SMALL SAMPLE POWER OF THE ONE SAMPLE WILCOXON
TEST FOR NON-NORMAL SHIFT ALTERNATIVES!

By HarvEY J. ARNOLD

Bucknell University

0. Summary. The power of the one sample Wilcoxon test is computed for the
hypothesis that the median is zero against various shift alternatives for samples
drawn frem several different non-normal distributions. A recursive scheme given
by Klotz [2] simplifies the problem of power computations and allows investi-
gating samples to size n = 10 on a large computer. The power for selected
type I errors a are compared with the power of a best signed-rank procedure
obtained by sorting the probabilities in decreasing order for all possible sample
configurations for fixed n and adding up the probabilities associated with the
most probable 100 «% of the configurations. The non-normal distributions
selected for study are the ¢ distribution with degrees of freedom %, 1, 2, and 4.
The one sample Wilcoxon test, found to be powerful for normal shift alterna-
tives by Klotz [2], deteriorates badly in power for the long-tailed distributions
studied as does the one sample ¢ test. However, the Wilcoxon test remains more
powerful than the ¢ test. The sign test is still more powerful than either Wil-
coxon or {. No asymptotic results are obtained.

1. Introduction. Let z;, 22, - -+ , , be a sample of size n from a population

with probability density function f, symmetric with median u. The one sample

Wilcoxon test [5] for the hypothesis u = 0 against shift alternative u = 0
makes use of the statistic

Wi = i1 kZu,

where Z,; = 1 if the sth smallest observation in magnitude is non negative and
0 if the 7th smallest observation in magnitude is negative. If u > 0, then large
values of W are likely. The power of the test for type I error a is computed by
finding the 2"« orderings Z, = (Za1, Zn2, ** * , Znn) Which give rise to the larg-
est W, values and adding the probabilities associated with these orderings.
For example, for samples of size 5, the five orderings with the largest values of
W .. corresponding to @ = % = .1563 are: (1,1,1,1,1), W, = 15; (0,1,1,1,1),
Wi = 14; (1,0,1,1,1), W, = 13: (1,1,0,1,1), W, = 12; (0,0,1,1,1), W, = 12.

2. Power calculations. The notation and procedure for computing the neces-
sary probabilities follows closely that used by Klotz [2]. The probability of
obtaining an ordering z, is:

P(Zn = 22) = nlf -+ [octrcoctnco [ i=1 fo(ts — i) dts,
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where s; = 2z,; — 1 is the sign of the variable which is 7th smallest in magnitude,
fo is the density function of the underlying distribution (assumed to be sym-
metric) with median u = 0. Klotz simplified the problem of integration over n
dimensions by reducing the problem to one of evaluating n successive one
dimensional indefinite integrals. This was done by adapting a two sample
scheme of Hodges (Klotz [1], p. 502) to the one sample problem.

Klotz defines

Aey(u) = P(Z, = 2z, and |Xi £ w forall 7).

The required probabilities are A, () for each ordering vector z, .
Note that

Aagy(u) = P(Zy = (1) and —u =Xi S u)
=[5 f(t) dt.

If the density function of the underlying distribution with median p = 0 is
denoted by fo then,

An(u) = [5*f(y + w) dy = [5fo(y) dy
= Fo(u — u) — Fo(—un),
where F, is the cdf with median 4 = 0. Similarly A (u) = Fo(u + u) — Fo(u).
Now define
(22,1) = (21, 202, *** 5 Znn, 1)
and
(205,0) = (Zn1, 2u2, *** 5 Zan, 0).
The recursion relations
A (z) = (n + 1) [§ As(Wfo(u — 1) du
and
Aeuo(z) = (n + 1) [§ Asy(u)fo(u + 1) du

make it possible to generate the probabilities for z,4; from z, . Klotz obtained
these recursion relations and computed the probabilities for all orderings z,,
1 < n £ 10, for normal shift alternatives u = 0(.25)1.5(.5)3.0. He made use
of Simpson’s rule for the numerical integration with an accuracy believed to be
4 decimal places.

