) for
all n, where A, is the closure of Upmo Az and A_y = i=—ws .

The theorem applies, of course, to one-way sequences, using the device of
setting all sets with sufficiently large index or sufficiently small index equal to
each other. We remark that for one-way expanding sequences of sets the bounded-
ness condition is no restriction.

Proor. From Corollary 2.1 we have

X — X’ 2 IX — Xulf + || Xo — Xa® for n = m.

Thus {||X — X.l||} is non-increasing as n increases. Further, || X,|| £ M forn < N,
so that || X — X,| < || X|| + M forn < N. It follows that W, = lima.e || X — X.]|
and W_, = lim,. o [|X — X,| exist as non-negative numbers. From the in-
equality || X, — X.|’ = |X — X.|’ — |X — X.|’ for n = m it follows that the
sequences {X,}n-o and {X.}azo are both Cauchy, and the limits X., and X_
exist.

Further, if Z ¢ Uz-04:, then there is an integer m such that Z ¢ A,, so that
IX = Z|" 2 | X — X + || Xa — Z|*for n = m. Thus | X — Z|" 2 X — X’
+ | Xo — Z||* for Z £ Uz=0A; and hence for Z ¢ A., . Also X, ¢ Ao, , so that it is
identified by Corollary 2.1 with P(X | 4,).

Finally, if ZeA_w then for all n, | X — Z|* = ||X - X + |1X. — 2|,
hence |[X — Z|* = [|X — X_o|® + ||X_°° — Z[| Since X_., € A_ we have
again X_, = P(X | 4A_).

CoROLLARY 2.4. Under the hypotheses of Theorem 2.5, if in addition U, — X
asn — o then P(U,|4,) > Xoasn — . If V, > X asn —> — = then
P(V.|A,) > X sasn — — o,
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Proor. Set U, = P(U,|A4.), V. = P(V,| A,). Then [[U, " — X.| =
|Ux" — Xa|| + |Xs — Xol. But by Theorem 2.3, |U,' — X.| < [|[Ua — Xu,
and the first conclus1on follows. The second follows on replacing U, and U,’
by V. and V. respectively.

We exhibit now some additional properties of projection on closed convex
cones, consequent upon Corollary 2.3. We note that while P(- | A) is not neces-
sarily linear, for a closed convex cone A it is positively homogeneous:

THEOREM 2.6. If A is a closed convex cone, if k = 0,and if X ¢ H then P(kX | A)
= kP(X | A).

If A is a closed convex cone, we denote by —A the set of its negatives:
—A4 =5 {X: —X ¢ A}. One verifies immediately also the following.

THEOREM 2.7. If A is a closed convex cone, and if X ¢ H, then P(—X | —A) =
—P(X|A).

The following theorem and corollaries of this section generalize known prop-
erties of projection on (linear) subspaces; cf. e.g. [1], Section 33, which contains
also the restriction of Theorem 2.5 to projections on subspaces.

TrEOREM 2.8. If A; s a closed convex cone, v = 1,2,if Ay C As,and if X e H
then

(P(X | A:) — P(X | Ay), X)
2 |[P(X | A42) — P(X | A0

Proor. Set Y = P(X | A2), Y1 = P(X | A;). The equation ||Ye|* — || Y4
= (Y, — Y, X) is immediate from Corollary 2.3. For the inequality, we have

(Yo— Y1,X) = (Yo=Y, X = YV))+ (Ya— Y,V = Yy) + (Yo— Y1, V)
= — (Y1, X = Ya) 4+ |[Yo— Vit + (Yo — Y1, V)
= [|Va = Y| — 2(X — Ys, 1),

since (Y1, Y;) = (X, Y1). From Corollary 2.3 we have (X — Y2, Y1) £ 0,

so that (Y, — Yy, X) = ||Y: — V4|
COROLLARY 2.5. If A; 18 a closed convex cone, 1 = 1, 2, and if Ay C A, then

(P(X | As), X) 2 (P(X | A1), X), forall XeH.

