ON THE BLOCK STRUCTURE OF CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS

By S. M. Shah

Sardar Vallabhbhai Vidyapeeth

- 1. Introduction. In an earlier paper [3], the author gave the upper bounds for the number of disjoint blocks in (i) semi-regular GD designs, (ii) certain PBIB designs with two associate classes having a triangular association scheme, (iii) certain PBIB designs with two associate classes having an L_2 association scheme and (iv) certain PBIB designs with three associate classes having a rectangular association scheme. Later on, the author [4] gave bounds for the number of common treatments between two blocks of the above-mentioned designs. In this paper, we generalise the author's [3] results and give conditions under which no two blocks of the above-mentioned designs are (i) disjoint or (ii) the same set.
- 2. Semi-regular GD designs. An incomplete block design with v treatments each replicated r times in b blocks of size k is said to be group divisible (GD) [2], if the treatments v=mn can be divided into m groups, each with n treatments, so that treatments belonging to the same group occur together in λ_1 blocks and treatments belonging to different groups occur together in λ_2 blocks $(\lambda_1 \neq \lambda_2)$. The primary parameters of such a design are v=mn, b, r, k, $n_1=(n-1)$, $n_2=n(m-1)$, λ_1 , λ_2 . They obviously satisfy the relations bk=vr, $(n-1)\lambda_1+n(m-1)\lambda_2=r$ (k-1), $r\geq \lambda_1$, $r\geq \lambda_2$. Semi-regular GD designs [1] are further characterised by $r-\lambda_1>0$ and $rk-v\lambda_2=0$.

From Theorem 2.1 of [3], we deduce Theorem 2.1.

THEOREM 2.1. If in a semi-regular GD design, b = v - m + r and v = 2k, where k is an odd integer, then no two blocks of this design are disjoint.

THEOREM 2.2. If in a given block of a semi-regular GD design with b > v - m + 1 has d blocks having a given number $l \ (\leq k)$ of treatments common with it, then

$$d \le b - 1 - [k(r-1) - l(b-1)]^2 / Q,$$

where $Q = P + l^2(b-1) - 2lk(r-1)$, and $P = k^2[(v-k)\cdot (b-r) - (v-rk)(v-m)]/v(v-m)$. Further, if $d = b-1 - [k(r-1) - l(b-1)]^2/Q$, then [P - lk(r-1)]/[k(r-1) - l(b-1)] is an integer and the given block has [P - lk(r-1)]/[k(r-1) - l(b-1)] treatments common with each of the remaining (b-d-1) blocks.

PROOF. We number the blocks B_1 , B_2 , \cdots , B_b . Let x_i denote the number of treatments common between B_1 and B_i , $i=2, 3, \cdots$, b. Let $x_i=l$ for $i=2, 3, \cdots$, (d+1).

Received 28 September 1964; revised 28 December 1965.

Then, from the author's [3] results (2.1) and (2.3), we obtain

(2.1)
$$\sum_{i=d+2}^{b} x_i = k(r-1) - dl,$$

$$\sum_{i=d+2}^{b} x_i^2 = P - dl^2,$$

where $P = k^2[(v-k)(b-r) - (v-rk)(v-m)]/v(v-m)$. Let $\bar{x} = \sum_{i=d+2}^b x_i/(b-d-1) = [k(r-1)-dl]/(b-d-1)$. As $\sum_{i=d+2}^b (x_i-\bar{x})^2 \ge 0$, we have from (2.1) and (2.2),

$$(2.3) dQ \le (b-1)Q - [k(r-1) - l(b-1)]^2,$$

where $Q = P + l^2(b-1) - 2lk(r-1)$. Since

$$Q = k^{2}[(v - k)(b - r) - (v - rk)(v - m)]/v(v - m) - k^{2}(r - 1)^{2}/(b - 1)$$

$$+ [k(r - 1) - l(b - 1)]^{2}/(b - 1)$$

$$= k^{2}(v - k)(b - r)(b - v + m - 1)/v(v - m)(b - 1)$$

$$+ [k(r - 1) - l(b - 1)]^{2}/(b - 1).$$

it follows from the author's [3] result (2.7), that, when b = v - m + 1, Q = 0 and when b > v - m + 1, Q > 0. As for this design, b > v - m + 1, we have Q > 0. Hence, we have from (2.3)

$$(2.4) d \le b - 1 - [k(r-1) - l(b-1)]^2/Q.$$

If the equality sign holds in (2.4), then all x_i 's are equal, $i = d + 2, \dots, b$ and $x_i = [P - lk(r-1)]/[k(r-1) - l(b-1)]$ is an integer and the given block B_1 has [P - lk(r-1)]/[k(r-1) - l(b-1)] treatments common with each of the remaining (b-d-1) blocks.

The author's [3] earlier Theorem 2.1 follows as a corollary from the above theorem when l=0.