For non-normal distributions having long tails it is desirable to use a numeri-
cal integration procedure which permits a longer step-size than that necessary
by Simpson’s rule. Choosing a seven point quadrature formula (Milne (3],
page 123) speeds up the computation by a factor of 3 or 4. Starting values for
this formula are obtained by using the trapezoidal rule and several applications
of Simpson’s rule. The step size can be increased by a factor of 10 using this
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formula compared to Simpson’s rule only. The probabilities for all orderings
2, with 1 < n = 10 for shifts u = .25, .50, 1.0, 2.0 and 3.0 have been com-
puted for the non central ¢ distribution with %, 1, 2 and 4 degrees of freedom.
The density functions were first scaled so that f:m fo(t) dt = .05. The accuracy
of the probabilities is believed to be at least 4 places. This was achieved by
varying the step-size as the integration proceeded. A typical integration makes
use of steps in z of the sort 0.0(.02)1.0(.2)11.0(2)111(20)1111, etc. A satisfac-
tory termination point of the integration depends of course on the nature of the
underlying density function. For example when f, is a ¢ distribution with one
degree of freedom it is necessary to integrate to about z = 10°.

3. Numerical results. Summary results of the power calculations are given in
Tables 1, 2, 3 and 4. The columns headed W are the power for selected type I
errors a for n = 5(1)10 for the one sample Wilcoxon test. For comparison, the
columns headed L give the power of a best signed-rank procedure. These figures
are obtained by sorting the probabilities in decreasing order for all orderings
2, of fixed sample size n and adding up the first 100 a %. It is clear from the
tables that for the longer tailed distributions, the power of the Wilcoxon test
(W) is rather poor relative to the best signed-rank procedure (L). Table 5 illus-
trates for n = 5, u = 1.0 the gradual weakening in power of the one sample
Wilcoxon rank sum procedure as the underlying distribution becomes farther
removed from the normal distribution. Examination of Table 5 for the Cauchy
distribution (¢ with one degree of freedom) reveals a rather interesting result.
Consider any ordering

n = (znl y%n2y "y znn)~
Define

14 ’ ’ 7
n = (znl, 2n2,y ,znn);

where 2p; = Zan_iqs for all ¢, 1 £ 7 < n. 2, is the reverse ordering of z, and
vice versa. For example, the orderings (1,0,1,1,0) and (0,1,1,0,1) are reverse
orderings. For an underlying Cauchy distribution P(Z, = 2z,) = P(Z, = z,).
This result follows directly from the fact that if X has a Cauchy distribution
with median u then ¥ = (1 + 4°)/X has a Cauchy distribution with median
u. (This was pointed out to the author by Dr. H. F. Trotter.) This result ex-
plains the weakness of the Wilcoxon test for samples from a Cauchy distribution
because reverse orderings often have very different rank sums.

Table 6 lists the leading (in the sense of rank sum) orderings for » = 10 and
u = 1.0. It should be noticed that in the case of the normal distribution, the
probabilities decrease with decreasing rank sum for approximately the first
2.5% of the orderings. For the next few orderings, the switching of probabilities
from their decreasing order is only minor. However, looking at the ¢ with 4
degrees of freedom one observes earlier switching (in the 7th largest rank sum,
i.e., RS = 49) and substantial switching after the first 2.5% of the orderings.
This lack of order in the probabilities becomes more pronounced as one moves
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to fewer degrees of freedom in the ¢ distribution. In fact there is almost a com-
plete breakdown in order for the cases of 1 and % degrees of freedom. For ¢ with
1 degrees of freedom, a pair of reversed orderings z, and 2, usually have prob-
abilities related as follows: P(Z, = 2,) > P(Z, = 2, ) provided the rank sum
of 2, is less than the rank sum of z,". There are a few pairs of reversed orderings
where this is not the case. These are cases for which the rank sums for the two
orderings are almost equal, the two orderings being almost identical.