This property may be expressed by the notation P(- | A2) = P(- | 41).
CoROLLARY 2.6. If A 1is a closed convex cone and if X ¢ H then (P(X | A), X)
= |IXP°
" This property may be expressed as follows: ||P(- | A|| £ 1, where ||P(: | A) ||
= Supeerer [(P(X | 4), X)/(X, X)]. Since (P(X|4), X) = [P(X|4)I
Corollary 2.6 is a restatement for closed convex cones of Corollary 2.2.

IP(X | Aal* — [IP(X | 4y

3. Conditional expectation given a s-lattice. Let (2, @, ) be a measure space:
Q an abstract set, @ a o-field of subsets of 2, and p a measure on @. We shall use
the term random variable for an equivalence class of @-measurable functions,
two such representing the same random variable if they differ on a set of measure
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0. Let L, denote the class of integrable random variables and L, the class of
random variables whose squares are integrable. Let 91 be a sub-o-lattice of @:
91 is closed under countable union and countable intersection, but not necessarily
under complementation. Set M° = {A: A° ¢ M}. Let R(9M) denote the class of
random variables X such that [X > a] € 97 for all real a. (Here {X > a] denotes
the equivalence class of sets in @ differing by sets of measure 0 from the set on
which a function representing X is greater than a.) We note that for such X also
[X = a] e 91 for all real @, and that X e R(OM) & —X e R(M°) & [X < a] e W
for all real a. We set L;(9M) = R(M)n L;, 2 = 1,2;then L; = L;(Q),72 =1, 2,
and the class of all random variables is R(@). If M < R(Q) we write —M =
{X: —X £ M}, and observe that R(9°) = —R(IM). '

It is shown in [11] that a family F of random variables is R(9) for some sub-
o-lattice 9N of @ which contains & and © if and only if

(3.1) F is a conditional ¢-lattice;

ie, X eR(@),X,eF, X, < Xforn=1,2,---,imply VV.X. e F;and X ¢ R(@),
XoeF, X, 2 Xforn =1,2, -+ imply N\nXneF,

(3.2) each constant, random variable is in F;

(3.3) F is a convex cone.

LemMa 3.1. Let 9N be a sub-o-lattice of Q. If ¢ is a nondecreasing function on the
reals, and if Z ¢ R(IM), then ¢(Z) ¢ R(M). If ¢ is nonincreasing then ¢(Z) ¢
RO). If W =2 0, WeR(M), ZeR(IM), then WZ e R(M). If W =0,
W e R(O°), Z ¢ R(M), then WZ & R(9N°).

The first two statements are immediate. If W > 0, the next follows from the
identity, for real a:

WZ > a] = ulW > 1]lZ > a/7],

the union being extended over positive rationals r. For W = 0 and for positive
integers n, we set W, = W \/ (1/n), and observe that WZ = A.W.(Z \/ 0) +
AaWa(Z /N 0) e R(M) by (3.1) and (3.3). The last statement, for W < 0,
follows from [WZ > a] = u[W > —r][Z < —a/r], the union again being ex-
tended over positive rationals r; the extension for W < 0 is similar to that above
for W = 0.

It is also shown in [11] that M = Ly(9N) for some sub-g-lattice M of @ con-
taining &f and © if and only if

(3.4) M is a lattice closed in L; ;

(3.5) XeM = Lyn {I([X > a]):aisreal} € M
and Ly n {I([X < a]):aisreal} C —M;

(3.6) M is a convex cone.

If u(2) < o« then (3.5) may be replaced by:
(3.7) each constant random variable is in M.



1344 H. D. BRUNK

The space L; becomes a complete inner product space (Hilbert space, if
infinite dimensional) with the introduction of the inner product (X, ¥) =
f XY dyu . Thus the results of Section 2 apply. If M = L,(91), we shall denote by
E(X | o) the closest point of M to the random variable X ¢ L, ; i.e., E(X | ov)
= P(X|M).

As applied in this context, Corollary 2.3 states that ¥ = E(X | ) if and
only if

(3.8) ~ [(X=Y)Ydu=0
and
(3.9) J(X—Y)Zdu <0 forall ZeLy(3m).

