A FORMULA FOR THE PROBABILITY OF OBTAINING A TREE FROM A
GRAPH CONSTRUCTED RANDOMLY EXCEPT FOR AN
“EXOGAMOUS BIAS™!

By Hwa Sune NaA AND ANATOL RAPOPORT
University of Michigan

1. Introduction. A general problem in the probabilistic theory of linear
graphs can be stated as follows:

Given a randomly constructed linear graph G(n, N) with n nodes and N
links and a property of linear graphs A, what is the probability that G(n, N)
will have the property A as a function of n and N?

The phrase “randomly constructed” needs to be more precisely specified, for
example, by describing the process of construction. One such process consists of
selecting from the (3 ) pairs of nodes a random sample of N < (3') pairs to be con-
nected by links. Accordingly, the probability of having property A will then be
defined as the ratio of the number of distinct labelled graphs with n nodes and
N links which have this property, to the total number of such graphs, namely

cn, &) = ().
In particular, if A is the property of being a connected graph, it was shown by
Erdss and Rényi (1960) that if

(1) N = ({)nlog.n + an + o(n),

then, as n and N approach infinity, the probability that the randomly constructed
graph is connected approaches

(2) P(A) = exp {—¢ ™).

In other words, given N and n, both sufficiently large and connected by equa-
tion (1), the probability that G(n, N') is connected is approximately

(3) exp { —ne M.

Many situations can, be represented as linear graphs, for example, acquaintance
nets in which the nodes are people and a link represents the relation of being
acquainted; word association nets, where the nodes are words and a link repre-
sents the property of being associated in some sense (syntactic, semantic, etc.).
One can imagine such graphs being generated by a stochastic process of some sort.
However, it is clearly improbable that in this process links are formed entirely at
random. Biases can certainly be expected to influence the probabilities of con-

Received 4 February 1966; revised 18 August 1966.
1 The research work on which this paper is based was supported in part by the Office of
" Naval Research under Contract Nonr 1224 (46), and in part by the National Science Founda-
tion Grant GS-1027, Mental Health Research Institute, University of Michigan.

226

J gg
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%j:q

The Annals of Mathematical Statistics. RIKOIRE ®
Www.jstor.org



PROBABILITY OF OBTAINING A TREE 227

nections. Thus, in an acquaintance net, if nodes 4 and B are joined by a link and
also nodes B and C, we can expect that a link will join A and C with probability
greater than what it would be if the other connections had not taken place. There-
fore biased graphs become objects of interest.

A particular type of bias is the distance bias which can be defined for a set of
nodes in a metric space. For example, the probability that two nodes close to-
gether are connected by a link can be supposed to be greater than if the nodes:
were far apart. :

A special case of the distance bias results if the set of nodes consists of a number
of subsets and if the probability that two nodes are linked is greater or smaller if
both nodes belong to the same subset than otherwise. If the number of connections
within the subsets is greater than that expected by chance, we have an “endog-
amous bias.” In the opposite case, we have an “exogamous bias”.

In this paper we investigate the case where N =n — 1. Consequently the graph
G(n,n — 1) is connected if and only if G is a tree. We shall investigate the prob-
ability that @ is connected if the set of nodes consists of subsets and then — 1
links are apportioned into some which connect the nodes within the subsets and
others which connect nodes from different subsets.

2. The probability of obtaining a tree with prescribed partitions of nodes
and intra-links. Assume that » labelled points are given and that these are divided
into k subsets, and n; points in subset 7 (z = 1, 2, - - - , k), such that

(4) Z,;=1 Nng = N.

Pairs of points are then connected by a number of links to form graphs. Links
joining points of the same subset will be called intra-links, those connecting
points of different groups will be called inter-links. Let I; denote the number of
intra-links among the nodes of subset ¢, and I, denote the total number of inter-
links among the k subsets.

We are here specially interested in the following problem. Suppose each set of
the l;links (¢ = 0,1, - - - , k) are placed randomly with equal probability; that is,
within the subset ¢ each selection of the I; pairs of nodes is equally probable and
similarly for the set of [y inter-links. Then, what is the probability that the result-
ing graph is a tree?

To answer this question, we determine how many different labeled trees can be
obtained by the above described procedure. To do this, we shall use the determi-
nant method of H. M. Trent (1954) and L. Weinberg (1958).

