RECONSTRUCTING PATTERNS FROM SAMPLE DATA!

By PauL SwiTzER

Stanford University

1. Introduction. A Euclidean k-dimensional region A having unit volume is
partitioned into m Lebesgue-measurable subregions A;, Az, ---, A each
having positive volume. The results of this partition we will call a pattern. It
is convenient to assign an identifying color to each of these subregions so that
a pattern may be visualized as a k-dimensional mosaic. This pattern is unob-
servable except at a fixed set of n points s, sz, -+, 8» in 4, i.e., we will know
the color of each of these n points which we call sample-points.

This data, the color observations at the sample-points, might be used to
estimate the volumes of some or all of the subregions {4:}. In particular, if n;
is the number of sample-points observed to fall in A;, then a naive estimator of
u(A;), the volume of A;, is ni/n. Several authors have derived the variance of
this estimator for a fixed set of sample-points using a model wherein the parti-
tion of A is a realization of a random process with the following stationarity and
isotropy properties:

(1) (i) for all points s¢ 4, Pr(ssA ;) =pifori =1 --- ,m;and
(ii) for all pairs of points s, s’ ¢ A with distance |s — s | = d between them,
Pr(s' c¢A;|seAj) = Pi(d) fori,j = 1, , M.

The variance criterion is then used to compare alternative methods for locating,
sample-points in A. A good reference is Matérn [2].

However, in some geological and perhaps other applications (e.g., mineral

deposits, soils, vegetation, land-use), the same data are sometimes used to

produce an estimated reconstruction of the pattern, i.e., the region A is parti-
tioned into m subregions Ay, Az, --+, Am. Often thls will be a “freehand”
reconstruction, but where an explicit rule is used it is often the ‘“nearest-point”
rule which says: a point s £ 4 is assigned to A if the sample-point nearest to s is
observed to fallin A4;.

It is then natural to ask how accurately does the estimated pattern (A3
represent the unobserved pattern {A.}? If it is reasonable to measure accuracy
by the extent to which the two patterns fail to coincide then as a loss function
we might take

(2) L=1— 27 u(4;n4;),
which is the proportion of the volume of A that is incorrectly assigned. Using a
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RECONSTRUCTING PATTERNS FROM SAMPLE DATA 139

randomness model for pattern generation with the properties (1) we can, in
principle, compute the expected loss EL; EL can then be used as a criterion to
compare alternative methods for locating sample-points in 4, to gauge the effect
of increasing or decreasing the sampling density, and to explore modifications
of the “nearest-point”’ reconstruction rule. These are the major tasks of this

paper.
Typically in the principal applications that come to mind the region 4 is
planar and the number of subregions is two (k = m = 2), e.g., presence-

absence, high-low, light-dark patterns. Therefore, we will make a point of spe-
cializing most of our results to this case.

2. The simple nearest-point rule. Let s, - -+, s, be the fixed locations of n
sample-points in the region A. For an arbitrary point s ¢ A let N(s) denote the
unique nearest sample-point, i.e., N(s) = s; where |s — s;| < |s — s;| for all
j # 1. In general, there will be a non-empty set 4, having zero volume and con-
sisting of points in A having no unique nearest sample-point. If the estimated
partition A, + A, + -+ + An = A is contructed according to the rule 4; =
{se A:N(s) € A;} it will be called the simple nearest-point rule. Strictly speak-
ing {4} is a partition not of A but of A — A, but it will be clear that for our
purposes this is an unimportant distinction.

An alternative equivalent formulation of this rule will prove to be more useful.
Let S; be the set of points closer to the sample-point s; than to any other sample-
point, i.e., S; = {se A:N(s) = s;}. We will call S; the region of influence of the
sample-point s; . It is clear that {S;} are a partition of A — A,, that each S;
is a convex polyhedron and that the simple nearest-point rule has the alternative
definition
(3) fii = ZS;’EA.’ S;.

Here and elsewhere in context , denotes the union of disjoint sets.
TurorREM 1. If the simple nearest-point rule is used to reconstruct the pattern,

if the loss function is given by (2), and if the randomness model has properties (1),
then for any fixed set of sample-points sy, -+ , 8. the risk EL is given by

(4) 1 — 25 2 [ Pii(ls — sid) du(s).

Proor. We use a theorem by Robbins [3] which says: if u(B) is the volume
of a random Lebesgue-measurable subregion B of 4, then
(5) Eu(B) = [4Pr(seB) du(s)
provided Pr (s e B) is defined for almost all points s ¢ A. For the random set
B we take A; n A;. For any point s ¢4 — Ao we have Pr(se4d; n 4;) =
Pri{scA;,N(s) eA;) = Pr(scd;) Pr{N(s) e A;| se A;} = p;iP;i(|s — N(s)|)
by (1). So by Robbin’s theorem

Eu(A;nA;) = [4Pr(sed;jn A;)du(s) = [aa,Pr(sed; n A;) du(s)
= i [aao Pii(|s — N(8)|) du(s) = p; 27=1 [s; Pis(ls — s:]) du(s)
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since {S;} is a partition of A — A, and since N(s) = s; for all points seS;.
The theorem is now proved because EL = 1 — Y, Eu(A;n 4;) by (2).