ReMark 3.1. It was observed above that if 4(2) < o then Ly(91) contains
the constant random variables; (3.9) then implies f (X — Y)du = 0. In case
(2, @, u) is a probability space, (3.8) and (3.9) may be interpreted as follows:

If V(X) < =, then Y = E(X|on) if and only if ¥ is 9l-measurable, V(Y)
< », BE(Y) = E(X),cov (X,Y) = V(Y) and cov (X, Z) < cov (Y, Z) for
all 9-measurable Z such that V(Z) < «;here V(-) denotes variance. It follows
that the variance of Y is not greater than that of X, and that for every Z ¢ Ly(910),
the correlation coeflicient of X and Z is not greater than that of ¥ and Z.

Also, a direct interpretation of Corollary 2.1 in the case of a probability space
is:
Y = E(X|on) if and only if Y eLy(9M) and V(X — Z) = V(X — Y)
+ V(Y — Z) for all Z ¢ Ly(9n).

ReEMaRrk 3.2. E(—X |9°) = —E(X|9m). (Cf. Theorem 2.7.)

Let ® denote the class of Borel sets of reals which exclude the origin. The
following theorem is given in [11].

THEOREM 3.1. If MM 4s a o-lattice, M C @, and if X ¢ Ly, then Y = E(X | o)
18 the unique random variable in Ly(9M) satisfying

(3.10) [XZdp < [YZdu forall Z & Lo(om)

and

(3.11) BeY(®), uB) < o= [Xdu= [5Ydp
If also X ¢ Ly then Y ¢ Ly and

(3.12) BeY (®)= [ Xdu = 57 dp.

If w(2) < o, ® may be replaced by ®, the class of all Borel sets of reals.

That the condition u(B) < « may not in general be deleted from (3.11) is
clear, for the integrals need not then exist. That ® may not be replaced by & in
(3.11) and (3.12), even in the o-finite case, is clear from the following example.
Set @ = [0, 1], u{0}) = 1, u(A) = [, dt/t for Borel A (0, 1]. Let 9% denote the
class of intervals (a, 1] or [a, 1] with 0 < a < 1. Then R(91) is the class of
nondecreasing functions on [0, 1], and each function f & L,(90) satisfies f(0) < 0,
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since f & Lo(9M) = f(z) | Oasx | 0. Let X(0) = 1, X(¢) = ton (0, 1], Y =
E(X |9). Then Y(¢t) = X(t) for t > 0, and Y(0) = 0; thus f[y,,m X du #
f[y=ol Y du even though ulY = 0] < .

CoroLLARY 3.1. Under the hypotheses of Theorem 3.1,

(3.13) [ Xo(¥) du = [ Yo(Y) du,

if ¢ is a real valued function on the reals such that

(3.14) &(Y)eL: and ¢(0) = 0;

or if

(3.15) XeLy, ¢1sbounded, and ¢(0) = 0;
or if

(3.16) p(Q) < ©o and ¢(Y)elL,.

Proor. The validity of (3.13) under hypothesis (3.14), (3.15) or (3.16)
follows from the usual approximation by 31mp1e functions from (3.11) or (3 12)
or the last statement of Theorem 3.1.

COROLLARY 3.2. If A e ", Be Y (&' ) n M, u(B) < o, then [45 X du =
f a Y dIJ-

Proor. JasXdp = [ X du — [4ea X dp

g fB Ydﬂ. - fACB Ydu,

since A°B & 9 ; hence the conclusion.