4. Power of sign test. Table 7 presents the probabilities needed for computing
the power of the sign test. Table 8 provides some rough computations which
allow a comparison of the Wilcoxon and the sign test for the case of the Cauchy
distribution. The sign test powers were obtained by graphical interpolation
(second digit not guaranteed). Because the possible « levels for the two tests
do not match, the exact power of the sign test does not provide a ready com-
parison. Table 8 demonstrates that the sign test and Wilcoxon are comparable
in power for small o but for « > .05 and u < 1 the sign test is considerably
more powerful than the Wilcoxon. This is to be expected in lieu of the reversed
ordering discussion of the previous section.

b. Power of the {-test for the Cauchy distribution. Table 8 lists the power of
the one sample ¢ test for samples from the Cauchy distribution for the same sig-
nificance levels as those given for the Wilcoxon test. These results were ob-
tained by generating 40,000 samples of size n = 10 from a Cauchy and com-
puting the ¢ statistic for various shifts u. For n < 10 the same samples were used,
dropping the unneeded observations. The accuracy is at least .005 with a con-
fidence of .95. Hence the second digit is often in error by one unit. Even though
the Wilcoxon is low in power compared to the sign test for & > .05, it is still
more powerful than the £. This is especially true when g < 1.0.

6. Rank sum of squares as a supplementary criterion. Tables 5 and 6 contain
a column headed RSS (rank sum of squares). This column is included to demon-
strate the ability of the rank sum of squares for discriminating among orderings
with equal rank sums. The rank sum of squares has been suggested by Tukey
[4] as a supplementary criterion to a rank sum test for breaking ties. Tables 5
and 6 demonstrate that the rank sums of squares for fixed rank sum decrease
with the probabilities in the case of an underlying normal distribution. For the
other distributions the rank sum of squares fails in the same way that the rank
sum fails.

7. Conclusions. It is clear that the one sample Wilcoxon rank sum test, al-
though powerful for normal shift alternatives, (Klotz [2]), deteriorates badly in
power for the long tailed distributions considered as does the one sample ¢ test.
However it still remains a more powerful test than does the one sample ¢ test.
The sign test for these long tailed distributions is more powerful than the Wil-
coxon or ¢ test.

Preliminary investigation of the one sample Wilcoxon ignoring one or two
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observations with the largest ranks shows promise of improving the power.
Further study along these lines is suggested by the fact that the user of the Wil-
coxon test might at first reject (as outliers) the very large (in magnitude) ob-
servations that often arise if the underlying distribution is as long tailed as
those studied here. However, Table 8 demonstrates that the Wilcoxon test is not
as sensitive to outliers as the ¢ test is.
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this problem and for his many helpful comments during the course of the inves-
tigation. I wish also to thank Professor Jerome Klotz for sending me a copy of
his power calculations for the normal distribution and a copy of his computer
program. The computations were carried out on the IBM 7090 at Princeton
University. Dr. Hale F. Trotter of the Princeton Computer Center was most
helpful in finding errors in my program.

TABLE 1

Selected values of power of the one sample Wilcoxon (W) for the t-distribution
with 3 Af compared to best signed rank procedure (L)

u=.25 u = .50 p =10 pn=20 u=3.0
L w L w L w L w L w

N a

5 .03125 = 1/32 .5035 .5035 .6213 .6213 .7176 .7176 .7926 .7926 .8279 .8279
.06250 = 2/32 .6928 .5876 .7951 .6962 .8649 .7800 .9109 .8423 .9300 .8706
.09375 = 3/32 .7769 .6098 .8700 .7103 .9273 .7885 .9606 .8473 .9727 .8741

6 .01563 = 1/64 .4390 .4390 .5649 .5649 .6715 .6715 .7566 .7566 .7972 .7972
.03125 = 2/64 .6247 .5224 7456 .6434 .8311 .7395 .8886 .8122 .9126 .8456
.04688 = 3/64 .7081 .5451 .8241 .6593 .8991 .7498 .9442 .8185 .9610 .8502
.07813 = 5/64 .8127 .5658 .8981 .6714 .9465 .7564 .9725 .8220 .9815 .8526

