ON A CLASS OF PARTIALLY BALANCED INCOMPLETE BLOCK
DESIGNS

By S. S. SHRIKHANDE
Unaversity of Bombay

0. Summary. The purpose of this note is to show that the existence of any one
of a particular family of four partially balanced incomplete block designs (pbibd)
implies the existence of the remaining three designs. A sufficient condition for
the existence of this family is given and a nonexistence result is also obtained.

1. Introduction. Following the usual notation [2] let the parameters of an
m classes pbibd be denoted by v, b, 7, k, \;, n; and matrices P; = (pk), 4,7, k =
1,2, ---, m. Let N = (ni) be the usual v X b incidence matrix of the design
where n;; = 1 or 0 according as treatment ¢ occurs or does not occur in block ;.
The characteristic roots of NN’ together with their multiplicities have been
obtained in [5] for the cases m = 2, 8. Further the dual of a design with incidence
matrix N is a design having N for its incidence matrix.

For n > 4 a triangular association scheme T, for v = (%) treatments is de-
fined as follows [3]. The treatments are numbered 1, 2, - - - , () and are arranged
in a symmetric square array in which the main diagonal positions are left blank
(denoted by z) and the positions above the main diagonal are filled by the num-
bers 1, 2, ---, (%). Thus

x 1 2 3 4
1 z 5 6 7
(1.1) Te = |2 5 x 8 9
3 6 8 z 10
4 7 9 10 x

Two treatments in 7', are said to be 1-associates if they occur in the same row
or same column; otherwise they are 2-associates. It is then easy to verify that
m = 2(n — 2), pi1 = n — 2, pi; = 4. The question—when do the above values
of v, n1, pi1, i for a two classes association scheme imply that the association
scheme is T’»—has been considered by various authors [4], [6], [9]. It has been
shown [6] that if n # 8, then the above parameters imply that the association
scheme is actually T, , and for n = 8, there are exactly two other association
schemes which are possible besides T .

Following Bose [1], we define a partial geometry (r, k, ¢) as follows. We have
a system of undefined points and lines together with an incidence relation satis-
fying the following postulates.

P; . Any two points are incident with not more than one line.

P, . Bach point is incident with 7 lines.
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P, . Each line is incident with k points.

P, . If the point P is not incident with the line [, there pass through P exactly
¢t lines (¢ = 1) intersecting .

It is then known that an (r, k, t) is a pbibd with two associate classes with
parameters

v=Fk[(r—1)(k—1) 4 t]/t, b=rl(r—1)Fk—1) 4+ 8/t k,
(1.2) M =0, =1 m=(—=1(k=1)(k— )/,
pu=m+rt—1—rk—1), ph=(—1)(k—1t)k—t—1)/,
1<t<r, 1<t=<k

Conversely any pbibd with the above parameters is a partial geometry (r, k, ¢).
Further the dual of a partial geometry (r, k, ¢) is again a partial geometry
(r* k¥, ¢) with?® = k and k* = r, which therefore, is again a pbibd with param-
eters obtained from (1.2) by interchanging r and k. For the same reason the dual
of (v, k¥, t)is (r, k, ¢).

2. A family of pbibd’s. In this section unless otherwise stated » stands for
an integer n > 2, n # 4.
Consider a two classes pbibd A; with parameters

(21) Ay:vo= (%), b=Cn—-1)2n-3), r=20-3, k=n,
M=0 N=1 m=22n—-2), pu=2n-—2  ph=4.

Then the association scheme of A, is T, . Further from (1.2) it is easy to verify
that for n > 2 A, is a partial geometry (2n — 3, n, n — 2) and hence its dual A™*
is again a partial geometry (n, 2n — 3, n — 2) and hence a pbibd with param-
eters

(2.2) A0 = (20 — 1)(2n — 3), b= (%), r = n, k= 2n — 3,
M=0, N=1, m=2n—1) ph=ph=(n— 1),

and that the dual of 4, is the design A, . Thus for all n > 2 the designs 4, and
A,* either both exist or both do not exist.

Again for A, it is easy to verify that rk — v\ = n(r — \1). Hence from the
result of Raghavrao [7], it follows that each block of A; contains 2k/2n = 1
treatment from each row of the association scheme T, . Let the treatment in the
first row of Ty, be 1, 2, - -+, 2n — 1 and let U, be the set of (2n — 3) blocks of
A each containing the treatment 7, ¢ = 1,2, - - - , 2n — 1. From the fact that the
treatments ¢ and 7 are l-associates and A\; = 0, it follows that the sets U; for
different values of z account for all the block of A;. Now omit the treatment ¢
from each block of U, to obtain the set U, of (2n — 3) blocks. Then any two
blocks of U, are disjoint and contain all the treatments of T, not lying in its
1st and the (¢ + 1)th row exactly once. Let T2,_; be the array obtained from T,
by omitting its 1st row and 1st column, then it is obvious that U, contains all
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the treatments of T,_; not lylng in its ¢th row exactly once. It is now easy to see

that the sets U, ¢ = 1, 2, , 2n — 1 constitute a pbibd A, with parameters
g:v = (%1, b= (2n — 1)(2n — 3), r=2n— 3,
(2.3) k=n— 1, AN = 0, )\2 = 1, nm = 2(2n - 3),

ph=2n—3, P§1=4

and with association scheme T,_; . It now follows that the existence of 4, or 4,*
implies the existence of 4. .