Formula (4) is just the probability that a point chosen with uniform proba-
bility over A will have a color different from its nearest sample-point. A sim-
plification of this formula occurs if the sample-points are systematically arranged
defined as follows: Let the origin of k-dimensional Euclidean space be located
at one of the sample-points, say so, and let Sy denote its region of influence; if
for every other sample-point s; there is a translation and rotation which carries
s; into so and S; into Sy then the arrangement of sample-points will be called
systematic. For such arrangements it follows that the integral of formula (4)
has the same value for all , hence we can write

(6) EL =1 — n2 71 p; [s Pis(Is]) du(s).

Consider now the special case of two-color patterns, that is m = 2. Then
p: = 1 — p; and it is easily shown that Pu(d) = 1 — py(1 — p1) " [1 — Pu(d)];
for let s, s’ € A be any two points with |s — s'| = d then using properties (1) and
elementary arguments we get Pau(d) = Pr (seds|s € 45) = (1 — py)™
“Pr(seds,s €4s) = (1—p) '[Pr(seds) — Pr(seds,s e¢41)]= (1 —
P1) (1 —p1) —p1 Pr(seds|sed)] =1—p(l —p)'[L — Pr(seds]

s'ed)] =1—p(l — p1)"[l — Pu(d)]. Using this result the risk formula
(4) specialized to two-color patterns can be expressed as
(7) EL/2py = 1 — 2 1 [s; Pu(ls — sil)du(s),

and the risk formula (6) for systematic sample-point arrangements specializes
to

(8) EL/2p, = 1 — n [s, Pu(|s]) du(s).

Speaking of two-color patterns, it is interesting but not surprising to note that
the loss function (2) we have been using can be regarded as a mean-square-error
function. Specifically, let f(s) be the indicator function for the subregion A,
ie., f(s) = 1if s A; and zero otherwise; and let f(s) be the indicator function
for A;. Then, regardless of the rule used to construct the estimated pattern
{Al ’ A2} ’

(9) L = [4[f(s) — f(s)T du(s).

This is easily shown by noting that the integrand is the indicator function for
the region Asn Ay + AynAy, = A — Ayn A, — Ayn A, — A, . Hence, the right-
hand side of (9) equals 1 — u(4; n A;) — u(Azn A,) which is the expression for
L given in (2) for the case m = 2.

A somewhat more general loss function than the one heretofore considered
results by associating different rates of loss with different kinds of errors. That is,
let A;j = AinA;,7iandj = 1, --- , m, and let L;; be the loss per unit volume
of A;; with the restriction that L;; = 0 for ¢ 5 j and L;; < 0 for ¢ = j. It is clear
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that the m® regions {A;} are a partition of A — A,, and our generalized loss
function can be written as

(10) L' = > :;Liw(Ay).

It is easily seen that the special loss function L in (2) is obtained by taking
Lij = 1for 7 # j and Ls; = 0 for ¢ = j. The following theorem demonstrates a
simple relation between the general expected loss EL’ and the special expected
loss EL.

THEOREM 2. If the simple nearest-point rule is used to reconstruct a two-color
pattern generated by a randomness model with properties (1), then

(11)  EL' = EL(Lw2s + Lu — Lu — Lx) + p1ilu + (1 — p1)Lae.

Proor. Since A3 + A, = A; + A, + Ao = A, it follows that for any point
se A,Pr (seAp) = Pr(se Au) + [pr — Pr(se A1), Pr (se An) = p1 —
Pr (se Asw), Pr (s e As) = (1 — p1) — Pr (s € Azn). But using the simple
nearest-point rule gives Pr (s ¢ 4;) = Pr {N(s) € A1} = p1, so for this rule
Pr(seAn) = Pr(seAp) =p1 — Pr(seAu) = (1 — p1) — Pr(se Ay) for
all s ¢ A. Now by Robbin’s theorem (5),

Eu(Ay) = [4Pr(sedy) du(s),

hence E[.L(Alz) = E[.L(Azl) =D — E[.L(Au) = (1 - pl) - E}I.(Azz). From the
definition (2) we now get EL = 1 — [Eu(An) + Eu(A42)] = 2[pr — Eu(An)],
and from (10) we get EL' = LyEu(An) + LiuEu(Ap) + LaBu(An) +
LonEu(Ax). The right-hand side of this last expression for EL’ can now be
expressed in terms of Eu(Ay) which in turn can be expressed in terms of EL.
Making the appropriate substitutions yields statement (11) of the theorem.