7 .00781 = 1/128  .3827 .3827 .5136 .5136 .6284 .6284 .7223 .7223 .7676 .7676
.02344 = 3/128  .6415 .4870 .7770 .6116 .8690 .7127 .9261 .7907 .9480 .8268
.05469 = 7/128 8137 .5211 .9069 .6318 .9564 .7237 .9805 .7963 .9880 .8307
.10938 = 14/128 .9065 .6199 .9609 .7012 .9847 .7680 .9943 .8228 .9968 .8498

8 .00781 = 2/256 .5012 .4109 .6492 .5477 .7623 .6632 .8420 .7543 .8760 .7969
02734 = 7/2566  .7592 .4659 .8739 .5870 .9394 .6889 .9723 .7699 .9828 .8084
.05469 = 14/256 .8599 .5111 .9375 .6138 .9745 .7030 .9901 .7767 .9944 .8127
.09766 = 25/256 .9314 .7692 .9755 .8643 .9920 .9236 .9975 .9583 .9988 .9711

9 .00977 = 5/512 .6385 .4076 .7863 .5401 .8814 .6529 .9369 .7430 .9570 .7858
.02734 = 14/512 8127 .4446 .9124 .5610 .9630 .6633 .9853 .7477 .9916 .7887
.04883 = 25/512 .8926 .5523 .9590 .6461 .9859 .7226 .9956 .7855 .9978 .8168
10156 = 52/512 9577 .7883 .9877 .8808 .9968 .9358 .9993 .9664 .9997 .9772

10 .00977 = 10/1024 .7110 .3842 .8502 .5137 .9284 .6276 .9681 .7212 .9807 .7665
.02441 = 25/1024 .8487 .4450 .9389 .5530 .9779 .6497 .9927 .7325 .9963 .7739
.05273 = 54/1024 .9321 .7293 .9789 .8444 .9942 .9153 .9985 .9555 .9994 .9698
.09668 = 99/1024 .9696 .7729 .9925 .8681 .9984 .9269 .9997 .9608 .9999 .9731
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TABLE 2

Selected values of power of the one sample Wilcozon (W) for Cauchy distribution
compared to best signed rank procedure (L)

u=.25 u = .50 uw =10 uw=20 uw =230

L w L w L w L W L 14

5 .03125 .2264 .2264 .4351 .4351 .6542 .6542 .8096 .8096 .8692 .8692
.06250 .3326 .3326 .5608 .5608 .7612 .7612 .8816 .8816 .9225 .9225
.09375  .4389 .3959 .6864 .6132 .8681 .7902 .9535 .8938 .9759 .9294

6 .01563 .1682 .1682 .3684 .3684 .6010 .6010 .7761 .7761 .8451 .8451
.03125  .2527 .2527 .4860 .4860 .7125 .7125 :8560 .8560 .9057 .9057
.04688 .3372 .3038 .6035 .5365 .8241 .7444 .9358 .8707 .9663 .9142
.07813  .4393 .3716 .7046 .5903 .8879 .7713 .9652 .8805 .9833 .9192

7 .00781  .1249 .1249 .3120 .3120 .5521 .5521 .7440 .7440 .8217 .8217
.02344  .2578 .2324 .5281 .4683 .7797 .7004 .9169 .8476 .9558 .8990
.05469  .4047 .3313 .6896 .5559 .8869 .7466 .9667 .8648 .9845 .9078
.10938 .5705 .4600 .8308 .6648 .9583 .8071 .9923 .8904 .9973 .9221

8 .00781 1446 .1446 .3622 .3622 .6214 .6214 .8051 .8051 .8718 .8718
.02734  .3142 .2557 .6134 .4893 .8501 .7060 .9542 .8438 .9784 .8938
.05469  .4547 .3455 .7582 .5666 .9336 .7449 .9866 .8577 .9952 .9007
.09766  .5872 .4990 .8546 .7531 .9702 .9106 .9957 .9726 .9987 .986S

