ON A CLASS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS

By S. S. Shrikhande

University of Bombay

- **0.** Summary. The purpose of this note is to show that the existence of any one of a particular family of four partially balanced incomplete block designs (pbibd) implies the existence of the remaining three designs. A sufficient condition for the existence of this family is given and a nonexistence result is also obtained.
- **1.** Introduction. Following the usual notation [2] let the parameters of an m classes phibd be denoted by v, b, r, k, λ_i , n_i and matrices $P_i = (p_{jk}^i)$, i, j, $k = 1, 2, \dots, m$. Let $N = (n_{ij})$ be the usual $v \times b$ incidence matrix of the design where $n_{ij} = 1$ or 0 according as treatment i occurs or does not occur in block j. The characteristic roots of NN' together with their multiplicities have been obtained in [5] for the cases m = 2, 3. Further the dual of a design with incidence matrix N is a design having N' for its incidence matrix.

For n > 4 a triangular association scheme T_n for $v = \binom{n}{2}$ treatments is defined as follows [3]. The treatments are numbered 1, 2, \cdots , $\binom{n}{2}$ and are arranged in a symmetric square array in which the main diagonal positions are left blank (denoted by x) and the positions above the main diagonal are filled by the numbers 1, 2, \cdots , $\binom{n}{2}$. Thus

(1.1)
$$T_{5} = \begin{pmatrix} x & 1 & 2 & 3 & 4 \\ 1 & x & 5 & 6 & 7 \\ 2 & 5 & x & 8 & 9 \\ 3 & 6 & 8 & x & 10 \\ 4 & 7 & 9 & 10 & x \end{pmatrix}.$$

Two treatments in T_n are said to be 1-associates if they occur in the same row or same column; otherwise they are 2-associates. It is then easy to verify that $n_1 = 2(n-2)$, $p_{11}^1 = n-2$, $p_{11}^2 = 4$. The question—when do the above values of v, n_1 , p_{11}^1 , p_{11}^2 for a two classes association scheme imply that the association scheme is T_n —has been considered by various authors [4], [6], [9]. It has been shown [6] that if $n \neq 8$, then the above parameters imply that the association scheme is actually T_n , and for n = 8, there are exactly two other association schemes which are possible besides T_8 .

Following Bose [1], we define a partial geometry (r, k, t) as follows. We have a system of undefined points and lines together with an incidence relation satisfying the following postulates.

- P_1 . Any two points are incident with not more than one line.
- P_2 . Each point is incident with r lines.

Received 26 April 1965.

1807

 P_3 . Each line is incident with k points.

 P_4 . If the point P is not incident with the line l, there pass through P exactly t lines $(t \ge 1)$ intersecting l.

It is then known that an (r, k, t) is a phibd with two associate classes with parameters

$$v = k[(r-1)(k-1) + t]/t, b = r[(r-1)(k-1) + t]/t, r, k,$$

$$(1.2) \lambda_1 = 0, \lambda_2 = 1, n_1 = (r-1)(k-1)(k-t)/t,$$

$$p_{11}^1 = n_1 + rt - 1 - r(k-1), p_{11}^2 = (r-1)(k-t)(k-t-1)/t,$$

$$1 \le t \le r, 1 \le t \le k.$$

Conversely any pbibd with the above parameters is a partial geometry (r, k, t). Further the dual of a partial geometry (r, k, t) is again a partial geometry (r^*, k^*, t) with $r^* = k$ and $k^* = r$, which therefore, is again a pbibd with parameters obtained from (1.2) by interchanging r and k. For the same reason the dual of (r^*, k^*, t) is (r, k, t).