We now show that the existence of the design A, implies the existence of the
design A; and hence of A,* which taken together with what has already been
proved will imply the coexistence of the designs 4, , 4, and 4, forn > 2,n # 4.

Suppose A, given by (2.3) is a design with treatments numbered 2n, 2n + 1,

, (%). Then its association scheme is Tz, . Let

r 2n 2n+1 --- m — 3
r 4n—2 .- 6n — 6
x
(24) Ton— =
z (%)
z

Let 6 be any treatment of T',_» obtained from 7',—; by omitting the first row and
the first column of T',_; . Then 6 has two 1-associates and 2n — 4 2-associates
from the first row of T,_; . Noting that \; = 0 and A, = 1, it is now obvious that
through each of the treatments 4n — 2,4n — 1, --- |, 6n — 6 there is a different
block which contains no treatment from the first row of T,,_; . Denote the set of
(2n — 3) blocks thus obtained by S,". Then each of the treatments 4n — 2,
4n — 1, -- -, 4n — 6 occurs exactly once in S;’. Let 6 be any other treatment of
T2s—2 which oceurs in Sy'. Then since there is only one block through 6 which con-
tains no treatment of the first row of Tg,,_, , it is obvious that @ occurs exactly
once in S;. Hence the blocks of S," are all disjoint and they account for
(2n — 3)(n — 1) treatments in all from Ta,_, . Since the number of treatments in
Tsn2 is again (2n — 3)(n — 1), it is obvious that the set S;’ contains no treat-
ment from the first row of T».—; and contains all the other treatments exactly
once. Since the scheme T, is unchanged by interchanging the sth row with the
first row and ¢th column with the first column, it is now obvious that the blocks
of A, can be partitioned into mutually disjoint and exhaustive sets S; each of
(2n — 3) blocks with the property that all the treatments of T,,_; excepting

those in the ¢th row occur exactly once in 8;/, ¢ = 1,2, --- , 2n — 1. We now
adjoin to each block 8’ of 8, a new treatment numbered i, giving the block 8.
Denote the set of blocks 8 thus obtained by S; ;7 = 1, 2, , 2n — 1. Consider

the design obtained by the sets of blocks S;, S;, - - Sz,._ For this design the
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values of v, b, 7, k are the same as those of 4, . Further the 2n — 1 new treatments
1,2, --+,2n — 1 are such that no two of them occur in the same block and the
treatment numbered 7 occurs together in a block with all the treatments of the
association scheme of T, excepting those in its sth row. It is now obvious that
the design thus obtained has the same parameters as that of A, and has the as-
sociation scheme given by the symmetric array

(z 1 2 3 e 2m—1
z 2n 2n+1 --- 4n—6
x
(205) TZn =
)

| T
obtained by adding an initial row and column containing (x 1 2 --- 2n — 1)
to T2n—1 .

We have thus proved

LemMma 1. If n > 2 and n 5 4, the designs A1, Ay™ and A, given respectively by
(2.1), (2.2) and (2.3) either all exist or all do not exist.

We now show that the dual 4.* of A, with the association scheme T,_; given
by (2.4) is a pbibd with three associate classes. The parameters v, b, 7, k of A,*
are given by v = (2n — 1)(2n — 3),b = *%Y),r=n — 1,k = 2n — 3. To
prove that 4, is a pbibd with three associate classes, it is sufficient to establish a
three classes association scheme between the blocks of A,. We proceed to do
exactly this.

We note that any two blocks of A, can intersect in at most one treatment and
further as we have already seen, the blocks of A, can be partitioned into sets .S;
of (2n — 3) blocks each, such that the set S, contains all the treatments of T,
excepting those in its 7th row exactly once. We now define the association scheme
between the blocks of A, as follows. Two blocks of A, are (i) 1-associates if they
intersect in one treatment, (ii) 2-associates if they belong to the same set S;” and
(ili) 3-associates otherwise. Let u; denote the number of treatments common to
two blocks which are 7-associates and m; denote the number of {-associates of any
block. Then w; = 1, ug = uz = 0O and my = 2(n — 1)(n — 2), me = 2n — 4,
ms = 2(n — 1) Let 8" and B, be two blocks of A, which are i-associates and let
¢ix(8y, B.') denote the number of blocks in' A, which are simultaneously j-associ-
ates of 8,'; and k-associates of 85; 7,7, k = 1, 2, 3. Then [8] it is sufficient to verify
that for ¢ = 1, 2, 3;7, k = 1, 2 the value of ¢5(8,, B2') = ¢ix, a constant inde-
pendent of 8, and 8, so long as 8, and B, are i-associates.

