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1. Introduction. This paper deals with the problem of finding (necessary or
sufficient) conditions for the relative stability and for the strong relative sta-
bility of sums of random variables (rv) which form a non-homogeneous Markov
chain; we obtain also some results for the sums of arbitrarily dependent rv.

The results obtained in this paper are of classical form, i.e. they come very
close to those obtained for mutually independent rv ([1], [3]-[7]); these classical
results themselves remain true for a very large class of non-homogeneous Markov
chains (a; > N > 0,7¢I = (1,2, ---)) and some of them for arbitrarily de-
pendent rv. In the same way we obtain new results for homogeneous Markov
chains (a; = XA > 0,7 ¢ I'). These results contain as particular cases the analogous
results for mutually independent rv (a; = 1,4 ¢ I'). This paper contains also some
new results for mutually independent rv.

For Markov chains, we express our results by means of the ergodic coefficient o
of a stochastic transition function [2]; in [9] there can be found several of its
definitions and properties that we shall use here; we shall also use the concept
of p-quantile, the properties of which may be found in [13].

A part of these results were announced in preliminary papers ([11], [12]).

2. Notations. Let (3;, Z;) be a measurable space, x; the elements of U;,
A measurable sets, elements of the o-algebra Z: (¢ ¢ I). If the sequence of rv
{£:} is a Markov chain, let us consider that it has the stochastic transition func-
tions Pi(x:, Ai11). Let a; denote the ergodic coefficient of P; ; that is

a; = 1 — Supx,yeﬁli,AeE,'+1 |Pi(x) A) - Pi(yy A)l'

Set 8, = min; cicn a; . Assume o; > 0 for each ¢ ¢ I, because in many important
formulae ([8]-[10])B, appears in the denominator.

3. Definitions. {£,} is (a) stable (S); (b) strongly stable (SS); (c) relatively
stable (RS); (d) strongly relatively stable (SRS) if there is some sequence of
constants {d.} so that respectively (a) {£. — d.} converges in probability to
zero, (b) {¢, — d.} converges almost everywhere to zero, (¢) {£,/d,} converges
in probability to one, (d) {£./d.} converges almost everywhere to one.

{£.} is (a) normally stable (NS), (b) normally strongly stable (NSS), (¢) nor-
mally relatively stable (NRS), (d) normally strongly relatively stable (NSRS) if
in the given definitions we may take d, = M¢, , the expectation of ¢, .

We set ¢, = ZZ’=1 &

Let us suppose that {{,} is RS with constants {d,.}; the &/d, (1 S ¢ < nel)
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are asymptotically constant if there exists a sequence of constants {a,} so that for
any ¢ > 0,

(1) maxi<k<n P{|& — ai|/dn = ¢ >0 (n— ).

Let us suppose that {{.} is SRS with constants {d,};then ¢;/d, (1 £ i S nel)
are strongly asymptotically constant if there exists a sequence of constants {a.}
so that

(2) P{maxi<i<n & — al/dn > 0,n — o} = 1.

They are asymptotically infinitesimal, respectively strongly asymptotically in-
finitesimal, if a, = 0 (nel).

The sequences {£.:} (¢ = 1, 2) are equivalent if P{f, 5= &) — 0 (n — )
and strongly equivalent if D_m—y Pltn 5 fn} < + 0.

We shall exclude the case when all the {£,} are constants.

4. Used results. Let us denote by D¢ the variance of the rv ¢ and
D n = Z;lml -sz .

LemMA Ly . ([8], [9]). If the rv {&} form a Markov chain, they satisfy the in-
equalities C'D,B, < D¢n < CD,/B. , where C = 9 + 861 ¢ = 107%

If the rv {&} form an mth order Markov chain, they satisfy the inequality D¢, <
C-D,/B, where C = 8(1 + 6")m + 1.

Let us denote by r(¢; p) or (if we do not specify the value of p) by r¢ the
p-quantile (0 < p < 1;¢ = 1 — p) of the rv £ i.e. the real number for which the
two inequalities P{¢ = r¢} = p, P{¢ = r&} = q are simultaneously satisfied.