2. A family of pbibd's. In this section unless otherwise stated n stands for an integer n > 2, $n \ne 4$.

Consider a two classes pbibd A_1 with parameters

(2.1)
$$A_1: v = \binom{2n}{2}, \quad b = (2n-1)(2n-3), \quad r = 2n-3, \quad k = n,$$

 $\lambda_1 = 0, \quad \lambda_2 = 1, \quad n_1 = 2(2n-2), \quad p_{11}^1 = 2n-2, \quad p_{11}^2 = 4.$

Then the association scheme of A_1 is T_{2n} . Further from (1.2) it is easy to verify that for n > 2 A_1 is a partial geometry (2n - 3, n, n - 2) and hence its dual A^* is again a partial geometry (n, 2n - 3, n - 2) and hence a phibd with parameters

(2.2)
$$A_1^*: v = (2n-1)(2n-3), \quad b = \binom{2n}{2}, \quad r = n, \quad k = 2n-3,$$

 $\lambda_1 = 0, \quad \lambda_2 = 1, \quad n_1 = 2(n-1)^2, \quad p_{11}^1 = p_{11}^2 = (n-1)^2,$

and that the dual of A_1^* is the design A_1 . Thus for all n > 2 the designs A_1 and A_1^* either both exist or both do not exist.

Again for A_1 it is easy to verify that $rk - v\lambda_1 = n(r - \lambda_1)$. Hence from the result of Raghavrao [7], it follows that each block of A_1 contains 2k/2n = 1 treatment from each row of the association scheme T_{2n} . Let the treatment in the first row of T_{2n} be 1, 2, \cdots , 2n-1 and let U_i be the set of (2n-3) blocks of A_1 each containing the treatment $i, i = 1, 2, \cdots, 2n-1$. From the fact that the treatments i and j are 1-associates and $\lambda_1 = 0$, it follows that the sets U_i for different values of i account for all the block of A_1 . Now omit the treatment i from each block of U_i to obtain the set U_i' of (2n-3) blocks. Then any two blocks of U_i' are disjoint and contain all the treatments of T_{2n} not lying in its 1st and the (i+1)th row exactly once. Let T_{2n-1} be the array obtained from T_{2n} by omitting its 1st row and 1st column, then it is obvious that U_i' contains all

the treatments of T_{2n-1} not lying in its *i*th row exactly once. It is now easy to see that the sets U_i' , $i = 1, 2, \dots, 2n - 1$ constitute a pbibd A_2 with parameters

$$A_2: v = {2n-1 \choose 2}, \qquad b = (2n-1)(2n-3), \qquad r = 2n-3,$$

$$(2.3) \qquad k = n-1, \qquad \lambda_1 = 0, \qquad \lambda_2 = 1, \qquad n_1 = 2(2n-3),$$

$$p_{11}^1 = 2n-3, \qquad p_{11}^2 = 4$$

and with association scheme T_{2n-1} . It now follows that the existence of A_1 or A_1^* implies the existence of A_2 .

We now show that the existence of the design A_2 implies the existence of the design A_1 and hence of A_1^* , which taken together with what has already been proved will imply the coexistence of the designs A_1 , A_1^* and A_2 for n > 2, $n \ne 4$.

Suppose A_2 given by (2.3) is a design with treatments numbered 2n, 2n+1, \cdots , $\binom{2n}{2}$. Then its association scheme is T_{2n-1} . Let