Consider the completely connected graph G(n, N) with N; = (%) intra-
links among the nodes of the 7th subset (¢ = 1,2, - - - k) and Nyinter-links among
the k subsets. Our notation n specifies the vector (n;1, nz, - -+, ng). Since the
completely connected graph has (7 ) links, we have

(5) No = (3) — 2% (%),
We shall label each of the N, intra-links of the 7th subset by the same in-
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determinate symbol z; , which will serve as a marker in computing the determi-
nant defined below. Each of the N, inter-links will be correspondingly labelled
Zo .

Let M stand for a matrix of degree (n — 1) with submatrices 4 ;; . Each matrix
A;; shall have n; — 84 rows and n; — 8 columns, where

(6) b = 0, if 1 # k,
=1, if 1= k.

Thus
An -+ Agn
) M= - _
Akl cee Akk
The entries of A;; will be represented by ¢, (j) defined as follows:
(8) top(17) = (ni — )2 + (n — 1), ; pell, ni — dul;
(9) tp(10) = —x:i (for p #gq), P, gell, ni — dal;
(10) tp(Y) = —x0 (for <5 j), pe 1, n — dul;

qe [17 n; — 8jk]-

‘From results obtained by H. M. Trent (1954) and Lindsey Perkins (un-
published), it follows that the terms of the determinant |M| represent all the
trees contained in G. In particular, the coefficient of the term zo"z,"* - - - ;" will
give the number of trees with exactly l; intra-links in the sth subset and [, inter-
links among the k subsets. In other words, |M| will be the generating function of
the number of trees with prescribed partitions n = (n1, ne, --+, nx), and
1= (lo, i, -+, ). Denote the coefficient of zo 'z, -+ 2™ by T(n, 1).

TareoreM 1. In the expression of the determinant of M, the coefficient of the
term o'zt -+ - @' will be given by

(11) T(n,1) = 2" [ [(C5)nb(n — )™ 757,

Proor. Define R, = 2 i=in, for v [2, k]; Ry = 0. Consider four elementary
square matrices of degree n — 1, namely: .

T., with entries 7;; = 1, for <e[l,n — 1]
(12) Tij = 1, for ¢ = l,jé‘ [2, n — 1]
7i; = 0 otherwise;

T,', the transpose of T ;
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T\, with entries\;; = 1, for <e[l,n — 1]

e Nij =1, for {; :[If.':;, R, + m]}
withve[2,k — 1] fork = 3
Ni;; = 0 otherwise;
T, , with entries p;; = 1, for <e[l,n— 1]
(14)

L i= R, +1
pii = —1, for {jS[R.+2,Rv+m]}

withve [1, &k — 1]
pi; = 0 otherwise.
Next, consider the matrix
(15) M, = T\T,/T.MT, .
Since the determinants of T, , T,’, T\, and T, are all unity, we have
(16) \Mi| = |M].

Furthermore, the transformation of M by T, , T.', T\ , and T, is such that the
determinant of M is simply the product of its diagonal elements (the transforma-
tion matrices were chosen to insure this). Thus the determinant of |M| turns out
to be

M| = 0" [ bt [0 20 + (n — i)z

= 2% [hie { 85 (57 (s 20100 = madzo™ ™)

17) = Y et e (0 [ (MR (e — ma)™E Y
T AR A
= Z?ﬂ;ol ;.22=—01 - ;lkk;ol T(n,1) L xklk,
where
(18) T(n,1) = n**[Lia Ci)nd(n — na)™ 7570

By way of illustration, let

An A A
(19) M =|An Ax Ax]|,

A31 A32 A33
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9;k = 3;m = 4;n, = 3; n; = 2. Consequently, according to our

definitions and according to (8), (9), and (10), we shall have

3231 + 5xo
_xl
Ap =
L —
—Xo —Xo0
—Xo —Xo
A =
—X0 —Xo0
| — %o —Xo
(20)
—Xo —Xo
An =| =20 —2o
L —%o — X0
[ 21, + 60
Agp = — X2
- —xz
Ay = [—xo — %o

Ay = [25 + Txol.