From Theorem 2.2, we deduce the following Theorem:

THEOREM 2.3. If in a semi-regular GD design, b = v - m + r and v = 2k, then no two blocks of this design are the same set.

PROOF. Let a block of the given design have d blocks having all the k treatments common with it. Then, using Theorem 2.2 for b = v - m + r and v = 2k, we obtain

$$(2.5) d \le (r-1)/(r+1) < 1.$$

Hence, d = 0, which proves the theorem.

Combining Theorems 2.1 and 2.3, we obtain the following theorem:

Theorem 2.4. If in a semi-regular GD design, b = v - m + r and v = 2k, where k is an odd integer, then no two blocks of this design are (i) disjoint or (ii) the same set.

3. PBIB designs with two associate classes having a triangular association

scheme. A PBIB design with two associate classes is said to have a triangular association scheme [2], if the number of treatments is v = n(n-1)/2 and the association scheme is an array of n rows and n columns with the following properties:

- (a) The positions in the principal diagonal are blanks;
- (b) the n(n-1)/2 positions above the principal diagonal are filled by the numbers $1, 2, \dots, n(n-1)/2$, corresponding to the treatments;
 - (c) the array is symmetric about the principal diagonal;
- (d) for any treatment θ , the first associates are exactly those treatments which lie in the same row and the same column as θ .

The primary parameters of this design are v = n(n-1)/2, b, r, k, λ_1 , λ_2 , $n_1 = 2n - 4$, $n_2 = (n-2)(n-3)/2$.

From Theorem 3.1 of [3], we deduce Theorem 3.1.

Theorem 3.1. If in a PBIB design with two associate classes having a triangular association scheme with $rk - v\lambda_1 = n(r - \lambda_1)/2$ and b = v - n + r, and v = 2k, where k is an odd integer, then no two blocks of this design are disjoint.

THEOREM 3.2. If in a PBIB design with two associate classes having a triangular association scheme with $rk - v\lambda_1 = n(r - \lambda_1)/2$ and b > v - n + 1, a given block has d blocks having a given number $l(\leq k)$ of treatments common with it, then

$$d \le b - 1 - [k(r-1) - l(b-1)]^2/Q$$

where $Q = P + l^2(b-1) - 2lk(r-1)$ and $P = k^2[(v-k)(b-r) - (v-rk) \cdot (v-n)]/v(v-n)$. Further, if $d = b-1 - [k(r-1) - l(b-1)]^2/Q$, then [P - lk(r-1)]/[k(r-1) - l(b-1)] is an integer and the given block has [P - lk(r-1)]/[k(r-1) - l(b-1)] treatments common with each of the remaining (b-d-1) blocks.

The proof is similar to that of Theorem 2.2.

The author's [3] earlier Theorem 3.1 follows as a corollary from the above theorem when l = 0.

From the above theorem, we deduce the following theorem:

Theorem 3.3. If in a PBIB design with two associate classes having a triangular association scheme with $rk - v\lambda_1 = n(r - \lambda_1)/2$, b = v - n + r and v = 2k, then no two blocks of this design are the same set.

The proof is similar to that of Theorem 2.3.

Combining Theorems 3.1 and 3.3, we obtain the following theorem:

THEOREM 3.4. If in a PBIB design with two associate classes having a triangular association scheme with $rk - v\lambda_1 = n(r - \lambda_1)/2$, b = v - n + r and v = 2k, where k is an odd integer, then no two blocks of this design are (i) disjoint or (ii) the same set.

4. PBIB designs with two associate classes having L_2 association scheme. A PBIB design with two associate classes is said to have an L_2 association scheme [2], if the number of treatments is $v = s^2$, where s is a positive integer and the treatments can be arranged in an $s \times s$ square such that treatments in the same row or the same column are first associates; while others are second associates.

The primary parameters of this design are $v = s^2$, b, r, k, λ_1 , λ_2 , $n_1 = 2(s - 1)$, $n_2 = (s - 1)^2$.

From Theorem 4.1 of [3], we deduce the following theorem:

THEOREM 4.1. If in a PBIB design with two associate classes having an L_2 association scheme and $rk - v\lambda_1 = s(r - \lambda_1)$, b = v - 2s + r + 1 and v = 2k, where k is an odd integer, then no two blocks of this design are disjoint.

THEOREM 4.2. If in a PBIB design with two associate classes having an L_2 association scheme and $rk - v\lambda_1 = s(r - \lambda_1)$ and b > v - 2s + 2, a given block has d blocks having a given number $l(\leq k)$ of treatments common with it, then

$$d \le b - 1 - [k(r-1) - l(b-1)]^2 / Q,$$

where $Q = P + l^2(b-1) - 2lk(r-1)$ and $P = k^2[(v-k)(b-r) - (v-rk) \cdot (s-1)^2]/v(s-1)^2$. Further, if $d = b-1 - [k(r-1) - l(b-1)]^2/Q$, then [P - lk(r-1)]/[k(r-1) - l(b-1)] is an integer and the given block has [P - lk(r-1)]/[k(r-1) - l(b-1)] treatments common with each of the remaining (b-d-1) blocks.