Corollary 3.2 may be used with a method of Johansen and Karush [16] to
. obtain almost sure convergence of a sequence {X,}, where X, = E(X | 9,),
and where {91,} is an expanding sequence of o-lattices. For reals a and b with
a < b, let- A denote the event that infinitely many X, are less than @, and B
the event that infinitely many are greater than b. One uses Corollary 3.2 to
show that bu(AB) = [45 X du < au(AB), whence u(AB) = 0. To obtain the
left inequality, define A, = Uh_[X. < a], B.: = UL_[X. < b], for positive
integers ¢ £ r < s < ¢. Then Ay, By = Au[Xs > b] + 44X £ b] n [Xo1 > b]
+ o+ AeNiDIX. £ 0] 0 [X, > bl But Ay i [Xa £ bl e’ for s <
y < t, while [X, > b] e 9, since X, = E(X | 9,). Set B, = AnNies[X, = b]
n[X, > bl. Then [, X du = [5, X, du = bu(E,) by Corollary 3.2. Addition of
these inequalities and passage to the limit yields bu(AB) < [ .5 X du. Proof of
the inequality on the right is similar.

The application here of Corollary 3.2 actually requires b > 0 so that (b, © ) ¢ ®’
and p[X, > b] < . This would suffice if, for example, X > 0, hence X, > 0
for all . Also, the conclusion of Corollary 3.2 holds with & replaced by ® if
p(Q) < «, so that the method applies for totally finite measure spaces.

CoroLLARY 33. If 0 S ZecR(M) and f X < Zthen Y = E(X|M) £ Z
If0zZeR(M)and if X = Z then Y = E(X|IM) = Z.

Proor. Suppose there is a positive number ¢ such that u[Z < ¢ < Y] > 0.
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Then culZ < ¢ < Y] > f[z<c1n[y>cl Xdp = f[z<c]n[y>c] Y du by Corollary 3.2.
But f[z<c<y] Y du > culZ < ¢ < Y], a contradiction. It follows that ¥ =< Z.
Replacing in the first statement X by — X, Z by —Z, 91t by 9n° and using Remark
3.2 yields the second statement.

The observation that every constant is in R(910) yields the following corollary:

COROLLARY 3.4. If k is a nonnegative constant and if X < kthen E(X | 9n) < k.
If k is a nonnegative constant and if X = —k then E(X |9M) = — k.

(This corollary is incorrectly stated as part of the conclusion of Theorem 1
in [11].)

The applications discussed in Section 4 are applications of an extremizing
property of conditional expectation given a o-lattice (cf. [8] and [10]), which we
now develop. Let ® be a convex function with domain dom ®, ¢ any determina-
tion of ®', and define

(3.17) As(z, 2) = ®(z) — ®(2) — (x — 2)¢(2) = 0.

We remark that As has an obvious geometrical interpretation involving the
tangent to the graph of ® at z, and that As is unchanged by the addition of a linear
function to ®. In particular, if 0 ¢ dom ®, one can thus arrange that ®(0) =
#(0) = 0 without changing As . One verifies that for arbitrary z, y, 2 in dom ®,

(3.18) As(z, 2) = As(z, y) + As(y, 2) + (z — PIe(y) — ¢(2)].

TueorEM 3.2. If Xels, ¥ = E(X|M), ZeLx(9M), ® convex, ®(X),
®(Y),®(Z)eLr, ¢(Y), ¢(Z) ¢ Lz, and if X(Q), Y(Q), Z(Q) are all in dom &,
then

[ 8e(X, Z) du = [ 8a(X, V) du + [ 2a(Y, Z) dp.

Proor. If 0 e dom ®, we may, if necessary, add a linear function to ® so as to
achieve ®(0) = ¢(0) = 0, and conclude from Corollary 3.1 that

J(X = YV)$(Y) du = 0.

If 0 ¢ dom ®, then Y is never zero, and [ (X — Y)¢(Y) du = 0 follows again
from Corollary 3.1 (in applying Corollary 3.1, we extend ¢ to the reals by setting
¢ = 0 outside dom ®). Further, since ¢ is nondecreasing on dom ®, we have
#(Z) € R(IM), hence ¢(Z) & Lo(9M), whence [ (X — Y)¢(Z) du < 0. The con-
clusion of the theorem now follows from (3.18).