Let θ be any treatment of T_{2n-2} obtained from T_{2n-1} by omitting the first row and the first column of T_{2n-1} . Then θ has two 1-associates and 2n-4 2-associates from the first row of T_{2n-1} . Noting that $\lambda_1 = 0$ and $\lambda_2 = 1$, it is now obvious that through each of the treatments 4n-2, 4n-1, \cdots , 6n-6 there is a different block which contains no treatment from the first row of T_{2n-1} . Denote the set of (2n-3) blocks thus obtained by S_1 . Then each of the treatments 4n-2, $4n-1, \dots, 4n-6$ occurs exactly once in S_1' . Let θ be any other treatment of T_{2n-2} which occurs in S_1' . Then since there is only one block through θ which contains no treatment of the first row of T_{2n-1} , it is obvious that θ occurs exactly once in S_1' . Hence the blocks of S_1' are all disjoint and they account for (2n-3)(n-1) treatments in all from T_{2n-2} . Since the number of treatments in T_{2n-2} is again (2n-3)(n-1), it is obvious that the set S_1' contains no treatment from the first row of T_{2n-1} and contains all the other treatments exactly once. Since the scheme T_{2n-1} is unchanged by interchanging the *i*th row with the first row and ith column with the first column, it is now obvious that the blocks of A_2 can be partitioned into mutually disjoint and exhaustive sets S_i each of (2n-3) blocks with the property that all the treatments of T_{2n-1} excepting those in the *i*th row occur exactly once in S_i , $i = 1, 2, \dots, 2n - 1$. We now adjoin to each block β' of S_i' a new treatment numbered i, giving the block β . Denote the set of blocks β thus obtained by S_i ; $i = 1, 2, \dots, 2n - 1$. Consider the design obtained by the sets of blocks S_1 , S_2 , \cdots , S_{2n-1} . For this design the

values of v, b, r, k are the same as those of A_1 . Further the 2n-1 new treatments $1, 2, \dots, 2n-1$ are such that no two of them occur in the same block and the treatment numbered i occurs together in a block with all the treatments of the association scheme of T_{2n-1} excepting those in its ith row. It is now obvious that the design thus obtained has the same parameters as that of A_1 and has the association scheme given by the symmetric array

$$T_{2n} = \begin{pmatrix} x & 1 & 2 & 3 & \cdots & 2n-1 \\ x & 2n & 2n+1 & \cdots & 4n-6 \\ x & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

obtained by adding an initial row and column containing $(x \ 1 \ 2 \ \cdots \ 2n-1)$ to T_{2n-1} .

We have thus proved

LEMMA 1. If n > 2 and $n \neq 4$, the designs A_1 , A_1^* and A_2 given respectively by (2.1), (2.2) and (2.3) either all exist or all do not exist.

We now show that the dual A_2^* of A_2 with the association scheme T_{2n-1} given by (2.4) is a pbibd with three associate classes. The parameters v, b, r, k of A_2^* are given by v=(2n-1)(2n-3), $b=({}^{2}{}^{n-1})$, r=n-1, k=2n-3. To prove that A_2^* is a pbibd with three associate classes, it is sufficient to establish a three classes association scheme between the blocks of A_2 . We proceed to do exactly this.

We note that any two blocks of A_2 can intersect in at most one treatment and further as we have already seen, the blocks of A_2 can be partitioned into sets S_i' of (2n-3) blocks each, such that the set S_i' contains all the treatments of T_{2n-1} excepting those in its *i*th row exactly once. We now define the association scheme between the blocks of A_2 as follows. Two blocks of A_2 are (i) 1-associates if they intersect in one treatment, (ii) 2-associates if they belong to the same set S_i' and (iii) 3-associates otherwise. Let μ_i denote the number of treatments common to two blocks which are *i*-associates and m_i denote the number of *i*-associates of any block. Then $\mu_1 = 1$, $\mu_2 = \mu_3 = 0$ and $m_1 = 2(n-1)(n-2)$, $m_2 = 2n-4$, $m_3 = 2(n-1)^2$. Let β_1' and β_2' be two blocks of A_2 which are *i*-associates and let $q_{jk}^i(\beta_1',\beta_2')$ denote the number of blocks in A_2 which are simultaneously *j*-associates of β_1' ; and *k*-associates of β_2' ; i,j,k=1,2,3. Then [8] it is sufficient to verify that for i=1,2,3;j,k=1,2 the value of $q_{jk}^i(\beta_1',\beta_2')=q_{jk}^i$, a constant independent of β_1' and β_2' so long as β_1' and β_2' are *i*-associates.