—I
321 + 5o
—1

—Zo

—Xo

—Zs

2.’172 + 6320

—22

—Zql;

—x1 —
—I —I .
3z + 5xo —2 ’
—T 3231 + 5z
—X
—Xo
Ay = )
1 —2 )
—Xo
—X2 —X0
—Z2 ;0 A = —2o H
229 + 620 —2Zo
Agp = [—z0 —2o —0);

The T matrices corresponding to M illustrated by (19) and (20) are shown

below:
(21) T, =
(22) T\ =

coocococoo

1
IQQOQOQO!—‘

SO OO O~=O S OO OO O - =

S oo oo~HOQ S OO OO = O M

111 1 1
000 0 0
000 0 0
100 0 0f
0100 Of
00100
000 1 0
0 00 0 1
0,0 0 0 0]
0000 O
0000 0
1 00 0 0f
0111 0
0010 0
000 10
0 0 0 0 1]
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1 -1 -1 -1 0 O 0 O
0 1 0 0o 0 O 0 O
0 0 1 0O 0 O 0 O
(23) T,=10 0 0 1 0 O 0 O
0 0 0 O 1 -1 -1 0
0 0 0 o 0 1 0 0
0 o0 0 0O 0 O 1 0
|0 0 0 0O 0 o 0 1]
We shall then have
[~ 2o 0 0 0 2o 0 0 x3 |
To—21 41+ 50 0 0 0 0 0 T3—Xo
To—T1 0 4$1+ 5$o 0 0 0 0 T3—2o
To—T1 0 0 4(131-*—5230 0 0 0 T3—2Xo
@M=" 0 0 9% 0 0 3w—3m |
0 0 0 0 To— T2 3T2+6x0 0 T3—Xo
0 0 0 0 To—2Tg 0 3x2+6x0 23—0
| 0 0 0 0 0 0 0 2034720

The determinant of this matrix is readily seen to be the product of its diagonal
elements. Note that if there are no inter-links, we must set zo = 0, and |M|
vanishes, i.e., there are no trees, as, of course, should be the case. However, if
k =1, i.e.,if we have a single population, then, as we set o = 0in A;;and ny = n,
(17) reduces to

(25) M| = v (nz)™" = 0" ",

so that we obtain for the number of trees n"~*, which is Cayley’s number.

On the other hand, consider the special case where all the links are inter-links,
i.e., lo = n — 1. This amounts to setting z; = 0 for all 7 0. Equation (17)
then becomes

IMI — nk—2xok—l ,:=1 [(n _ ni)xoln;——l

={n" iz (n — n)™ W2,

(26)

and the number of trees reduces to
(27) T(n,1) = 7 JJis (n — n)™ 7

Equation (11) gives the number of ‘“‘preferred’” outcomes, i.e., the number of
labelled trees with the prescribed partitions of n nodes and n» — 1 links. To ob-
tain the probability of the occurrence of a tree in a graph constructed randomly
except for the constraints mentioned, we must calculate also the number of
labelled graphs with the prescribed partitions. There are (3;) different ways of
selecting the I; pairs among the n; nodes of the sth subset, and (i°) ways of
obtaining the [, inter-links. Hence the total number of graphs obtained under the
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constraint of the given partition is

(28) C(n, 1) = JTiw (39,

and consequently the probability of obtaining a tree under the constraint is
(29) P(n,1) = T(n,1)/C(n, 1).

If the number of links isn — 1, the graph is a tree if and only if it is connected.
Hence, in this special case, we can identify the probability that the graph is
connected with the probability that it is a tree. We are interested in the ques-
tion of how this probability is affected by partitioning the nodes into subsets
and apportioning intra-links among them, in particular, which partitions in-
crease the probability that the graph is connected and which ones decrease it.
As we have said, the partitions introduce a sort of distance bias in the construc-
tions of the graph. Therefore results of the sort we seek may shed light on the
way distance bias affects the probability of connectedness in an otherwise
randomly constructed graph. We shall express these results as ratios of the prob-
ability of obtaining a tree when the population of nodes is partitioned to the
corresponding probability when it is not partitioned.

3. The total “Exogamous bias.” In this paper, we shall confine ourselves to
the case where I; = 0. That is to say, all the links will be inter-links. As an illus-
tration, consider the fictitious case of a tribe with n members divided into k clans.
Occasionally two members from different clans establish a friendship pact. A
person may establish any number of such pacts but only with members of other
clans and never with the same person more than once. The friendship relation is
transitive. We are investigating the probability that after exactly n — 1 such
pacts, all the members of the tribe will be ‘““friends.” [Note that a somewhat more
realistic situation would be one where the pacts within a clan predominate, and
only occasionally pacts occur between members of different clans (i.e. where
there are “leaks in the cliques’”). This situation will be treated in later papers.
We begin with the case I; = 0 simply because it seemed easier.]