9 .00977  .2007 .1702 .4846 .4007 .7686 .6503 .9200 .8168 .9601 .8768
.02734  .3545 .2644 .6808 .4943 .9026 .7003 .9786 .8345 .9919 .8854
.04883  .4693 .3589 .7849 .5944 .9495 .7669 .9916 .8665 .9973 .9044
.10156  .6322 .5330 .8916 .7901 .9835 .9340 .9983 .9827 .9996 .9924

10 .00977 .2282 .1768 .5440 .4067 .8261 .6470 .9512 .8089 .9785 .80(91
.02441  .3725 .2686 .7161 .5026 .9265 .7014 .9869 .8297 .9956 .8799
05273 .5240 .4248 .8387 .7160 .9721 .9043 .9969 .9743 .9992 .9886
.09668 .6593 .5416 .9137 .7975 .9897 .9352 .9992 .9821 .9998 .9917
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with 2 df compared to best signed rank procedure (L)
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¥ u=.25 u = .50 uw=10 u=20 u =30
“ L w 1 w 1 w L w L w
5  .03125 .1154 .1154 .2624 .2624 .5603 .5603 .8338 .8338 .0186 .0186
06250 .1996 .1996 .3094 .3994 .7162 .7162 .9224 .9224 9681 .9681
00375 .2646 .2646 .4816 .4816 .7767 .7767 .9513 .0410 .9837 .9750
6 .01563 .0749 .0749 .2008 .2008 .4990 .4990 .8041 .8041 .9031 .9031
03125 1316 .1316 .3127 .3127 .6530 .6530 .9022 .9022 .9599 .9599
04688 1763 .1763 .3823 .3823 7162 .7162 .9336 .0242 .9774 .9683
07813 2519 .2483 .4880 .4749 .8100 .7787 .9654 .9308 .9899 .9733
7 00781 .0486 .0486 .1536 .1536 .4444 .4444 7754 7754 8879 8879
02344 1160 .1160 .3019 .3019 .6581 .6581 .9151 .9069 .9707 9614
05460 .2146 .2003 .4597 .4398 .8075 .7636 .9601 .0346 .9917 .9705
10938 .3475 .3296 .6298 .5819 .9150 .8473 .9935 .9557 .0989 9782
8  .00781 .0567 .0567 .1896 .1896 .5386 .5386 .8606 .8606 .0425 0425
02734 .1435 .1407 .3675 .3535 .7498 .7100 0566 .0206 .0874 0647
05460 .2362 .2227 .5157 .4606 .8603 .7875 .9886 .9384 .9980 .9706
00766 .3450 .3324 .6456 .6155 .0300 .0013 .9962 .9886 .0995 9973
9 .00977 .0742 0742 .2434 .2413 .6375 .6190 .0216 .8948 .9750 .9552
02734 .1580 .1504 .4173 .3795 .8200 .7351 .9823 .9241 .9969 9646
04883 2367 .2225 .5350 .4870 .8928 .8116 .9932 .0465 .9991 9734
10156 .3749 .3599 .6934 .6607 .9550 .9305 .0986 .9945 .9999 .9990
10 .00977 .0826 .0805 .2788 .2646 .7019 .6506 .9525 .9021 .9876 .9562
02441  .1608 .1500 .4394 .3020 .8505 .7525 .9892 .0278  .9985 .9650
05273 .2661 .2538 .5018 .5562 .0262 .8929 .0972 .9905 .9997 .9982
00668 .3857 .3671 .7210 .6810 .0665 .0416 .9994 .9955 1.0000 .9991
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TABLE 4

with 4 df compared to best signed rank procedure (L)