Lemva L, [13]. For any real valued rv & and any real number a the inequality
P{t < a} = pimpliesr(&;p) < aand P{t = a} = qimpliesr(&,p) Z a; £ S g
implies r¢ = .

Let us denote by E’ the complement of the event E.

LemMA L; [10]. If for a sequence {E;} of random events in a Markov chain, the

series
2% P(E: | Biv)
diverges, then with probability 1 an infinite set of the E; occurs.

b. Auxiliary results. Here {£,} is a sequence of arbitrarily dependent rv.

LemMA 1. If {£} is S or SS with constants {d,}, then the necessary and sufficient
condition to be so also with the constants {d,’} ts d,’ — dn — 0 (n— ).

If {£.} s RS or SRS with the constants {d.}, then the necessary and sufficient
condition to be so also with the constants {d,'} is dy'/dn — 1 (n — ).

The proof follows immediately from the definitions of S, 88, RS, SRS.

Let us write (¢, ;p) = v

LemMa 2. If {£,} s S or SS with the constants {d,}, then r, — d, — 0 (n — )
for any p(0 < p < 1).



1226 MILLU ROSENBLATT-ROTH

If {£.} is RS or SRS with the constants {d.}, then rn/d, — 1 (n — ) for any
p(0 < p <1).

Proor. Let us consider therv N\ = & — du, u = (&/dn) — 1 and the random
events

Ai={N =¢, A2={u =¢,
By = {\ = ¢, B, = {u = €,
Ci={N2 —¢, Co={u=—¢.

Obviously 4: € B:, A; C C: (¢ = 1, 2) and from the definitions of S, RS,
follow P(B:) — 1, P(C:) = 1 (n — ) so that P(B:) = p, P(C:) Z ¢(n > N)
for any givenp (¢ = 1, 2). From Lemma L it follows that [r, — d.| < € (n > N)
in the case of S and |(7./d,) — 1] < € (n > N) in the case of RS. Because SS
implies S and SRS implies RS our lemma is proved.

CoROLLARY. If {£,} is S, SS, RS, or SRS, we may consider that the defining con-
stants are {r,} for any p(0 < p < 1).

Let us write r(&i ; i) = Tni -

LemMa 3. If {£.) (1 = 1, 2) are equivalent, then they are S or RS only simul-
taneously and in this case rpy — Taz— 0 (n— ) forany p: (0 < ps < 1,7 =1,2).

If {£.:) (i = 1, 2) are strongly equivalent, then they are SS or SRS only simul-
taneously and in this case 1z1/Tms — 1 (n— ) forany p; (0 < ps < 1,7 = 1, 2).

Proor. Let us set

Meij = Ei — Thjy Avi; = {lnmil > ¢,

Agi; = {SUDksn [miii] > €}, Asij = {|nmisl > e1as},

Agij = {SUDi>a r;illﬂkijl > ¢},

Eln = Egn = {fnl = Enz}, E2n = E4n = nk>nElk7 (17.7 = 17 2; k; ns[)

If P(Asij| Ean), P(Asis | E.,.) are conditional probabilities, then

P(Am‘j) = P(Esn)P(Asij l Esn) + P(E:m)P(A“j | E;n)
< P(Aui| BEw) + P(En) = P(Aw) + P(Ew),
ie.
IP(4s:) — P(Aui)| < P(Ea), (4,7 =1,2,1=s =4 nel)

The proof follows from Lemma 2 and its corollary, together with the fact that
P{supiss |wx]| > ¢} — 0 (n — =) for any ¢ > 0 is equivalent with P{w, — 0,
n— o} = 1.

