BOUNDS ON THE DISTRIBUTION FUNCTIONS OF THE BEHRENS-
FISHER STATISTIC!

By M. Ray Mickey aND MorToN B. BrowN

University of California, Los Angeles

1. Introduction. It is commonly accepted in the case of two independently dis-
tributed normal variables that the distribution function of the Behrens-Fisher
statistic is bounded, for all values of the variance ratio o1*/o5’, by the distribution
functions of the Student-¢ variates with (n; 4+ n; — 2) and min (n; — 1, ns — 1)
degrees of freedom (df). By the Behrens-Fisher statistic we mean

V=[&—%— (u— )/ (s + 8°/ns)

where Ty, <+, 1, * -, Tin, a0d Za1, -+, Taj, -+, Taa, are samples from the
. . . . . 2 .
two independent Gaussian distributions N (u1, 01°) and N (uz, o2’) respectively

and
&= D@/ )
s’ = 25 (x4 — &)/ (ne — 1).

The purpose of this note is to supply an analytical proof of the above proposition-

This result has certain implications. If a critical value for the Behrens-Fisher
statistic is specified that is constant for all ratios of the observed sample variances,
then it should lie between those of the Student-¢ variates with (n; + ny — 2) df
and with min (n; — 1, n, — 1) df at the desired level of significance. In the
“equivalent degrees of freedom” approaches, it is reasonable that (n; + ny — 2)
and min (n; — 1, ny — 1) be bounds on the number of degrees of freedom with
which to enter the Student-¢ table; also we may then put limits on the tail prob-
ability. However a constant critical value is not desirable in this problem and
effective use of prior knowledge may yield critical values which are not bounded
by those of the Student-¢ variate with (n; + n, — 2) and min (ny — 1,n, — 1) df
[1].

2. Development. A formal statement of the basic proposition is as follows:

THEOREM. Let X be normally distributed with zero mean and unit variance, and
let fiW1 and f;W 2 be distributed as chi-square variates with fi and f, degrees of freedom
(df) respectively, such that X, W1, and W, are mutually independently distributed.
Then for all v in the interval 0 < v = 1,

(1) P{|Ty| < v} = P{|V,| < v} < P{|T:| < v}
where
Vy=X/(aW1 + (1 — v)Wy)*
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and T: and T are Student-t variables with min (fi, f2) and (fi + f.) degrees of
freedom respectively.
Proor. It is more convenient to work in terms of T1*, V?, and T". The variable

V.’ can be expressed as:
V= XYW+ (1 — v)Wi

(2) = [X*(i + f2)/(FiW1 + £ W5))/
(i + ) (YW1 + (1 — )W)/ (LW + foWe)]
= T/Z,,
where i
(3) T = X/ + fiWa)/ (G + f)
and
Zy = v[(fi + f)/AHWY (AW + f:W)

(4) + (1 = [h + fz)/fz]f2W2/(f1W1 + foW2)
o =9Y/g+ (1 —-yv)A-Y)/1 —g)

where Y and g are defined as

(5) Y = fiWy/ (W1 + W), g = f/(i + fo).

Equation (2) is a rearrangement of an equivalent expression given by Fisher [3].
Since (fiW: + f:W3) is distributed as chi-square with fi + f» degrees of freedom,
independently of X, T is distributed as Student-f with (fi + f:) degrees of
freedom. Also Y is distributed as a B(fi/2, fo/2) variate independently of
(fiW: + f:W;) and hence independently of T. Since E{Y} = fi/(fi + fo) = g,
E{Z,} = 1. As a consequence of the independence of T’ and Z, , P{|V,| < v} can
be expressed as

P{[V,| < o} = P{V," =)
(6) = PIT" = 2]
= E{G(VZ,; 1, fi + f2)}

in which G(F; 1, m) denotes the cumulative distribution function of the Snedecor-
Fisher F with 1 and m degrees of freedom. From the concavity of G(F), i..,
@ (F) < 0, and the linearity of Z, with respect to v, it follows that for0 < v <1,
v > 0,

(1) (37 )PYV,| <o} = B{G" (v"Zy ; 1, fi + £2) (8Z/87)} < 0.