It is obvious from the definition that $q_{22}^2=2n-5$, $q_{12}^2=q_{22}^3=q_{22}^1=0$. Now consider a block β_1' , say, from S_i' and let $\beta_1'=(\theta_1,\theta_2,\cdots,\theta_{n-1})$. Then

Now consider a block β_1' , say, from S_i' and let $\beta_1' = (\theta_1, \theta_2, \dots, \theta_{n-1})$. Then θ_1 does not occur in the *i*th row of T_{2n-1} . Let it occur in the *j*th row of T_{2n-1} , $j \neq i$. Then in S_j' there is no block containing θ_1 . Since θ_1 occurs in the *j*th row

of T_{2n-1} , θ_2 , θ_3 , \cdots , θ_{n-1} cannot occur in this row since $\lambda_1 = 0$. Hence each of these n-2 treatments occurs in S_j and further since any two of them already occur together in β_1 , they occur in n-2 different blocks of S_j . Thus β_1 has n-2 1-associates in S_j . Since the treatment θ_1 also occurs in kth row of T_{2n-1} , $k \neq i$, $k \neq j$, it follows that β_1 has also n-2 1-associates in S_k . Similarly if θ_2 occurs in pth and pth row of p1 then, $p \neq i$, $p \neq q$, $p \neq j$, $p \neq k$, $q \neq j$, $q \neq k$ since for two treatments in the same row of p2. It is now obvious by considering the remaining treatments p3, p4, p5, p5, p7 that p9 that p9 the remaining treatments p9, p9, p9, p9, p9 that p9 has exactly p9. Thus accounting for the value p1 thus accounting for the value p1 thus accounting for the value p1 thus accounting for the value p2.

Let β_1' and β_2' be two blocks which are 1-associates. Then β_1' and β_2' belong to different sets S_i' . Then it is obvious that $q'_{12}(\beta_1', \beta_2') = n - 3$. Similarly if β_1' and β_2' are 3-associates, then $q^3_{12}(\beta_1', \beta_2') = n - 2$.

By virtue of our mode of construction of A_2 from A_1 and A_1 from A_2 , we can set up the following correspondence between blocks of A_1 and A_2 . If β is a block of A_1 from the set U_i we denote by β' the block of A_2 obtained by deleting the treatment i from β . Similarly if β' is a block of A_2 from the set S_i' , β will denote the block of A_1 obtained by adding the treatment i to β' .

Now let $\beta_1' = (\theta_1, \theta_2, \dots, \theta_{n-1}), \beta_2' = (\phi_1, \phi_2, \dots \phi_{n-1})$ be two blocks of A_2 which are 2-associates. Then they belong to the same set S_i' . Since the blocks of S_i' are disjoint θ_1 does not occur in β_2' . We have already shown that A_2 can be embedded in A_1 . Now consider the corresponding blocks β_1 and β_2 in A_1 . Since A_1 is a partial geometry with t = n - 2, there are n - 2 blocks in A_1 containing θ_1 each of which intersects the block β_2 . One of these blocks is β_1 which intersects β_2 in the treatment i. Hence there are n - 3 other blocks $\gamma_1, \gamma_2, \dots, \gamma_{n-3}$ in A_1 each containing θ_1 and such that γ_i and γ_i intersect β_2 in exactly one but different treatments from $\phi_1, \phi_2, \dots, \phi_{n-1}$. The corresponding blocks $\gamma_1', \gamma_2', \dots, \gamma_{n-3}'$ of A_2 are common 1-associates of β_1' and β_2' . We get similarly n - 3 common 1-associates of β_1' and β_2' by considering each of the remaining treatments $\theta_2, \theta_3, \dots, \theta_{n-1}$. Obviously these sets of n - 3 blocks are all disjoint. We thus get the value $q_{11}^2(\beta_1', \beta_2') = (n - 1)(n - 3)$.