REMARK. Because {£,) is obviously equivalent and also strongly equivalent
with itself, we obtain the following results: Let us denote (&, ; ps) = ri. If
{£,} isS or SS then 7y — 72 — 0 (n — ) and if it is RS or SRS, then 741/ — 1
(n — ) for any p: (0 < p; < 1;¢ = 1, 2). Let us denote r(&. , p) = 7a, Mk,

= t,.If {£,} is NS or NSS then t, — 7, — 0 (n — «) and if it is NRS or NSRS
then t,/r, — 1 (n — ) forany p (0 < p < 1).
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LemwmA 4. For an increasing sequence of positive numbers {p,} we denote a, =
pn — pno. The conditions (a) pn — ©, poi/pn — 1 (n — =) and (b)
maxi<k<n (A/pn) = 0 (n — ) are equivalent.

The proof of Lemma, 4 is left to the reader.

6. Results for arbitrarily dependent rv. Let us denote r(& ; p) = v, M&, = &,
Ukt = Uk = Th, Uke = Uka = b (K€ I), Mni = SUPkon |8 — uni|, (2 = 1, 2), 90s =
SUPk>n l(Sk/uki) - 1‘) ('L = 3) 4)) P{fn < x} = Fn(x): P{"Im' < x} = Fﬂi(x)>
(1 =4i=4),f(x) =2*/(1 42",

TaEOREM 1. The relation
| f(z) - d¥[ra(z)] — 0 (n— )

1s a necessary and sufficient condition for {£,} to be:

(a) Sif VW, = Fo, m(z) = 2 + 103

(b) SS¢f ¥, = Fp, m(z) = x;

(¢) RS ¥, = F,,m(z) = (1 4+ z)rs;

(d) SRS 4 ¥, = Fu3, ma(x) = 2;

(a") NS/Lf‘I/n = Fn:”n(x) =2+ t;

(bl) NSS if ¥, = Fpy, Wn(x) =T

(¢') NRSif ¥, = F, ma(z) = (1 4+ 2)tu;

(d) NSRS ¢f ¥, = Fu, m(z) = =z.
For all these cases sufficient conditions are

[ 2® d¥,[r.(x)] — 0 (n— ).

Also Dt /uai — 0 (n — ) implies RS (¢ = 1) and NRS (¢ = 2).

Proor. We obtain the first results using the following facts: (1) the corollary
of Lemma 2; (2) the remark at the end of the proof of Lemma 3; (3) the necessary
and sufficient condition for {£,} to be asymptotically infinitesimal is
SUpi<i<n | f(2) dFa(z) — 0 (n — ), ([3], Section 20, Lemma 2). The other
results are consequences of these.

Let us denote r({r ;) = pu -

THuEOREM 2. Let us suppose that £, = 0 (n e I). The relation

(3) pn —> @ (n— )

(a) is a necessary and sufficient condition for &/p, (1 £ 7 = n ¢ I) to be asymp-
totically constant if {¢.} is RS;

(b) s a necessary and sufficient condition for £:/pn (1 £ 1 S nel) to be strongly
asymptotically constant if {¢.} 7s SRS.

Proor. Let us denote:

IA

o1 = (Sk/pPrn) — 15 02 = (Ey — Qip)/Pry 5
03 = ($kpt/Prp—) — 1; 01 = (Ey — @r,)/pn s
wr = {les = 8/2}; we = {leo| = 8};

ws = {log| = 8/2}; wi = {log = 8};
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ws = {maXigi<a (|& — al/pn) = 0,n — w};
ws = {led = 8;n > N}; w; = {|gs| = 8;n > N};
wg= {1 > 0,n— w}; @ ={p—0,n— o}
wo = {2 0,mn—> ©}; = pp— pa1.
Let us consider that £ is the first non-identically vanishing rv in {£,} and set

on = {|& — al/on > €}; wie = {|& — a|/pn = 0;n — o},

(a) Sufficiency. We shall prove that if {{,} is RS, then (3) implies (1).

Let us suppose that this is not true, i.e. that there exist some numbers a > 0,
6 > 0, so that for every n ¢ I we may find k, ¢ I(k, < n) for which, considering
the corollary of Lemma 2, P(ws) = a. In this case k, — © (n— ) because other-
wise this inequality would not be true beginning with a definite #.