We first examine the case where £ = 2. Here the two populations may be the
two sexes.

In the case where one subset contains only one node, the graph will always be
connected. All the n — 1 “men’’ will have met with the one “woman.” This case
is therefore devoid of interest. Assume, then, n; > 1, ne > 1.

The total number of labelled graphs, connected or not, with » nodes and
n — 1 links is clearly
(30) C(n,n — 1) = (),

n—1
Of these graphs, K(n) of them are distinct labelled trees, where
(31) K(n) = n"7,
which is Cayley’s number [Riordan, (1958)].
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The probability that an arbitrarily selected graph is a tree is, accordingly,

(32) Pyn) = /().

When n is large, we approximate formula (32) by Stirling’s formula
(33) n! = (2r) e

and obtain

(34) Py(n) = (2m)}- 2" exp {—}(n" — 3n + 5)} log.n + } log, (n — 1)
+ 3(n’ — 3n + 3) log, (n — 2)}.

Suppose now the n nodes are divided into 2 subsets, containing n; and 7,
nodes respectively, n, + n. = n.

Denote by Pa(ni, m2) the probability that the corresponding graph (with
n — 1 inter-links) is connected. From (29) with k = 2, ; = I, = 0, we obtain

(35) Py(ny, me) = ma™ ™Y/ ().
The quantity of interest is
(36) Ry(m1, n2) = Py(m, m2)/Pi(n),

which indicates to what extent the probability of being connected is enhanced
(if Rz > 1) or diminished (if By < 1) when the set of n nodes is divided into two
subsets and only ‘“‘exogamous” connections are allowed.

THEOREM 2. Let n be fized. Then for n sufficiently large Py(ny, n2) attains a
mazimum when |ny — ny| s minimal, i.e., 0 or 1.

Proor. Let ny = an;ny = (1 — a)n. Substituting into (35), we have

(37) Pz(nl , nz) = Pz[om, (1 _ a)n]
= (am) " (1 — a)n™ /().

Applying Stirling’s formula, we obtain from (37)
Pilan, (1 — a)n]
(38) =n"(n—1)!a(l —a)n’—n+ 1“1 — )" /[a(l — a)n]!
>~ 1/e-(2r/n)[1 — (n = 1)/a(l — a)n?]*¢"om "+
[*"(1 — a)(l—a)n]—l‘
Let L, = log, P,
= }log, (2r/n) — 1 — anlog,a — (1 — a)n log, (1 — a)
(39) 4+ [a(l —a)n® —n + £ log. [1 — (n — 1)/a(l — a)n?]
= —n + ilog, (2r/n) — anlog,e — (1 — a)nlog, (1 — a)
+ [(n = 1)(n — 2)/2a(a — )01 + 2z fi(n)/[e(1— @)]f

where the fi(n)’s are polynomials in n ™",
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Pslan, (1 — a)n] will attain its maximum when L, attains its maximum.

Hence, we set
(40) dL,/d0 = 0
and solve for a.

dL,/0a = —nlog.a — n + nlog, (1 —a) +n
(41) + [(n — 1)(n — 2)/27][(2x — 1)/6’(1 — a)’]

+ (20 — 1) 2 k-fu(n) /[a(1 — &)™ = 0.

Since (41) must hold for all values of n, the solution must be independent
of n. Thus we have

(42) a =

Wl
.

Consequently, Pafan, (1 — o)n] attains its maximum when n; = n, or, if n
is odd, when [n; — no = 1.
THEOREM 3. Let [ny — na| < 1. Then for n > 3,

(43) 1 < Ro(my, ne) < 2,

(44) limg, e Ro(n1 , n2) = 2.
ReEmarRk . If n» = 2 or 3,

(45) Py(ny, ns) = Py(n) = Ry(ny, ne) = 1.

Proor. First consider the case when = is even. Let n = 2m, so that n; =
ny = m. By elementary calculation we establish

(46) Ry(m, m) = 222" [(2m® — m — 4)/(m* — 0)].
Let

(47) Ki(3) = (2m® — m — 0)/2(m* — 7).