Since As = 0, we conclude that

[ 2s(X, Y)du < [ As(X, Z) dp for all Z & Ly(91) such that ¢(Z) & Ly ;

ie., Y = E(X|9M) furnishes the minimum value to f ®(X) — ®(Z)

— (X — Z)¢(Z)] dp. Since, further, [ (X — Y)o(Y) du = 0, Y =

E(X | 9) furnishes the maximum value to f<I>(Z ) du subject to the condi-

tions Z & Lo(9M), ¢(Z) e Lz, [ (X — Z)$(Z) du = O.

REMARK 3.3. From the inequality ®(X) = ®(Y) + (X — Y)¢(Y), it follows
on integrating both members that f(b(X )dp = [ ®(Y) du, if any of the con-
ditions (3.14)—(3.16) is satisfied. On setting ®(x) = 2”/p, we find that E(- | o)
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reduces not only the L, norm, but also the L, norm (of elements of Ly n L, ,
p > 1).

4. Applications. The applications to be mentioned are to problems of maximum
likelihood estimation in which the conditional expectation given a g-lattice
furnishes the solution of the extremum problem involved. Those problems which
have come to the author’s attention fall broadly into two similar categories. In
the first, an unknown function 6(-) on a given set @ is to be estimated. While
unknown, @ is known to be measurable with respect to a given o-lattice of sub-
sets of €. Observations are made on random variables whose joint distribution
depends on 6, and the maximum likelihood estimate of 8 is required.

An example of a problem of this kind is discussed by van Eeden [23]. Let @
be a finite set of reals, {w1, -, w}, With w3 < w2 < -+ < wy, representing,
for example, doses of a drug or vitamin. For ¢ = 1,2, - -, k, let n; subjects be
treated with dose w; , and let 8(w;) denote the probability of a specified response
from a subject treated with dose n;. Let S; denote the number of responses
among the n; subjects treated; S; has the binomial distribution with parameters
ni, 8(w;). The unknown function 6 is assumed nondecreasing; i.e., measurable
with respect to the o-lattice consisting of the sets {wi}, {wr-1, wi}, -,
{wi, -+, w}. It was a similar problem which led to the work reported in [2].
Van Eeden [21], [22] treated the problem independently and more generally; in
particular, more general order restrictions were considered.

Ewing, Utz, and the author, and, independently, W. T. Reid, later recognized
[8], [7], [9] that the same solution is obtained for distributions other than the
binomial. Let again @ be a given finite set (not necessarily of real numbers)
{w1, -+, o}, and M a given o-lattice of subsets of Q. Let there be given also
a one parameter exponential family of distributions parametrized by the mean
6. Let %; denote the sample mean of a random sample of size n; from the distribu-
tion of the family having mean 6(w;). Let 8 be known to be 9lt-measurable. Let
be the convex function conjugate to the log moment generating function of a
member of the family. Define X(-) on @ by X(w;) = &; and u by pf{w} = n,;
and set 0; = 0(w:), 7 = 1, 2, ---, k. Then the maximum likelihood estimate
6(-), subject to IM-measurability, minimizes, in R(9M) = Ly(9M), the sum [9]

2o nd®(E) — (0:) — (% — 0:)9(0:)] = [ [B(X) — ®(6) — (X — 0)¢(0)] dp.
As was shown in Section 3, the solution is § = E(X | ).

If the populations under observation have Poisson distributions with means
0; = 0(w:),t=1,2, ---, k, then ®(z) = z log z (plus a linear function). The
an-measurable maximum likelihood estimate 4( - ) is the solution of the extremum
problem which for present purposes we shall call the Poisson extremum problem:

to maximize, in the class of 9-measurable functions
(P ) 0( : ) on @,

Z?_—_.l [#: log 6; + (& — 0;)n: = f[X log 6 + X — 6] dp,
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or equivalently (cf. end of Section 3)
to maximize, in the class of 9-measurable functions
(P) 6(+) on @,
21;1 (Z; log 0:)n; given Z (Zs — 0:)n: = 0.
If the populations being observed have gamma distributions with fixed param-
eter @ and means 6; = 0(w:), s = 1,2, -+, k, then ®(x) = —a log z (plus a
linear function). The 9N-measurable maximum likelihood estimate 6(-) is the

solution of the extremum problem which for present purposes we call the gamma
extremum problem:

to minimize, in the class of 9-measurable functions
(@) 6 on Q,
>k llog 6; + (£ — 6:)/6in: = [[log 6 + (X — 6)/6] dp.