From Lemma L, it follows that pi,—1 < pr, < pn 50 that ws C w.. From
o1 = @2 + ¢3°pr,—1/pr,, it follows that |p1| = |ps] — |es] and therefore
w2 Nw3g C wy, ile. w3nws C w , P(wl/) =< P(w;;’) + P(w4,). Because {g’n} is RS we
have P(ws') < /2 (n > N) and consequently P(wi1) = a/2 (n > N) which isin
contradiction with the RS of {¢.}.

Necessity. From (1) it follows that P(wy) — 0 (n— o) i.e. (3).

(b) Sufficiency. We shall prove that if {{,} is SRS, then (3) implies (2). Let us
suppose that this is not true, i.e. there exists a number o > 0 so that
P(ws) < 1 — a. In this case there exists a number & > 0, a sequence
kn = n (kneI) and a number N so that P(ws) = a. As in the previous case
kn — o (n — ); obviously wsg C w;. Because {{,} is SRS we have P(ws) =
P(wy) = 1 and from |gs| < |e1| + |es| it follows that wsn we C wye 1.6. Pwy) = 1,
which is in contradiction with P(w;) = a.

Necessity. From (2) it follows that P(w) = 1,i.e. (3).

THEOREM 3. Let us suppose that £, = 0 (n e I). The relations (3) and

(4) pn1/pn — 1 (n— )

(a) are a necessary and sufficient condition for £;/p, (1 < 7 < n £ I) to be asymp-
totically infinitesimal, if {¢n} s RS;

(b) are anecessary and sufficient condition for £:/pn (1 < i < n e I) to be strongly
asymptotically infinitesimal, if {¢.} is SRS.

Proor. Let us denote:

= {&/pn < ¢};

= {l& — aul/pn < ¢/2},
wy = {&/pn < €¢/2};

= {

= {

= {

w1

W
w4 maxi<i<n (&/pn) = 0,n — o};
maXi<i<n (|8 — ail/on) =5 0,0 — o};

w5

ws max; <k <n (G/pn) — 0,1 — o},
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Let us consider that &; is the first non-identically vanishing rv in {£,} and set
w7={£i/Pn_)07n_—)°°}; w8:{£i/Pn<e/2}'

(a) Sufficiency. By our conditions, (1) follows from Theorem 2(a), i.e.,
P(w) = 1 (n — =) and from Lemma 4 we obtain ax/p. < maxXi<r<a (ar/pn) =

¢/2(1=k=n>N). From§ — ax < |& — ax| it follows that w, C w; (n >N)
from which we obtain the desired result.

Necessity. Let us suppose that max; <x<n P(ws) =1 (n — ). From P(ws) — 1
(n — ) it follows (3); from Theorem 2(a) we obtain P(ws') — 0 (n — =) for
any & = n. The result follows by choosing k£ = n, since the convergence to zero in
probability of (¢, — a.)/p» and of &./p, implies a,/pn — 0 (n — ), i.e. (4).

(b) Sufficiency. By our conditions the relation (2) follows from Theorem 2(b),
i.e., P(ws) = 1. Using Lemma 4 we obtain ws = ws from which follows the wanted
result.

Necessity. Let us suppose that {{.} is SRS and P(ws) = 1. From P(wg) = 11it
follows (3); from Theorem 2(b) it follows P(ws) = 1. From ws n ws C ws we ob-
tain maxi<i<a (@/pn) — 0 (n — o) and using Lemma 4 it follows (4).

7. The RS of {{,} for Markov chains. Let us set ax = pr — pr—1, Ain =

{l& — ail = € puBal.
TuarOREM 4. If £, = 0 (n e I), for the RS of {{.} it is sufficient that for any e > 0,

(5) 2it f 4 AFi(z) — 0 (n— @);
(6) o i far w dF(w) = 1 (n— ).
ProoF. Let us define the sequence of rv & where & = & if |& — ai] <epnBn

and & = @ in the contrary case. Obviously, Awm = {& = &'}. We set
o= L

Rn = {g‘n # g-n/}, Wkn = P(Akn)y

on = (1/pn)* D hmt GxOhn

An (l/pn)'Zi;l fAk,.' z dFy(z),

so that we may express (5), (6) in the form D_j wim = 0(1), \a = 1 + o(1).
From R C Uici<n Asa, using (5), it follows that {¢.}, {¢.} are equivalent. Now
we prove that {¢,'} is RS.