(The propriety of differentiation under the expectation sign follows from the
dominated convergence theorem, [5], p. 126, since for 0 < yo = v = 1 < 1,
v > 0, 9°G(v’Z,) /9y exists, is integrable in Y for each v and is bounded over the
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domain 0 < Y = 1 uniformly in v.) Equation (7) implies that the minimum of
P{|V,| = v} over theinterval 0 < v < lisateithery = Oorvy = 1. At either end
point V., is distributed as Student-t so that the minimum is the smaller of
G(W’; 1, f1) and GQ(+%; 1, f,). Since G(F; 1, m) is an increasing function of m [2],
the lower bound

P{ITy| < 9} = G(v*; 1, min (i, /2)) < P{|V,] < 0}

is established for all v in the interval 0 < y < 1.
The upper bound is established by applying Jensen’s inequality [4] to (6),
from which the concavity of G implies the inequality

(8) B{G(VZy)} = G(W'E(Z,))
and since E{Z,} = 1 for all v, (8) becomes the upper bound
(9) PV, S0} S QU5 L5+ £) = P{ITH < o, b2 0,

of the inequality (1).

The limits cannot be improved because the upper bound is attained at
v =g = fi/(fi + f2), as is readily seen from Equations (4) and (6), and the
lower bound is attained at eithery = O ory = 1. Q. E.D.

A referee has noted that the theorem could be restated as applying to the dis-
tribution of convex combinations of F ratios that are based on the same denomi-
nator and have independent numerator mean squares. The result is stated here as
a corollary to the theorem.

COROLLARY 1. Let fiWo , fiW1, foW s be independently distributed as chi-square
with degrees of freedom fo ,fi,and fo . Let Fs = Wi/Wo,¢ = 1,2. Then if fo = 1,
for all v in the interval 0 < v = 1,

(10) G(F;fi+fo,1) £ P{yFi+ (1 — v)F, < F} £ G(F;min (fi,f2), 1),

where G(F; a, b) denotes the cumulative distribution function of the F distribution
with a (b) degrees of freedom for the numerator (denominator).

Proor. The result follows directly from (1) by defining Wy as Wy = X and
forming the reciprocal

1)V, = WWi+ (1 — ¥)Wol/Wo = ¥F1 + (1 — ¥)F..

Our proof of the theorem does not generalize the corollary to more than two
degrees of freedom for the denominator; the extension to convex combinations of
more than two F ratios presents no difficulties.

The original problem concerning the distribution of the Behrens-Fisher
statistics may be stated as:

COROLLARY 2. Let @y , + -+ ,®1s, ++ ,Ttng and To1, =+ ,Taiy ** * , Tan, be saMPles
from two independent Gaussian distributions N(p1 , o1°) and N (p2 oo ) respectively
and &; and s (i = 1, 2) be the sample means and variances. Then the distribution
function of the Behrens-Fisher statistic V is bounded by those of the Student-t variates
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with (n1 + ne — 2) and min (ny — 1, np — 1) degrees of freedom where
(11) V=[5 — & — (1 — )]/ (s/m + &/ns)’.

Proor. The result is established by the correspondence:

X = [(&1— &) — (u — w)/lo/m + o /nal';
(12) W, = 842/042, 1 =1,2;
v = (oi'/m)/[or’/ma + o2’ /nal;

fi=n.-—1, 2'=1,2,

where X, W, , v, and f: are the notation of the previgus theorem.
Then V., becomes

(13) Vy = X/IyWi+ (1= )Wl = (@& — &) — (1 — ) [/[s:"/ma + 8:7/mal},

which is the Behrens-Fisher statistic.
CoRrROLLARY 3. The Behrens-Fisher statistic is asymptotically normal as min
(1, n2) — 0, and the approximation error is bounded as

(14) IP{[V] < 9} —2()| £ |P{|T1| < v} —3(v)]
uniformly in 8 = o1’ /oy, where v = 0,
(15) a(v) = [2,1/(2r)e ™ *d

and where T s the Student-t variate with min (n, — 1, ny — 1) df.

Proor. Since P{|T| < v} is an increasing function of the degrees of freedom of
T [2], and approaches®(v) as m — o, the inequality (14) is implied by (1). Since
V is distributed symmetrically about zero, the asymptotic normality follows from
the limiting value zero of the right hand side of (14) as min (n;, ny) — .
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