. w= 25 w = .50 u =10 w =20 u =30
“ L w L w L w L w L W
5  .03125 .0905 .0005 .1979 .1979 .4899 .4899 8564 .8564 .9560 .9560
06250 .1650 .1650 .3270 3270 .6744 .6744 9516 9516 .9909 .9909
00375 2270 .2270 .4154 4154 7576 7576 .9708 .9708 .9946 9946
6 .01563 .0560 .0560 .1431 .1431 4248 .4248 .8302 .8302 .9475 .9475
03125 .1032 .1032 .2412 .2412 .5999 5909 9363 .0363 .9880 .0880
04688  .1434 .1434 .3111 .3111 6842 .6842 .9507 .9507 .9927 .0927
07813 .2126 .2126 .4130 4139 .7750 7759 .9767 9755 .9967 .9951
7 00781 .0346 .0346 .1035 .1035 .3683 .3683 .8040 .8049 .9390 .9390
02344 0902 .0002 .2314 .2314 6146 .6146 .9477 .9477 .9906 .9906
05460  .1748 .1748 .3767 .3767 .7654 .7654 .9813 .9755 .0974 .9950
10938 .2013 .2897 .5360 .5304 .8862 .8684 .9969 .0883 .0999 .0072
8  .00781 .0401 .0401 .1298 .1298 .4697 .4697 .9037 .9037 .9816 .9816
02734 1114 .1114 2861 .2861 .7014 .7014 .9731 .9677 .9961 .9936
05460 1875 .1871 .4152 .4108 .8270 .8073 .9939 .9815 .0997 .9957
09766 .2865 .2854 .5509 .5460 .0076 .8994 9984 .9969 1.0000 .9997
9 .00977 .0539 .0539 .1761 .1761 .5815 .5815 .0476 9476 .9917 .9904
02734 1202 .1201 .3167 .3157 .7640 .7472 .9897 .9749 .9995 .9945
04883 .1850 .1845 .4316 .4238 .8572 .8339 0070 .9864 .9999 9967
10156 .3109 .3097 .5067 .5925 .9352 .9301 .9994 .9989 1.0000 .9999
10 .00977 0501 .0591 .1994 .1994 .6373 .6366 .9700 .9605 .9967 .9921
02441 1195 .1189 .3330 .3274 .S010 .7749 .9949 .9795 .9998 .9952
05273 .2097 .2087 .4835 4789 .8988 .8902 .9986 .9978 1.0000 .9999
00668 .3163 .3150 .6186 .6138 .9513 .0449 .0996 .9993 1.0000 .9999
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TABLE 5
Comparison of probabilities for several distributions for N = 5 and p = 1.0

Binary Octal RS RSS  Normal* taas baat Cauchy that

11111 = 37 15 55 .4216 .4900 .5603 .6542 7176
01111 = 17 14 54 .2070 .1845 .1560 .1070 .0624
10111 = 27 13 51 .1047 .0832 .0605 .0291 .0086
00111 = 07 12 50 .0632 .0408 .0239 .0087 .0024
11011 = 33 12 46 .0525 .0456 .0350 .0177 0050
01011 = 13 11 45 .0307 .0201 .0113 .0033 .0005
11101 = 35 11 39 .0244 .0311 .0324 .0291 .0229
10011 = 23 10 42 .0187 .0104 .0050 .0011 .0002
01101 = 15 10 38 .0139 .0125 .0090 .0042 .0014
11110 = 36 10 30 .0089 .0314 .0603 .1070 .1473
00011 = 03 9 41 .0126 .0059 .0024 .0004 .0001
10101 = 25 9 35 .0082 .0060 .0036 .0012 .0002
01110 = 16 9 29 .0049 .0118 .0158 .0157 .0110
00101 = 05 8 34 .0054 .0031 .0015 .0003 .0004
11001 = 31 8 30 .0049 .0034 .0022 .0011 .0009
10110 = 26 8 26 .0028 .0053 .0060 .0042 .0014

* Results obtained from Dr. Jerome Klotz and verified by the author.
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TABLE 6