Obviously

Mfk/ = fak,.' x dFk(x) + fAk,. Ay, dFk(x) = ap — €pnBn
M(Ek,)z < (ak + épan) 'Mgkl7
ng, < 2€Pnﬁn‘M£k/; M(?n’/Pn) =M + on.
From Lemma L, it follows that ax < pr < po (1 £k < n) and oy £ D fmy Wi SO
that M (¢.'/pa) = 1 4+ o(1). By means of the first part of Lemma L it follows
that D(£a'/pa) < C- D ka1 D&'/pa’Br < 2eCM ({2 /pn) = 2¢C + o(1) and that

M(t/on)* = D(&/pw) + [M(5'/pa)P < 1 + 2¢C + o(1). By means of
Chebychev’s inequality and Lemma 3 the proof is complete.

It
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Let us set
Bkn = {Ek g epnﬁn}, Gkn = {O é Ek < epnﬁn}~
TeHEOREM 5. If £, =2 0 (nel),ai > AN > 0 (2 e 1), in order that {{.} be RS and

£/pn (1 = 17 = nel) be asymplotically infinitesimal, it s sufficient that for any
e> 0,

(7) > i1 [ 5y, dFe(x) — 0 (n— o);
(8) Pn—l' ZI:;]. fak” xT dFk(x) —1 (’n — © )

Proor. (7) and (8) imply (3). We may remark that (7) and (8) imply
onBn — © (n— « ). Indeed, let us suppose that there exists a finite number d > 0,
so that for any N there is some n > N so that p.8. < d. Because E; = {& = e-d}
C Bin (1 £ k = n) we obtain

>t P(E) £ D w1 P(Bin).
From (7) it then follows that P(E;) =0(1 =k = n) for any ¢ > 0. From
£ = 0 (ke I) it follows that P{& = 0} = 1 (ke ) and Y i=1 [,z dF(z) = 0
which is in contradiction with (8). Consequently p,8, — « (n — «) and from
0 < 8. = 1 we obtain (3).

(7) and (8) tmply (4). Let us suppose that this is not true. In this case we may
define a number w (0 < w < 1) so that for any N there is some n > N so that
pn_1/pn < 1 — w. Let us consider ¢ = »/8 and N sufficiently large so that for
n > N the relations

(9) Sort [ dF(z) < 1,
(10) lon™ i [ @ dFr(z) — 1] < /4

hold and also those that we obtain from them by taking n — 1 instead n. From
puBn — ® (n — ) it follows that Gin—1 C Gi. and let us denote Ly, = Gra
— Gyna1 C B ObViOllSly

(1/pn)* Lk=1 [ dFR(2) = (1/pn) " f 6o & dFn(2)
+ (pue1/Pn) (1/pnt) * D=t f apnes @ AF k()
+ (1/pu)* 2oit [ 1 dFk(x) < (1/n) - J Gy €pnBn dFn ()
+ (1 — ©)(1 4+ w/4) + (1/pn)* 245 [ 140 €paBn dFi(2)
<28, + (1 — 0)(1 4+ w/4) <1 — w/2

which is in contradiction with (10), i.e. it is not possible to define a number w so
that for any N there is somen > N so that p.—1/p, < 1 — w and consequently (4)
is true.

Because (7) and (8) imply (3) and (4), from Lemma 4(b) it follows that they
imply maxi<k<a (ar/pn) — 0 (n — ). In this case ax — epnfn < 0 (1 = &
< n > N).Indeed, if for k = ko this would not be, i.e. ax,/pn > €8, (n > N), from
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Lemma 4(b) it would follow that 8, — 0 (n — o ) which is in contradiction with
the conditions of our Theorem.