It is obvious from the definition that g3 = 2n — 5, ¢z = @32 = ¢z = 0.

Now consider a block 8,, say, from S, and let 8, = (61, 62, -+ -, 6,_1). Then
6 does not occur in the sth row of Ts,_;. Let it occur in the jth row of Ts,_1,
j # 4. Then in S, there is no block containing 6; . Since 6; occurs in the jth row
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of Ton1,6:,0;, - -+, 6,1 cannot oceur in this row since \; = 0. Hence each of
these n — 2 treatments occurs in S;" and further since any two of them already
occur together in B/, they occur in n — 2 different blocks of 8,”. Thus 8, has
n — 2 l-associates in S Slnce the treatment 6; also occurs in kth row of Ty, ,
k 5 4, k 5 j, it follows that 8, has also n — 2 l-associates in S;’. Similarly if 6,
occurs in pth and gth row of T,y then, p # 4, g ¢, p = ¢, p = 5, p % k, ¢ # j,
q # k since for two treatments in the same row of T2,_1 \; = 0. It is now obvious
by considering the remaining treatments 02,05, -, 0,1, that 8, has exactly
n — 2 l-associates from each S;, j # 4, thus accounting for the value
my = 2(n — 1)(n — 2).

Let 8, and /32 be two blocks which are 1- ass001ates Then 8, and 8, belong to
dlfferent sets ;. Then it is 0bv10us that qu(ﬁl ,B8) =n— 3. Similarly if 8, and
B2’ are 3-associates, then ¢3»(81, B;) = n — 2.

By virtue of our mode of construction of A, from A, and 4; from 4, , we can
set up the following correspondence between blocks of A; and 4. . If 8 is a block
of A, from the set U; we denote by B’ the block of A, obtained by deleting the
treatment ¢ from 8. Similarly if 8’ is a block of A, from the set S, , B will denote
the block of A, obtained by adding the treatment < to 8'.

Now let 8, = (61,65, -+, 6n1), B2 = (é1, b2, - - - du_1) be two blocks of
A, which are 2-associates. Then they belong to the same set S;". Since the blocks
of S, are disjoint 6; does not occur in ;. We have already shown that A4, can be
embedded in 4, . Now consider the corresponding blocks 8; and 8, in 4, . Since
A, is a partial geometry with ¢ = n — 2, there are n — 2 blocks in 4, containing
6, each of which intersects the block 8. . One of these blocks is 8; which intersects
B in the treatment 7. Hence there are n — 3 other blocks 71, 72, - -+, Ya—s in
A, each containing 6, and such that v; and v; intersect 8, in exactly one but differ-
ent treatments from ¢;, ¢2, - -, ¢u—1. The corresponding blocks v, v, - - - ,
vn_s of Ay are common 1-associates of 81 and 8.. We get similarly » — 3 common
l-associates of B, and 8, by considering each of the remaining treatments
0,05, -, 0,_1.Obviously these sets of n — 3 blocks are all disjoint. We thus
get the value ¢1,(8/, B.') = (n — 1)(n — 3).

Now consider the value pj; in 4,*. From the relations amongst pj , it is easy
to verify that pj; = (2n — 5) + (n — 1)(n — 3). This represents the number of
blocks in 4, with association scheme (2.5) which have one treatment in common
with two blocks 8; and B8; of A; which have themselves one treatment in common,
Cons1der the corresponding blocks 8, and 8, of 4. If 8’ and ﬁz belong to S,
and S, respectlvely, then they are 1 assomates in A, . Since 8, hasn —2 1-as-
sociatesof B;, there are n — 3 blocksin S; other than 8, which are 1-associates of
B’ and similarly n — 3 blocks in 8; other than 8, which are 1-associates of 8.
It is easy to see that if we omit this set of 2(n — 3) blocks from the set of p3,
blocks in A4; indicated above, we get qi1(81, 82') = (n — 2)%.