Now consider the value p_{22}^2 in A_1^* . From the relations amongst p_{jk}^i , it is easy to verify that $p_{22}^2 = (2n-5) + (n-1)(n-3)$. This represents the number of blocks in A_1 with association scheme (2.5) which have one treatment in common with two blocks β_1 and β_2 of A_1 which have themselves one treatment in common. Consider the corresponding blocks β_1' and β_2' of A_2 . If β_1' and β_2' belong to S_i' and S_j' respectively, then they are 1-associates in A_2 . Since S_i' has n-2 1-associates of β_2' , there are n-3 blocks in S_i' other than β_1' which are 1-associates of β_2' and similarly n-3 blocks in S_j' other than β_2' which are 1-associates of β_1' . It is easy to see that if we omit this set of 2(n-3) blocks from the set of 2(n-3) blocks in $2(n-2)^2$.

The value p_{22}^1 in A_1^* is easily seen to be n(n-2) and represents the number of blocks in A_1 which have one treatment in common with two blocks β_1 and β_2 of A_1 which themselves have no treatment in common. Then the corresponding

blocks β_1' and β_2' are 3-associates in A_2 , and belong to different sets S_i' and S_j' . By subtracting from this value of p_{22}^1 the number n-2 of blocks in S_i' which are 1-associates of β_2' and an equal number of blocks in S_j' which are 1-associates of β_1' we are obviously left with the value $q_{11}^3(\beta_1',\beta_2')=(n-2)^2$.

It is now obvious that the dual A_2^* of A_2 is a public with three associate classes and has parameters

$$A_{2}^{*}: v = (2n-1)(2n-3), \qquad b = \binom{2n-1}{2},$$

$$r = n-1, \qquad k = 2n-3, \qquad \lambda_{1} = 1, \qquad \lambda_{2} = \lambda_{3} = 0,$$

$$(2.6) \qquad n_{1} = 2(n-1)(n-2), \qquad n_{2} = 2(n-2),$$

$$p_{11}^{1} = (n-2)^{2}, \qquad p_{12}^{1} = n-3, \qquad p_{22}^{1} = 0,$$

$$p_{11}^{2} = (n-1)(n-3), \qquad p_{12}^{2} = 0, \qquad p_{22}^{2} = 2n-5,$$

$$p_{11}^{3} = (n-2)^{2}, \qquad p_{12}^{3} = n-2, \qquad p_{22}^{3} = 0.$$

Now we consider the design A_2^* for n > 2. If N is the incidence matrix of this design, then it is easy to verify [5] that NN' has the characteristic roots $\theta_0 = (n-1)(2n-3)$, $\theta_1 = 0$, $\theta_2 = 2(n-1)$, $\theta_3 = 1$ with respectively multiplicities $\alpha_0 = 1$, $\alpha_1 = \alpha_3 = (2n-1)(n-2)$, $\alpha_2 = 2(n-1)$. Further for $A_2^*v - b = \alpha_1$. Hence from [10], it follows that the dual of A_2^* for n > 2 is a pbibd having the parameters of A_2 .

We thus have the following lemma.

LEMMA 2. If n > 2, $n \neq 4$ the designs A_2 and A_2 * given by (2.3) and (2.6) either both exist or both do not exist.

Finally combining the two lemmas, we have the following theorem.

THEOREM. If n > 2 and $n \neq 4$, then the existence of any one of the designs A_1 , A_1^* , A_2 , A_2^* given by (2.1), (2.2), (2.3) and (2.6) implies the existence of the other three designs.

It is known [8] that A_2^* exists if $n = 2^m + 1$, $m \ge 1$. Hence from the above theorem it follows that all the four designs above can be constructed for these values of n.

3. A nonexistence result. We note that for any n > 2, the design A_2 always has association scheme T_{2n-1} . We now give a direct construction for A_2 with n = 3 i.e. the design with v = 10, b = 15, r = 3, k = 2, $\lambda_1 = 0$, $\lambda_2 = 1$ and the association scheme T_5 . We can then construct the other three designs for n = 3. With T_5 given (1.1) it is easy to see that the sets S_i can be uniquely written as

$$S_1'$$
: [(5, 10) (6, 9) (7, 8)]
 S_2' : [(2, 10) (3, 9) (4, 8)]
 S_3' : [(1, 10) (3, 7) (4, 6)]
 S_4' : [(1, 9) (2, 7) (4, 5)]
 S_5' : [(1, 8) (2, 6) (3, 5)]

It is easy to verify that the above sets of blocks actually constitute the design A_2 .