(7) and (8) wmply (5) and (6). Let us denote Hi, = {0 = & = 2€048n}, Thn =
{0 £ & = ar + €paBa}. Obviously, from the previous it follows that A, < Bia,
Gin C Trn C Hy, so that

[ agn AFW(z) < [5,, dFW(z),
[amzx dFi(z) £ [p, 2 dFy(z) £ [m, zdF(z) (1 =k = n)

and our theorem is proved.

ReMARrks. (1) If s > N> 0, (tel), 7, = Min, Mé, < + (nel), thenin
order that {{,} be NRS and £/, (1 < ¢ < n ¢ I) asymptotically infinitesimal it is
sufficient that for any ¢ > 0,

PR Z;Ll fA,mx dF(x) —> 1 (n— «)
where A, = {0 £ & < emaB.}. If we denote Thn = {& = eruB.}, obviously

Dbt [ dF(z) £ (Nra) ™ 2ot [ 1y, @ dFu(2)
()1 — 7 Dk [ ap @ dF ()}

and from Theorem 5 follows our result.

(2) In the case of a stationary and homogeneous Markov chain with positive
ergodic coefficient, it follows that {£,} are all identically distributed and instead
of (7) and (8) we may take n- [ 5, dF(z) — 0, (n — ), and np, - [ g, © dF ()]
— 1(n — o) where F(z) = P{§ < z}, B, = {0 £ & = ep}, and
Gn = {Ek > epn}.

THEOREM 6. If D,/7,"8, — 0 (n — ), then {{,} is NRS.

The proof follows from Theorem 1(c¢’) using Lemma, L; .

REMARK. If ay > N> 0 (k £ I) (e.g. in the case of a homogeneous Markov chain
or for independent rv) we may take D,/7,. — 0 (n — ) instead of the condition
of Theorem 6.

If D& < C < + o (ke I) wemay take 7,°8./n — © (n— o) and if these two
conditions are satisfied, we may take ,°/n — © (n — ).

8. The SRS of {{,} for Markov chains. Let us denote by {c;} a non-increasing
sequence of positive constants, and set

Dum = D tpir D, Um,,‘ = MaXn <k <m Ck |§x — M,
K=1+4+6, K = (20K)} &=Ke e=Ke/\
LeMmMmA 5.
(11) P{Upn Z ¢ = & Br - (¢a’Da + Dom);
(12) P{Umn Z €} < & "+ (ca'Da + Dum) (s> N> 0,iel).

1A

Proor. Without any loss of generality we may suppose M = 0 (¢ I). Let us
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define the constants vs (1 Sk <m + 1) by v = ¢ (1 £k £ m), Ympr = 0 and
let us denote vi° — viq1 = m (r £ k = m),
S, = ZZLT Tkl (n Er =m),
E., = {v:ltl < 5m

IA

s<nrvldzed (n=r=m),
Eni= {76l <en=s =01l
Obviously {Unm = ¢ = U,<,<n E, and because the E, are disjoint,
‘ P{Uwn Z ¢ = 2.7= P(E,).
From S, > 8, (n < r < m) and from
=8+ Yiend, H'26"+2 Tia Xkl (P Sk =m)
(if & = r, the double sum vanishes) it follows that )
M(S.|E) =2 M(S, | E) 2 Yierme- M5 | E)  (n— 1

=r =m),
MM B) 2 €970 + 2 Sin 2o M(8k5 | Ey) (r =k =m)

i.e.
€S MSa|E) + 2 i miIn (n <r =m),

where I, = i1 ¥ et [IM(&5 | E)|, n S v Sk £ m).
Using the same methods as in the proof of Lemma 1 from [9] it is easy to obtain
Iy < 2KBn -2 51 D(&:| E) (r <k =m);ie.

ﬂm

€ < M(Sa|Ey) + 4KBn '+ 2 im {mi- 251 D(&: | E,)}
= M(S. | E) + 4KBn {2t D(&: | B,) + Dtepin¢D(E: | E.)}.
Since for any rv £,
Yt 1 P(E,)D(£] E') < Dg,

it follows, by means of Lemma L, that - Y r.P(E,) £ MS, + 4KB, "
(¢’ *Du + Dum) and M8, < 16KBu '+ (¢a’Dy + Dym) from which we obtain the
proof of (11); (12) is a consequence of (11).
REeEMARK. This lemma contains (¢x = 1, ke I;n = 1) Lemma 1 from [10].
If1 < zel,wedenotes™ = s,2"" =v,2" = 0,2""" = h, pm = 7.8,

= D e b (6 i <hju,mel).
TraEOREM 7. If for some z,
(13) 2onmiw, -DEy < oo

then {¢,} is NSRS.