Then

Ky(i) =1, when ¢ = m,
(48) Ki(7) > 1, when 7> m,
Ki(7) < 1, when <7< m,

and .
(49) Ry(m, m) = 2]Ii%" Ki(4).

When m = 3, we rewrite (49) as follows

(50) Ry(m, m) = 2-{]Ii% Ku(9)} - Ka(m) -{ TT3Z0% Ka(9))}.

Set ¢ + j = 2m, then
(51) Jj=2m —4,o0ri=2m —j.
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Substituting (51) into the last factor in (50), we obtain:
(52) Ro(m,m) = 2-{]7= Ka()} - Ka(m) - {]]7= Ka(2m — )}
= {2-K1(0) - Ky(1)-Ki(m)}{ ""_1 Ky\(2)-Ki(2m — o)}

Let
(53) Fi = 2-Ky(0)-Ky(1)-Ky(m),
and
(54) Gi(7) = Ki(2) -Ki(2m — 7).
Hence,
(55) Ro(m, m) = Fr-[]7= Gi(4).

Fi = 2-[(2m® — m)/2m’]-[(2m" — m — 1)/(2m® — 2)]
(56) [(2m® — 2m)/(2m* — 2m)]
=2 —[2/(m + 1))((4m + 1)/4m]
(57) > 1foralm = 2.
Gi(7) = Ki(i)-Ki(2m — 1)

(58) = [(2m® — m — 5)/(2m* — 20)][(2m® — 3m + ©)/(2m" — 4m + 20)]

=1+ 3(m — )%/ (4m* — 8m® + 8&im — 47).

Since 3(m — 4)* > 0for all4 in [2, m — 1] and all m, and 4m* — 8m® + 8im — 47"
= 4m’(m — 2) + 4i(2m — 7) > Ofor allsin [2,m — 1] and allm > 2, we have

(59) Gy(¢) > 1 forall 7 in [2,m —1] forall m > 2.
By combining the results of (57) and (59) we obtain
(60) Ro(m, m) = Fi-[[75 Gi(d) > 1 for all m = 3.
When m = 2,
(61) Ry(m, m) = 2-K1(0)-Ki(1)-Ki(2)

= 2:K;(0)-Ki(1)-Ky(m)
(62) =F,.

However, according to (57), F1 > 1 for all m = 2. Thus, when m = 2,
Ry(m, m) > 1. Consequently, we have:

(63) Ry(m,m) > 1 forall m = 2.

To show Rs(m, m) < 2, we write

(64) Ro(m, m) = 2{JI7= Ka(i)} Ka(m — DT Ka(9))
(65) = 2Ky(m — D{[[ Ku(9) Ka(2m — 2 — 0)}.
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Let
(66) Hiy(i) = Ki(0)Ki(2m — 2 — 1)
(67) =14 (3 + 6 — 65m — m’ — 2m)/(4m' — 8m® + 8m® + Sim

— 8 — 44%).

Denote by Ag(7) the numerator of the fraction in (67) and by Dg(z) the de-
nominator. Then

(68) (d/de)Ar(7) = 6(1 4+ ¢ — m) < Oforall7in [0, m — 2].
Hence

(69) Au(0) > Ag(2) > Ag(m — 2).
However

(70) Ap(0) = —m’ — 2m < 0 forall m = 2.
Therefore

(71) Ag(d) < 0.

Also

(72) Dx(i) > 0.

Thus,

(73) Hy(i) <1 forall¢in[0,m — 2] and m = 2.

From (48) we see that Ky(m — 1) < 1. Thus,
(74)  Ray(m,m) = 2-Ky(m — 1) ]2 Hy(3) < 2 forall m = 2.
To show that lim,,. Ra(n1, ns) = 2, we note from (67) that
(75) Hy(%) = 1 + Au(7)/Da(7)
where
(76) Ax(%) < Ag(0) and Dg(?) > Dg(0) for all<in [0, m — 2].
Thus,
(77) 1+ Ag(m — 2)/Da(m — 2) < Hy(3) < 1 + Aa(0)/Dx(0)
for all ¢in [1,m — 3].