If the populations are normal, variances and sample sizes combine in a more
general estimation problem: let the populations be normal with prescribed
variances ¢ and unknown means 8;,% = 1, 2, - -+, k. One may then set ®(z)
= 1%/2. The 9M-measurable maximum likelihood estimate §( - ) is the solution of
the extremum problem which we shall here refer to as the normal extremum
problem:

to minimize, in the class of 9M-measurable functions

(N) 6 on Q,
ZIZ=1 (& — 0;)’nifoi’ = f (X — 6)" du,

where in this case p{w:} = ni/os.

It is interesting that each of the various problems of maximum likelihood
estimation discussed below leads to one of these three extremum problems met in
the very special context described above.

We emphasize that the solution to each of these extremum problems is
E(X | 9n). Methods of calculating E(X |9n) are discussed in [8], [7], [21],
and [22] (though in these papers different notation and terminology are used).
For the special case in which 91-measurability imposes a linear (simple) order-

onf;, -+, 0, another method of calculating E(X | 91) is given in [2] (seealso
[14]). For the case in which 91-measurability implies a partial order among
6y, -+, 0 in which each has at most one predecessor, [20] gives still another

method of calculation.

Bartholomew ([3], [4], [5]) deals with the problem mentioned above of sam-
pling from normal populations with given standard deviations and unknown but
ordered means. Included in his work are discussions of the likelihood ratio test
against trend and a comparison of its power with that of other tests. Chacko
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[12] carries farther certain aspects of Bartholomew’s work. He also introduces an
_ interesting test against trend, using the same estimate § = E(X | 1), but applied
to ranks in sampling from arbitrary distributions.

Lombard [18] uses § = E(X |91) as a least-squares estimate (‘“normal”
extremum problem) in an application in which Q is a planar array: w; = (x:, ys)
are points-in the cartesian plane.

Instances of the “gamma’ extremum problem in problems of the first type
appear in work of Herbach [15] and Thompson [20]. Herbach finds the maximum
likelihood estimators of mean and variance for the balanced one-way classifica-
tion in the analysis of variance, subject to the condition that estimates of variance
be non-negative. Dealing also with multiple classification, Thompson determines
“restricted” maximum likelihood estimates of variances, determined from joint
densities of translation-invariant sufficient statistics, subject again to the re-
quirement that the estimates be non-negative. He develops also an algorithm
for use when the order relations among the 6; can be described by means of a
“rooted tree”: each 6; has at most one immediate predecessor.

The “Poisson’ extremum problem arises in the following problem of the first
type, studied by Boswell [6]. Let X; be a process of Poisson type (independent
increments), with nondecreasing mean rate of occurrence or intensity A(t);
ie., BEX, = f ¢ M(7) dr is convex. The problem is to determine the maximum
likelihood estimate of A from observation of X, .

In each of the problems of the second category, a measure space (7, ®, ») is
prescribed. Observations. are made on T according to an unknown density f
(with respect to ») which is to be estimated. Each of the examples which has come
to the author’s attention leads to a ‘‘Poisson” extremum problem.

Grenander [14] considers maximum likelihood estimation of a nonincreasing
density on the interval [a, « ), where a is given. Here T = [a, » ), ® is the class
of Borel subsets of T, and » is Lebesgue measure.

Grenander discusses also maximum likelihood estimation of a nondecreasing
mortality intensity. In making a further study of this problem, Marshall and
Proschan [19] describe it as maximum likelihood estimation of a distribution
with increasing failure rate: r(z) = f(x)/[1 — F(«)] is nondecreasing, where
F(z) = f o f(t) di. Here T is the set of real numbers, and ® and » are again
Borel sets and Lebesgue measure respectively. The problem of maximum likeli-
hood estimation here leads again to the ‘“Poisson” extremum problem, in which
the unknown 6; are replaced by the unknown values r; of r(z) at the observed
order statistics. Marshall and Proschan obtain strong uniform consistency
theorems for maximum likelihood estimators of failure rate, density, and dis-
tribution function.

