SEQUENTIAL COUNTERBALANCING IN LATIN SQUARES

By Tom R. Houston
University of Wisconsin

A I X k Latin square is an arrangement of k types into a k-order matrix, such
that each type occurs once in each row and in each column. For a general dis-
cussion of Latin squares and orthogonal Latin squares see Mann [3].

In experiments involving & successive treatments on nk subjects it is often
desirable to control progressive effects by a Latin square design. Here the
Latin square represents not a fractional selection of k* treatment combinations
from a universe of k°, but a selection of k sequences of treatments from a uni-
verse of k! permutations. Sincé residual effects from prior treatments often
affect responses, it is desirable that such squares be sequentially counterbalanced
for immediate residual effects. By this is meant that within the rows of the square
every treatment immediately precedes every other treatment an equal number
of times.

It is well known that a Latin square of order ¥ = p’ — 1 whose elements
L. ; are of the form (¢-7)(mod p’) will be sequentially counterbalanced, where
p’ is a prime and 7 and j, the row and column indices, range from 1 to k. A proof
is offered by Alimena [1], who seems unaware that his construction is a permuta-
tion by columns of a modular multiplication table, having identical sequential
properties. A more general construction is offered by Bradley [2], which satisfies
Theorem 1 below for any k¥ = 0 (mod 2).

For L any Latin square, let L. ; be the cell occurring in row ¢, column j, where
7 and j range from 0 to £ — 1.

DerinITION. A Latin square is called cyclic if L;; = m implies L; ;1, = m + ¢
for all 7, 7, ¢, where all values are reduced modulo k, as throughout this paper.

TrEOREM 1. A cyclic Latin square is sequentially counterbalanced if and only
if in any row ¢ the set of all values of d(J) is a permutation of the first k — 1 natural
numbers, for d(j) = (s — r) where Li; = r, L;i j11 = s.

Proor or NECEssiTY. From the definition of a cyclic Latin square it follows
that d(j) is independent of 7. Suppose L were a sequentially counterbalanced
k-order cyclic Latin square such that d(j) = d(j’) for some 7 > j'. Then L;; = m
is followed by L. j;1 = m + d(j). But in some row ¢’ 5 ¢, Li»,; = m is followed
by Ly = m + d(j') = m + d(j). Therefore in L, the successive types
(m; m + d(j)) occur twice. But this is impossible, since there are k(k — 1)
ordered pairs of k different types, and k(k — 1) different pairs of consecutive
cells in L.

Proor or sUrrFICIENCY. By the definition of a Latin square, m occurs in every
one of the first (k — 1) columns. Since d(j) = d(j') forj 5 j, it follows that m
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is followed by every one of the typesm + 1, m + 2, ---, m + k — 1. This
completes the proof of Theorem 1.

CorOLLARY. No sequentially counterbalanced cyclic Latin square exists of an
order k = 1 (mod 2).

Proor. Let £ = 1 (mod 2) = 2¢ + 1. If cyclic Latin square L of order k
satisfied Theorem 1, then

"o d() = XA n = ke =0 (mod k).

Butif L; o = m, we have L;x_1 = m + k¢ = m, which contradicts the definition
of a Latin square.
DerinirioN. Two k-order Latin squares within whose rows all k(k — 1)
ordered pairs of k different types ocour exactly twice are called complementary.
THEOREM 2. For any k = 2¢ —I— 1, the k-order Latin squares L' and L”, where
Li; = (=1 + 1)/2] + 4, LG = (=17 — 7)/2] + 3, are orthogonal and
complementary. Here [x] denotes the integral part of x, where x is not reduced modulo k.
Proor. L' and L” are cyclic Latin squares by definition. Furthermore, d(j)
in L' assumes the values 2, 4, , k — 1 twice. Hence every pair of types
(Lij 3 Li j41) is of the form (m m —|— 2y). for some natural number y. It follows
that ke different ordered pairs occur twice in L’. Similarly, L” contains ke pairs
of the form (m;m + 2y + 1), since d(j) in L” assumes ¢ different odd values twice
in any row. Since (m;m + 2y) = (m;m + 2y + 1), it follows that k¢ + ke =
k(k — 1) different pairs occur twicein L' and L”, so L' and L” are complementary.
To demonstrate orthogonality, set

b(j) =7 +c+1 if j is even,
=c—7 if j is odd.
Then Li; — Li; = b(j) (mod k). Now if b(2t) = b(2¢{ + 1) (mod k), then
2%+c+1=c—2 —1(modk),and 2t + 2¢' + 2 = 0 (mod k). Hence
since 2t 4 2t + 2 < 2k, we must have 2t + 2’ + 2 = k, which is impossible.
This completes the proof of Theorem 2.

An example of squares constructed by the rules in Theorem 2 follows, for
kE=17:

0615243 3425160
1026354 4536201
2130465 5640312
3241506=1L"; 6051423=1L"
4352610 0162534
5463021 1203645
6504132 2314056

The extension of this construction to within-column counterbalancing is
accomplished by permuting the last (k¢ — 1) rows so that the first column is
the transpose of the first row for both squares. The construction will also give
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pairs of Greco-Latin squares counterbalanced for sequential effects within (but
not between) alphabets.
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