Hence,
(78) {1 + Aa(m — 2)/Da(m — 2)}"

< T Hu(d) < {1 + Ax(0)/Dx(0)}"™.
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Now,
limpe {1 + Ag(m — 2)/Da(m — 2)}""
(79) = liMp.o {1 — (M’ — m + 2)7}™!
= limp.eexp {(1 — m)/(m* — m + 2)} = 1.
Similarly,

(80) lim {1 + Ax(0)/Dx(0)}"
= liMp.e {1 — m(m + 2)/4m*(m* — 2m + 2)}"" = 1.

Hence,

(81) lim,,.. [[7= Hi(3) = 1.
And,

(82) limy,.o Ky(m — 1) = 1.
Therefore,

(83) liMpmsw Ro(m, m) = {liMnae 2-Ki(m — 1)} - {limpsw [ [7=5 Hi(7)}
(84) =2.1=2

The proof for the case when n is odd is entirely analogous.
THEOREM 4. The ratio Ry(m, m) increases monotonically with m for all m > 2.
The proof is obtained by showing by straightforward but laborious calcula-
tions that

(85) Ry(m 4+ 1,m 4+ 1)/Ry(m, m) > 1 forall m > 2.

By methods similar to those used in proving Theorem 4, it can be shown also
that RBy(m + 1, m) is monotone increasing with m.

We have thus shown that when the n nodes are divided into two equal or
nearly equal subsets and only inter-links are allowed (i.e., under ‘‘exogamous
constraint’), the probability of connectedness (i.e., that the graph with n — 1
links is a tree) is always increased for n > 2 by a factor (greater than unity)
which does not exceed 2 and approaches 2 in the limit as n becomes infinitely
large.

By a method entirely analogous to that used in Theorem 2, it can be shown
that for any k, the probability of connectedness (i.e., of a tree) is greatest when
the distribution of nodes is as nearly equal as possible. The only exception is the
case where £ = 2 and one of the populations has a single node, in which case
P, = 1, and so R: increases without bound with n.

TaHEOREM 5. Let n nodes be equally distributed over k subsets, so that n = mk,
n; = m. Then if the n — 1 links are all inter-links,

(86) Ry = limp.o Pu(n)/Py(n) = (k/(k — 1)) exp(k/(k — 1) — 2).
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Proor. From (11), we obtain

(87) T(n, 1) = 2**n — n/k)"™* = 2" *((k — 1)/k)"".
Further,
(88) No = (3) — 2 i (%) = 3’ — 2handl = (b — 1)/2kn".

Substituting (87) and (88) into (29), we obtain with the help of Stirling’s
formula for large n,

(89) Pu(n) = (20)'((k — 1)/B)" 72" (n — )"0
: A1 — (n — D[(k — 1)n2/2k]—1}((k—l)/2k)n2—n+§.
Then, by (34) and (89),
Ry = limg.e Re(n) = limu.e Pr(n)/Py(n)
(90) = limpaw (20)}((k — 1)/k)7* " (n — 1)" "
T = (n = D((k = 1)/2kynt) e

[2m2r i AT (g 1) (g — )P
Now

(91) ((n —1)/n)"" = exp {(n — 1) log. (1 — n")}
= exp {—1+ O(n™");
(92) ((n — 2)/n)!*™ ™ = exp {§(n* — 3n + 3) log, (1 — 2/n)}
=exp{—n+ 2+ 0nM};

and
[l — (n — D((k — 1)/2k)n")7]
exp {((k — 1)n*/2k — n + §) log, (1 — (2k/(k — 1))-(n — 1)/n")}
=exp{—n+1+Fk/(k—1)+ 0(n")}.
Thus (9) becomes (94):
Ry = limp.w ((k — 1)/k)""

(93)

(94) cexp (=1 — (2 —n) —n+ 1+ k/(k— 1) + O(n™")}
= limp.w ((k — 1)/k)™* exp {k/(k — 1) — 2 4+ O(n7)}
= (k/(k — 1)) " exp (k/(k — 1) — 2). QED

It can further be shown that the same limit obtains if k¥ does not divide n
provided the n nodes are distributed ‘“as equally as possible” among the k
subsets. ‘

ReMARKS. If the number of subsets is large, the probability of obtaining a
tree from a graph with n — 1 inter-links is not enhanced.