REFERENCES
[1] Axuaiezer, H. I. and Grazman, I. M. (1961). Theory of Linear Operators in Hilbert
Space, 1. Ungar, New York. (Translated from the Russian.)
[2] AYEr, Mir1aM, BRUNK, H. D., Ewing, G. M., REmp, W. T., and SILVERMAN, EDWARD
(1955). An empirical distribution function for sampling with incomplete infor-
mation. Ann. Math. Statist. 26 641-647.



1350 H. D. BRUNK

[3] BarTHOLOMEW, D. J. (1959). A test of homogeneity for ordered alternatives, I and II.
Biometrika 46 36-48, 329-335.

[4] BarTHOLOMEW, D. J. (1961). A test of homogeneity for means under restricted alterna-
tives. J. Roy. Statist. Soc. Ser. B 23 239-281.

[5] BarRTHOLOMEW, D. J. (1961). Ordered tests in the analysis of variance. Biometrika 48
325-332.

[6] BosweELL, MARLLYN (1965). Estimating and testing trend in a stochastic process of
Poisson type. Thesis, University of California, Riverside.

[7] Brunk, H. D. (1955). Maximum likelihood estimation of monotone parameters. Ann.
Math. Statist. 26 607-616.

[8] Brunk, H. D., EwiNg, G. M., and Uz, W. R. (1957). Minimizing integrals in certain
classes of monotone functions. Pacific J. Math. T 833-847.

[9] Brunk, H. D. (1958). On the estimation of parameters restricted by inequalities. Ann
Math. Statist. 29 437-454.

[10] Brunk, H. D. (1961). Best fit to a random variable by a random variable measurable
with respect to a o-lattice. Pacific J. Math. 11 785-802.

[11] Brunk, H. D. (1963). On an extension of the concept conditional expectation. Proc.
Amer. Math. Soc. 14 298-304.

[12] Cuacko, V. J. (1963). Testing homogeneity against ordered alternatives. Ann. Math.
Statist. 34 945-956.

[13] Crawrorp, G. B. and Saunpers, S. C. (1964). Nonparametric maximum likelihood
estimation. Boeing Document D1-82-0308.

[14] GrENANDER, ULF (1956). On the theory of mortality measurement, Part II. Skand.
Aktuarietidskr. 39 125-153.

[15] HErBACH, L. H. (1959). Properties of model II-type analysis of variance tests, A:
optimum nature of the F-test for model II in the balanced case. Ann. Math.
Statist. 29 939-959.

[16] JouaNSEN, S. and KarusH, J. (1963). On the semimartingale convergence theorem
(Abstract). Ann. Math. Statist. 34 1120.

[17] Lokve, MicHEL (1960). Probability Theory, (2nd ed.). Van Nostrand, New York.

[18] LomBArD, P. B. and Brunk, H. D. (1963). Evaluating the relation of juice composition
of mandarin oranges to percent unacceptance of a taste panel. Food Technology
17 113-115.

[19] MagrsHALL, ALBERT W. and ProscuaN, FraNk (1965). Maximum likelihood estimation
for distributions with monotone failure rate. Ann. Math. Statist. 36 69-77.

[20] TaompsoN, W. A., Jr. (1962). The problem of negative estimates of variance compo-
nents. Ann. Math. Statist. 33 273-289.

[21] VaN EEpEN, CoNsSTANCE (1956). Maximum likelihood estimation of ordered proba-
bilities. Indag. Math. 18 444-455.

[22] VAN EEpEN, CoNSTANCE (1957). Maximum likelihood estimation of partially or com-
pletely ordered parameters, I and II. Indag. Math. 19 128-136, 201-211.

[23] VaN EEpEN, CoNsTANCE (1960). On distribution-free bio-assay. Proc. Symp. Quanti-
tative Methods in Pharmacology, Leiden, 206-210.