Comparison of probabilities for several distributions for N = 10 and p = 1.0

Binary Octal RS RSS Normal* taat toa s Cauchy that
1 111 111 111 1777 55 385 1777 .2401 .3139 .4280 .5149
0 111 111 111 0777 54 384 1137 .1242 .1269 1113 .0785
1 011 111 111 1377 53 381 .0750 .0711 .0616 .0391 .0168
0 011 111 111 = 0377 52 380 .0531 .0434 .0322 .0163 .0061
1101 111 111 = 1577 52 376 .0505 .0447 .0357 .0185 .0050
0 101 111 111 0577 51 375 .0353 .0263 .0172 .0066 .0015
1110 111 111 1677 51 369 .0344 .0305 .0240 .0115 .0022
1001 111 111 1177 50 372 .0254 .0167  ".0097 .0030 .0006
0 110 111 111 0677 50 368 .0238 .0173 .0109 .0036 .0005
1111 011 111 1737 50 360 .0235 .0223 .0185 .0092 .0015
0 001 111 111 0177 49 371 .0191 .0113 .0058 .0016 .0003
1 010 111 111 1277 49 365 .0169 .0108 .0058 .0015 .0002
0 111 011 111 = 0737 49 359 .0161 .0124 .0080 .0025 .0003
1 111 101 111 1757 49 349 .0158 .0175 .0159 .0092 .0020
0 010 111 111 0277 48 364 L0127 .0071 .0033 .0007 .00008
1 100 111 111 1477 48 360 .0123 .0072 .0036 .0008 .00007
1 011 011 111 1337 48 356 .0114 .0075 .0041 .0010 .00007
0 111 101 111 = 0757 48 348 .0108 .0095 .0066 .0024 .00027
1 111 110 111 1767 48 336 .0104 .0145 .0154 .0115 .0044
0 100 111 111 = 0477 47 359 .0091 .0046 .0020 .0003 .00003
0 011 011 111 0337 47 355 .0084 .0048 .0023 .0004 .00003
1 101 011 111 1537 47 351 .0082 .0049 .0024 .0005 .00003
1 011 101 111 1357 47 345 .0075 .0056 .0033 .0008 .00006
0 111 110 111 0767 47 335 .0070 .0077 .0062 .0028 .00056
1 111 111 011 1773 47 321 .0065 .0130 .0171 0185 .0138
1 000 111 111 1077 46 356 .0069 .0032 .0012 .0002 .00002
0 101 011 111 0537 46 350 .0060 .0031 .0013 .0002 .00001
1 110 011 111 1637 46 344 .0060 .0035 .0017 .0003 .00001
0 011 101 111 0357 46 344 .0056 .0036 .0018 .0004 .00002
1 101 101 111 1557 46 340 .0054 .0036 .0019 .0004 .00002
1 011 110 111 1367 46 332 .0049 .0045 .0030 .0010 .0001
0 111 111 o011 0773 46 320 .0044 .0068 .0068 .0044 .0018
1 111 111 101 1775 46 304 .0037 .0130 .0232 .0391 .0498
0 000 111 111 = 0077 45 355 .0054 .0023 .0008 .0001 .00001
1 001 011 111 1137 45 347 .0045 .0021 .0008 .0001 .00000
0 110 011 111 0637 45 343 .0044 .0021 .0008 .0001 .00000
0 101 101 111 0557 45 339 .0039 .0022 .0010 .0001 .00001
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Binary Octal RS RSS Normal* lsat baat Cauchy Bt
1110 101 111 = 1657 45 333 .0039 .0025 .0013 .0003 .00001
0 011 110 111 = 0367 45 331 .0036 .0028 .0016 .0004 .00003
1101 110 111 = 1567 45 327 .0035 .0029 .0018 .0005 .00003
1011 111 011 = 1373 45 317 .0030 .0039 .0033 .0015 .00032
0 111 111 101 = 0775 45 303 .0024 .0067 .0091 .0095 .0067
1 111 111 110 = 1776 45 285 .0016 .0173 .0473 1113 .1793
0 001 011 111 = 0137 44 346 .0035 .0015 .0005 .0001 .00000
1 010 011 111 = 1237 44 340 .0033 .0014 .0005 .0001 .00000
1 001 101 111 = 1157 44 336 .0030 .0015 .0006 .0001 .00000
0 110 101 111 = 0657 44 332 .0028 .0015 .0006 .0001 .00000
0 101 110 111 = 0567 44 326 .0025 .0017 .0009 .0002 .00001
1 111 001 111 = 1717 44 324 .0028 .0019 .0010 .0002 .00001
1110 110 111 = 1667 44 320 .0025 .0020.  .0012 .0003 .00002
0 011 111 011 = 0373 44 316 .0022 .0024 .0017 .0006 .00011
1 101 111 011 = 1573 44 312 .0021 .0025 .0019 .0007 .00009
1 011 111 101 = 1375 44 300 .0017 .0038 .0044 .0032 .0013
0 111 111 110 = 0776 44 284 .0011 .0089 .0186 .0278 .0258

* Results obtained from Dr. Jerome Klotz.