The value p3, in 4,* is easily seen to be n(n — 2) and represents the number
of blocks in A; which have one treatment in common with two blocks 8; and 8. of
A, which themselves have no treatment in common. Then the corresponding



1812 S. S. SHRIKHANDE

blocks 8, and ;" are 3-associates in A, , and belong to different sets S;” and S;’.
By subtracting from this value of p3, the number n — 2 of blocks in 8, which are
1-associates of 8, and an equal number of blocks in S;” which are 1-associates of
B, we are obviously left with the value ¢}:(8, 8,') = (n — 2)

It is now obvious that the dual 4, of A, is a pbibd with three associate classes
and has parameters

A o= 2n —1)(2n —3), b=(_"C%Y,
r=mn—1, k=2n—3, M= 1, A=A =0,

(2.6) n = 2(n—1)(n — 2), ny = 2(n — 2),

I

(n—2)? pa=n-—3 pr=0,

pil
ph= (n—1)(n —3), pls = 0, po2 = 2n — 5,
(n—2), ph=n—2  ph=0.

p?.l

Now we consider the design A" for n > 2. If N is the incidence matrix of this
design, then it is easy to verify [5] that NN  has the characteristic roots
6=(n—1)2n — 3),6,=0,6, = 2(n — 1), 6 = 1 with respectively multi-
plicities &g = 1, s = a3 = (2n — 1)(n — 2), @@ = 2(n — 1). Further for
As™ — b = a;. Hence from [10], it follows that the dual of 4,* forn > 2is a
pbibd having the parameters of A, .

We thus have the following lemma.

LEMMA 2. If n > 2, n 5 4 the designs A; and As™ given by (2.3) and (2.6) either
both exist or both do not exist.

Finally combining the two lemmas, we have the following theorem.

THEOREM. If n > 2 and n # 4, then the existence of any one of the designs
Ay, A* Ay, As™ given by (2.1), (2.2), (2.3) and (2.6) implies the existence of the
other three designs.

It is known [8] that A,* exists if n = 2™ 4 1, m = 1. Hence from the above
theorem it follows that all the four designs above can be constructed for these
values of n.

3. A nonexistence result. We note that for any n > 2, the design A, always
has association scheme T,_;. We now give a direct construction for A, with
n = 3 l.e. the design withv = 10,b = 15,7 = 3,k = 2, \; = 0, \; = 1 and the
association scheme 75 . We can then construct the other three designs for n = 3.
With T given (1.1) it is easy to see that the sets S; can be uniquely written as

81 [(5,10) (6,9) (7,8)]
S [(2,10) (3,9) (4,8)]
Sy [(1,10) (3,7) (4,6)]
S [(1,9)  (2,7) (4,5)]
S:[(1,8)  (2,6) (3,5)]
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It is easy to verify that the above sets of blocks actually constitute the design 4, .

Recalling the proof of the theorem, it is useful to note that for any value of
n > 2, the designs 4; and A,* coexist, the designs A, with association scheme
Tan and A, coexist, and the existence of 4,* implies the existence of A, .

We now show that the design A, withn = 4 i.e. the design with» = 21, b = 35,
r =5k = 3,M = 0,\ = 1 with the association scheme T is impossible. If the
design is to exist we should be able to write down consistent sets S, ¢ = 1,
2, + -+, 7 toform the design. Let

(2 1 2 3 4 5 6
1 z 7 8 9 10 1
2 7 =z 12 13 14 15
T,=(3 8 12 z 16 17 18
4 9 13 16 z 19 20
5 10 14 17 19 =z 21
6 11 15 18 20 21 9«

Then consistent with the conditions for A, we have the following possible sets
for Sll.

D;. [(7, 16, 21) (8, 14, 20) (9, 15, 17) (10, 13, 18) (11, 12, 19)].
D;. [(7, 16, 21) (8, 15, 19) (9, 14, 18) (10, 12, 20) (11, 13, 17)].
D;. [(7, 17, 20) (8, 13, 21) (9, 14, 18) (10, 15, 16) (11, 12, 19)].
Ds. [(7, 17, 20) (8, 15, 19) (9, 12, 21) (10, 13, 18) (11, 14, 16)].
Ds. [(7, 18, 19) (8, 13, 21) (9, 15, 17) (10, 12, 20) (11, 14, 16)].
Ds. [(7, 18, 19) (8, 14, 20) (9, 12, 21) (10, 15, 16) (11, 13, 17)].

The possible sets for S, are Ey, E,, -- -, Es where E; is obtained from D; by
replacing 7, 8, 9, 10, 11 respectively by 2, 3, 4, 5, 6. It is easy to see that D, is
incompatible with E; or E. because otherwise the pair (16, 21) will occur twice
contracting A, = 1. Similarly D, is incompatible with E; because of the pair
(12, 19), wih E, because of the pair (13, 18), with Ej because of the pair (15, 17)
and with Es because of the pair (14, 20). Similarly it can be verified that no other
set D, is compatible with any set E; . This implies the nonexistence of A, with
n = 4 together with the nonexistence of A,* and A; with association scheme T’
and A,* with the association scheme T for its dual.

Since the arguments used in this section are purely combinatorial, they can be
used to either construct A, or prove its impossibility for higher values of n.
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