The proof is just similar to that of Theorem 2.2.

From the above theorem, we deduce the following theorem:

THEOREM 4.3. If in PBIB design with two associate classes having an L_2 association scheme and $rk - v\lambda_1 = s(r - \lambda_1)$, b = v - 2s + r + 1 and v = 2k, then no two blocks of this design are the same set.

The proof is similar to that of Theorem 2.3.

Combining Theorems 4.1 and 4.3, we obtain the following theorem:

Theorem 4.4. If in a PBIB design with two associate classes having an L_2 association scheme with $rk - v\lambda_1 = s(r - \lambda_1)$, b = v - 2s + r + 1 and v = 2k, where k is an odd integer, then no two blocks of this design are (i) disjoint or (ii) the same set.

5. PBIB designs with three associate classes having a rectangular association scheme. A PBIB design with three associate classes is said to have a rectangular association scheme [5], if the number of treatments $v = v_1 v_2$ can be arranged in the form of a rectangle of v_1 rows and v_2 columns, so that the first associates of any treatment are the $(v_2 - 1)$ treatments of the same row, the second associates are the other $(v_1 - 1)$ treatments of the same column; while the remaining $p = (v_1 - 1)(v_2 - 1)$ treatments are the third associates. The primary parameters of this design are $v = v_1 v_2$, b, r, k, $n_1 = v_2 - 1$, $n_2 = v_1 - 1$, $n_3 = n_1 n_2$, λ_1 , λ_2 , λ_3 . Vartak [5] has proved that the characteristic roots of NN' of this design are $\theta_0 = rk$, $\theta_1 = r - \lambda_1 + (v_1 - 1)(\lambda_2 - \lambda_3)$, $\theta_2 = r - \lambda_2 + (v_2 - 1)_3 (\lambda_1 - \lambda_3)$, $\theta_3 = r - \lambda_1 - \lambda_2 + \lambda_3$. Here, we consider this design with $\theta_1 = 0 = \theta_2$.

From Theorem 5.1 of [3], we deduce the following theorem:

Theorem 5.1. If in a PBIB design with three associate classes having a rectangular association scheme and $\theta_1 = 0 = \theta_2$, and b = p + r and v = 2k where k is an odd integer, then no two blocks of this design are disjoint.

1020 s. m. shah

THEOREM 5.2. If in a PBIB design with three associate classes having a rectangular association scheme and $\theta_1 = 0 = \theta_2$ and b > p + 1, a given block has d blocks having a given number $l(\leq k)$ of treatments common with it, then

$$d \leq b - 1 - [k(r-1) - l(b-1)]^2/Q$$

where $Q = P + l^2(b-1) - 2lk(r-1)$ and $P = k^2[(v-k)(b-r) - p(v-rk)]/vp$, p being equal to $(v_1-1)(v_2-1)$. Further if $d=b-1-[k(r-1)-l(b-1)]^2/Q$, then [P-lk(r-1)]/[k(r-1)-l(b-1)] is an integer and the given block has [P-lk(r-1)]/[k(r-1)-l(b-1)] treatments common with each of the remaining (b-d-1) blocks.

The proof is similar to that of Theorem 2.2.

The author's [3] earlier Theorem 5.1 follows as a corollary from the above theorem when l=0.

From the above theorem, we deduce the following theorem:

Theorem 5.3. If in a PBIB design with three associate classes having a rectangular association scheme and $\theta_1 = 0 = \theta_2$, b = p + r and v = 2k, then no two blocks of this design are the same set.

Combining Theorems 5.1 and 5.3, we obtain the following theorem:

THEOREM 5.4. If in a PBIB design with three associate classes having a rectangular association scheme with $\theta_1 = 0 = \theta_2$, b = p + r, and v = 2k, where k is an odd integer, then no two blocks of this design are (i) disjoint or (ii) the same set.

REFERENCES

- [1] Bose, R. C. and Connor, W. S. (1952). Combinatorial properties of group divisible incomplete block designs. Ann. Math. Statist. 23 367-383.
- [2] Bose, R. C. and Shimamoto, T. (1952). Classification and analysis of partially balanced designs with two associate classes. J. Amer. Statist. Assoc. 47 151-190.
- [3] Shah, S. M. (1964). An upper bound for the number of disjoint blocks in certain PBIB design. Ann. Math. Statist. 35 398-407.
- [4] Shah, S. M. (1965). Bounds for the number of common treatments between any two blocks of certain PBIB design. Ann. Math. Statist. 36 337-342.
- [5] VARTAK, M. N. (1959). The non-existence of certain PBIB designs. Ann. Math. Statist. 30 1051-1062.