If &, = 0 (nel) and if there are some numbers a, b, ¢ so that aB; = 8.,
bre S 1o Scers(m = me, 1 <b < ¢ 1/b° < a < 1) then instead of (13) we may
take
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(14) Dnita B Din < + 0.
Proor. Let us denote n, = ¢ — M{n,
Aw = {MaX,<nco [0 70 " Z ¢},
B, = {max, cnco || 2 €74}

The proof of (13) runs analogous to that of ([10], Theorem 1). (14) follows
from (13) because it is easy to obtain the relations

pn Z (@) (mZu); w0l 2 (1= a7D7) s
pa = ac 7B (¢ =7 <h).

ReMARK. The condition imposed on 8, in (14) is satisfied in a large class of
cases ([10], Remark (a;) to the Theorem 1).

TarorEM 8. Let us consider Mg, = 0,0, > X > 0 (n e F) and 7, — o (n— ).

(a) In order that {¢.} be NSRS it s sufficient that

(15) Z:=l Tn—z'Dgn < + o0

and if in this case &, = 0, the 1v £/7, (1 £ ¢ < n e I) are strongly asymptotically
constant.

(b) This condition is the best in the sense that if for some sequences of non-negative
constants {b,}, {r.} the series
(16) 2 =t Tn b
diverges and 7, is monotonically increasing to infinity, it is possible to construct a
Markov chain {£,} (non-degenerated into a sequence of mutually independent rv)
with Mg, > 0, Min = 7o, D& = by, 0w > N> 0(nel) and for which {{a} is
not NSRS.

Proor. Let us denote U, = supiss |(§/72) — 1].

(a) Ifin (12) wetake ¢, = 1/7, (ke I), m = o, it follows that

PlU, 2 ¢} £ & {rn "D+ Dpentrmi  -D&}.

By our conditions, obviously D, /7, — 0 (n — «)ie. P{U, = ¢ =0 (n— =)
for any ¢ > 0 which is equivalent to the NSRS of {{,}. The last result follows
from Theorem 2.

(b) The proof runs analogously to that of ([10] Theorem 2). For this we retain
all the notations and all the constructions used there with the following excep-
tions:

(1) We must define I; as the set of r ¢ I, for which b, < 7,%.

(2) In the definition of the auxiliary sequence of constants {8,} we must con-
sider @, = 4-min (7, b, ;1 — 7,7%,) £ L (rely).

(3) In the definition of the stochastic matrices we must consider: pa, = pir =
b, /2 + widy (1= 1,2,8;7 e Inn), paar = Dise = 7 0,/2 + 06, (i = 1,257 ¢ In),

(7"1 =0 =—m= —0, = —'1;1I"2 = O)
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(4) For the absolute probabilities we must take Py, = Ps, = 7, °b,/2 (r ¢ I).

(5) Ifa, =7, — 7 (r eI), then the rv &, must be defined by £.(wi,) =
ar+1r,r,(z—123rell) E,(w,,)—a,—l-ob (1 =1,2;rely).

In this manner we obtain M¢, = a,", M¢, = 7., (ne 1), D& = b, (re ).

(6) In the proof that {£} is not NSRS we must take E, = {|, — M&| > er.},
P(E,|E,) = b,/7,% (rely).

ReMARK. Let us denote by {n:} a sequence of natural numbers, increasing to
infinity (no = 1), I = {mx ,me + 1, - -+ ,mpys — 1} and i = 2 iory £ > (k € I).

() fai > N> 0(iel), 7a— ® (n— o), then D_jy Dy < + o is suffi-
cient for the NSRS of {{,}.