Recalling the proof of the theorem, it is useful to note that for any value of n > 2, the designs A_1 and A_1^* coexist, the designs A_1 with association scheme T_{2n} and A_2 coexist, and the existence of A_2^* implies the existence of A_2 .

We now show that the design A_2 with n=4 i.e. the design with v=21, b=35, r=5, k=3, $\lambda_1=0$, $\lambda_2=1$ with the association scheme T_7 is impossible. If the design is to exist we should be able to write down consistent sets S_i' , i=1, $2, \dots, 7$ to form the design. Let

$$T_7 = \begin{pmatrix} x & 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & x & 7 & 8 & 9 & 10 & 11 \\ 2 & 7 & x & 12 & 13 & 14 & 15 \\ 3 & 8 & 12 & x & 16 & 17 & 18 \\ 4 & 9 & 13 & 16 & x & 19 & 20 \\ 5 & 10 & 14 & 17 & 19 & x & 21 \\ 6 & 11 & 15 & 18 & 20 & 21 & x \end{pmatrix}$$

Then consistent with the conditions for A_2 we have the following possible sets for S_1' .

The possible sets for S_2 are E_1 , E_2 , ..., E_6 where E_i is obtained from D_i by replacing 7, 8, 9, 10, 11 respectively by 2, 3, 4, 5, 6. It is easy to see that D_1 is incompatible with E_1 or E_2 because otherwise the pair (16, 21) will occur twice contracting $\lambda_2 = 1$. Similarly D_1 is incompatible with E_3 because of the pair (12, 19), wih E_4 because of the pair (13, 18), with E_5 because of the pair (15, 17) and with E_6 because of the pair (14, 20). Similarly it can be verified that no other set D_i is compatible with any set E_j . This implies the nonexistence of A_2 with n = 4 together with the nonexistence of A_2^* and A_1 with association scheme E_3 and E_3 with the association scheme E_3 for its dual.

Since the arguments used in this section are purely combinatorial, they can be used to either construct A_2 or prove its impossibility for higher values of n.

REFERENCES

- Bose, R. C. (1963). Strongly regular graphs, partial geometries and partially balanced designs. Pacific J. Math. 13 389-419.
- [2] Bose, R. C. and Nair, K. R. (1939). Partially balanced incomplete block designs. Sankhyā 4 337-372.
- [3] Bose, R. C. and Shimamoto, T. (1952). Classification and analysis of partially balanced incomplete block designs, with two associate classes. J. Amer. Statist. Assoc. 47 151-184.

- [4] CONNOR, W. S. (1958). The uniqueness of the triangular association scheme. Ann. Math. Statist. 29 262-266.
- [5] CONNOR, W. S. and CLATWORTHY, W. H. (1954). Some theorems for partially balanced designs. Ann. Math. Statist. 25 100-112.
- [6] HOFFMAN, A. J. (1960). On the uniqueness of triangular association scheme. Ann. Math. Statist. 31 492-497.
- [7] RAGHAVARAO, D. (1960). On the block structure of certain PBIB designs with two associate classes having triangular and L_2 association schemes. Ann. Math. Statist. 31 787-791.
- [8] RAY-CHAUDHARI, D. K. (1965). Some configurations in finite projective spaces and partially balanced incomplete block designs. Canad. J. Math. 17 114-123.
- [9] Shrikhande, S. S. (1959). On a characterisation of the triangular association scheme. Ann. Math. Statist. 30 39-47.
- [10 Shrikhande, S. S. and Bhagwandas (1965). Duals of incomplete block designs. J. Indian Statist. Assoc. 3 30-37.