TABLE 7

Probability that an observalion is positive when sampled from an underlying ¢

distribution (adjusted for scale)

Degrees of Shift u
freedom 25 .50 1.0 2.0 3.0
1 .8718 .9092 .9358 .9546 .9629
1 7429 .8467 .9186 .9586 .9723
2 .6493 7652 .8906 .9643 .9832
4 6186 7233 .8670 .9695 .9910
« 5087 .6915 .8413 .9772 .9987
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Comparison of power of Sign (8), Wilcoxon (W) and t-tests (T') for samples
from Cauchy distribution with median u
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TABLE 8

¥ u=.25 w=.50 uw= 10 uw=20 w=30
“ s w Tt s w T S w T S w T S W T
5 03125 .23 .23 .14 .44 44 .36 .65 .65 .61 .81 .81 .79 .87 .87 .86
06250 .34 .33 .25 .57 .56 .47 .76 .76 .69 .88 .88 .83 .93 .92 .89
09375 .43 .40 .33 .66 .61 .54 .83 .79 .74 .92 .89 .86 .96 .93 .91
6 .01563 .17 .17 .09 .37 .37 .28 .60 .60 .55 .78 .78 .76 .85 .85 .84
03125 .25 .25 .15 .49 49 .38 .70 .71 .63 .85 .8 .80 .90 .91 .87
04688 .30 .30 .21 .56 .54 .44 .76 .74 .68 .90 .87 .83 .93 .91 .89
07813 .43 .37 .29 .69 .50 .52 .85 .77 .73 .95 .8 .87 .98 .92 .91
7 00781 .12 .12 .06 .31 .31 .23 .55 .55 .50 .74 .74 .72 .82 .82 .82
02344 23 23 .14 52 .47 35 .72 .70 .61 .87 .85 .80 .91 .90 .86
05469 .40 .33 .25 .68 .56 .48 .87 .75 .70 .96 .86 .85 .97 .91 .89
10938 .55 .46 .39 .81 .66 .59 .96 .81 .78 .99 .89 .88 1.00 .92 .92
8 .00781 .15 .14 .07 .36 .36 .26 .64 .62 .53 .80 .81 .75 .87 .87 .83
02734 .31 .26 .16 .58 .49 .40 .83 .71 .65 .94 .84 81 .97 .80 .87
05469 .43 .35 .26 .74 57 .49 .91 .74 .71 .98 .86 .85 .99 .90 .89
00766 .55 .50 .36 .85 .75 .58 .95 .91 .77 .99 .97 .88 1.00 .99 .92
9 .00977 .19 .17 .09 .44 .40 .28 .75 .65 .56 .90 .82 .76 .94 .88 .84
02734 .33 .26 .17 .63 .49 .40 .87 70 .64 .96 .83 .81 .98 .89 .87
04883 .44 .36 .25 .73 .59 .48 .92 .77 .70 .98 .87 .84 .99 .90 .89
10156 .60 .53 .37 .87 .79 .59 .98 .93 .77 1.00 .98 .88 1.00 .99 .92
10 .00977 .22 .18 .09 .53 .41 .30 .80 .65 .57 .93 .81 .77 .97 .87 .84
02441 .36 .27 .16 .68 .50 .40 .89 .70 .64 .97 .83 .81 .99 .88 .87
05273 .50 .42 .26 .81 .72 .50 .96 .90 .72 .99 .97 .84 1.00 .99 .90
09668 .64 .54 .37 .89 .80 .59 .99 .94 .77 1.00 .98 .88 1.00 .99 .92
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