(b) This condition is the best in the terms of {;} in the sense that it is possible
to construct a Markov chain {£,} (non-degenerated into a sequence of mutually
independent rv) for which this series diverges, a; > A > 0 (¢ ¢ I) and for which
{¢a} is not NSRS.

The proof of (a) follows from the fact that by means of Lemma L; we obtain

C' Y iery 7Dt £ Dy £ C- D ier, 7 "D (kel)

i.e. our series and (15) converge only simultaneously.

The proof of (b) follows using the Markov chain that we have constructed in
the proof of Theorem 8(b). Indeed, the sums ¢, are not NSRS and from the
previous part (a) we obtain that (15) and our series diverge only simultaneously.

Let usset B, = {|&, — 1| > €}, 70 = £, .

TaEOREM 9. If {£,} 78 SS then for any ¢ > 0,

(17) 2t P(Ey | Buy) < +0.

The proof follows from Lemma 3 using Lemma L; .

Let us consider a real valued function ¢(z) = o(z).

TaEOREM 10. (a) If B, = {|£, — 7a| > epn}, then (17) is a necessary condition
of the SRS of {{a}.

(D) If En = {|£ — tal > €0(70)}, Domet 7a ° < + o, then (17) is not a neces-
sary condition of the NSRS of {{.}.

Proor. (a) Let us set o, = ({u/pn) — L, Mo = &/Pny Gn = pn — pa_1,
qn = an/pn )

A ={o,>0,n— o}, Ay = {6421 > 0, n — o},

B={M—-0—>0,n—> 0}, E,={M—1"\>¢ = {|t. — 8| > epn}.

If {ta} is SRS from ¢, — pp1 * Gn-1/pn = N\v — ¢ We Obtain A n A; C B,
P(A) = P(4:) = 1, from which it follows P(B) = 1, i.e. the Markov chain
{\a} is SS. From Theorem 9 it follows the convergence of (17).

(b) The proof runs analogously to that of ([10], Theorem 4). For this we must
conserve all the notations and all the constructions used there with the following
exceptions:

(1) For the definition of I, I, we must take in ([10], (22), (23)) 7. instead
of n.
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(2) We must define the function g, as equal to 7, for n e I, and to 7, * for
n=mn.¢el.

(3) We must take 2v, = 7.9./0(7.) < 1.

(4) We must define the rv & by & (wi) = ar + cmip(r,) (1 = 1,2,3; rel).
In this way we obtain M¢, = a,, M{, = 1., D&, = 1,9, 0(70).

(5) Instead of ([10], Theorem 2, (8)) we must use Theorem 8(a) of the present
paper.

9. General remarks. (1) For an mth order Markov chain, Theorems 4—6 (and
therefore the remarks to them) remain true. Indeed this follows easily if we
consider the manner in which these theorems are proved. Theorem 5 follows
from Theorem 4; if in the proofs of Theorems 4 and 6 we use the second part of
Lemma L, instead of the first part, our result is proved.

(2) In Theorems 2-5 we do not suppose the existence of the variances of the
Iv.

(3) Inthe case of mutually independent rv; (a) Theorem 2 contains the results
from [1] i.e. that in the conditions of RS the relation d, — © (n — «) implies
that £&:/d, (1 £ ¢ < n e I) are asymptotically constant; (b) in the case of RS with
constants {d,}, Theorem 3 contains the analogous results obtained in [1];
(¢) Theorem 8(a) implies the results from ([1], [4], [5]) and Lemma 5 from ([4],
[71); (d) the rest of the results in Theorems 2, 3, 7, and 8 are new, even for
mutually independent rv; the same thing also for Theorem 10, where in this case
instead of (17) we must take D)_n—1 P(E,) < +; (e) Theorems 4 and 5 con-
tain the analogous results obtained for independent rv in [1]. Lemma 5 implies
the analogous result obtained for the same case in [4].

(4) We may obtain results analogous to these obtained in this paper, if we
consider a sequence of series of rv £, (1 < k < k,) which for any n ¢ I is a Markov
chain.
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