TABLE 1
Py: Probability of obtaining a tree from a randomly constructed graph with n nodes and n — 1
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TABLE 1(b)
n s odd

n m Ny P, P, R,

5 3 2 0.800 0.595 1.344
7 5 2 0.381 0.309 1.23

7 4 3 0.467 0.309 1.509
9 7 2 0.149 0.158 0.944
9 6 3 0.199 0.158 1.264
9 5 4 0.254 0.158 1.607
11 9 2 5.26 X 102 0.80 X 10! 0.653
11 8 3 7.13 X 102 0.80 X 10! 0.885
11 7 4 1.07 X 107! 0.80 X 10! 1.328
11 6 5 1,34 X 107! 0.80 X 107! 1.672
13 11 2 1.74 X 102 4.12 X 10~? 0.422
13 10 3 2.27 X 10~? 4.12 X 10 0.551
13 9 4 3.81 X 102 4.12 X 102 0.925
13 8 5 5.72 X 10~ 4.12 X 10 1.388
13 7 6 7.09 X 102 4.12 X 10 1.718
15 13 2 5.51 X 10-3 2.12 X 102 0.259
15 12 3 6.72 X 1073 2.12 X 102 0.316
15 11 4 1.21 X 1072 2.12 X 102 0.572
15 10 5 2.08 X 102 2.12 X 102 0.981
15 9 6 3.05 X 102 2.12 X 10~ 1.440
15 8 7 3.72 X 1072 2.12 X 102 1.753
17 15 2 1.69 X 1073 1.09 X 107 0.154
17 14 3 1.87 X 1073 1.09 X 102 0.171
17 13 4 3.55 X 1073 1.09 X 1072 0.324
17 12 5 6.76 X 10-2 1.09 X 10 0.618
17 11 6 1.13 X 102 1.09 X 107 1.039
17 10 7 1.62 X 1072 1.09 X 10 1.486
17 9 8 1.949 X 10~2 1.09 X 102 1.780
19 10 9 1.02 X 102 5.67 X 1073 1.802
21 11 10 5.36 X 10~ 2.94 X 10-2 1.820
23 12 11 2.82 X 10-3 1.53 X 10-3 1.834
25 13 12 1.48 X 10-3 8.03 X 10~ 1.847
27 14 13 7.81 X 10+ 4.20 X 10— 1.858
29 15 14 4.12 X 104 2.20 X 10~ 1.867
31 16 15 2.17 X 10+ 1.16 X 10~ 1.876
33 17 16 1.15 X 1075 6.11 X 10-5 1.883
35 18 17 6.09 X 10-5 3.22 X 10-5 1.889
37 19 18 3.22 X 106 1.70 X 10-¢ 1.895
39 20 19 1.70 X 1075 8.99 X 10-¢ 1.900
41 21 20 9.06 X 10-¢ 4.75 X 10-¢ 1.905
43 22 21 4.81 X 10-¢ 2.52 X 10-¢ 1.909
45 23 22 2.55 X 10-¢ 1.33 X 10-¢ 1.913
47 24 23 1.36 X 10-¢ 7.09 X 107 1.917

(95) limj., R = e-¢% = 1.

Note, however, that in our context, k cannot exceed n. Note also that when
k = m, the situation reduces to the case of a single population, hence R, = 1.
When k = 2, R, in (94) properly reduces to 2, which is also given in Theorem 3.
Furthermore, note that if k¥ = n/2, (87) is then reduced to equation (10)
of Weinberg (1954).
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In summary, the ‘“‘exogamous constraint” (i.e., when only inter-links are
allowed) in the construction of a random graph with n» nodes and n — 1 links
enhances the probability of obtaining a connected graph (i.e., a tree) by a
factor which ranges from one to two if n is large and the nodes are distributed
approximately equally over k subsets. Moreover for k = 2, the probability of
connectedness is greatest (when n is sufficiently large) the more equally the
nodes are divided among the two subsets. The case when one subset has only
one node is a notable exception, since in that case a tree is obtained with cer-
tainty.

Table 1 gives numerical values of P, P,, and R. for all values of n; and n,
where n ranges from 4 to 18 and for the equal or nearly equal values of n; and
ne as n ranges from 19 to 48. From the table, one sees that also for small val-
ues of n for each fixed n, R, increases as [n1 — ns| decreases. Also R. increases
with n through both the even and the odd values when |n; — 7| is minimal.
However, as n increases through successive values and |n; — 7| is minimal, R,
oscillates when 8 < n < 18.
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