3. Applications to sample arrangement and sample size problems. In the
preceding section we derived expressions for the risk EL when the simple nearest-
point rule was used to construct an estimated pattern {4,, -+, A} from ob-
servations on a set of sample-points s, ---, s, in a region A = Y A; + Ao
(where Ay has zero volume). This is a commonly used rule and it is simple to
handle mathematically. In particular, we have seen that for this rule EL depends
on the underlying randomness model only through the m numbers {p;} and the
m functions { P;;(d)} for values of d in some neighborhood of zero. For the special
case of two-color patterns EL was seen to depend only on p;1 and Pu(d), the same
being true for the general risk EL'.

In principal we could now use EL as a criterion for the comparison of alterna-
tive arrangements of a given number n of sample-points. Or, for a given type of
arrangement, we may determine the number of sample-points needed to reach
a certain level of the EL criterion. For the remainder of this section we will be
looking at the special case of two-color patterns on the planar region A.

The result of any comparison we make will, of course, depend on the functional
form of P11(d). Recall that the quantity p1Pu(d) is the probability that a pair of
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points in A, separated by a distance d, are both in the subregion 4. In many
circumstances it is natural, therefore, to require that Py (d) decay monotonically
with increasing d to the value p; , the unconditional probability of a single point
falling in A, . (By virtue of Robbin’s theorem (5) p, is also the expected area of
A;.) Of necessity Pu(0) = 1; when the boundary of A; has finite expected
length, Matérn [2] has shown that Pu(d) must be convex in the vicinity of d = 0
and for random processes in two or more dimensions Py (d) must be everywhere
continuous. The model

(12) Pud)=p+ (1 —p)e®, ¢>0,

is consistent with these requirements and we will use it for illustrative com-
parisons below; a pattern-generating procedure with precisely this Py (d) funec-
tion is described briefly in Section 5 and in greater detail in Switzer [4].

The first comparison to be made is among alternative systematic arrange-
ments of the sample-points as previously defined. It is clear that the shape of A
determines which, if any, systematic arrangements are possible. In order to by-
pass this complication we will allow its shape to very in order to accommodate
any particular arrangement, but keeping its area always equal to unity.

A frequently used design places the » sample-points at the vertices of a square
grid. The nearest-point regions of influence, the {S.}, are therefore n squares
centered at the n sample-points each having area 1/n. Using the model (12)
in formula (8), the average incorrectly assigned area EL is given by

(13)  EL/2py(1 — p1) = 1 — 8 [} [Sexp {—c((a® + ") /n)Y} dz dy.

The right-hand side of this expression has been computed for selected values of
en™?; the results are given in the first column of Table I. So, for example, if for
a given sample-size the average incorrectly assigned area is .30pi(1 — p1)
then in order to halve this risk we will need about (.40/.20)* = 4 times as many
sample-points; whereas to reduce a risk of 1.50p:(1 — p1) by half we will need
about (4.00/1.20)* = 11 times as many sample-points.

An alternative systematic arrangement places the n sample-points at the
vertices of an equilateral triangular grid. The nearest-point regions of influence
are n regular hexagons centered at the sample points, each having area 1/n. A
formula similar to (13) can be written down for this triangular design; it turns
out that, for those values of en™* used in Table I, the improvement this design
provides over the square-grid design does not exceed .004 in units of
EL/2py(1 — p1).

If we are required to travel from sample-point to sample-point in order to take
our observations, then the cost of travel should influence the choice of sample
arrangement. Suppose the n sample-points are placed at the vertices of a rec-
tangular grid so that their regions of influence are all rectangles with dimensions
1/r X r/n where 1/r = r/n, say. Then it is not hard to see that, for a fixed sample
size, less travel is involved as the grid becomes more elongated, i.e., as r gets
smaller. In particular, let the region A be a unit square and let r be an integer,



RECONSTRUCTING PATTERNS FROM SAMPLE DATA 143

TABLE I

Values of EL/2p:(1 — p1) for n sample-points on a r~! X rn~1 rectangular grid, using model
(12) and stmple nearest-point rule

nr~? = length:width

en?
1.0 2.0 5.0 10.0 50.0
.20 .073 .080 .108 .145 .283
.30 .108 117 157 .206 .384
.40 141 152 .202 .262 .465
.50 172 .186 .244 .313 .531
.60 .202 .218 .283 .359 .586
.80 .259 .278 .353 .439 .668
1.00 311 .332 .415 .505 .726
1.20 .359 .381 .469 .560 .769
1.40 .403 .426 516 . .607 .801
1.60 .443 .467 .558 .646 .825
1.80 .481 .505 .594 .680 .844
2.00 .515 .539 .627 .708 .860
2.50 .590 .613 .693 764 .889
3.00 .651 .672 744 .805 .908
4.00 744 .760 .814 .858 .931

then the travel path would consist essentially of r parallel traverses spaced 1/r
units apart and the number of sample-points on each traverse would be n/r.
The distance traveled is then essentially equal to r with a maximum of r = n}
corresponding to a square-grid arrangement.

But while travel distance decreases as the sampling grid becomes more
elongated, it is reasonable to expect that the risk EL increases when this happens.
Using the model (12) with formula (8) yields an expression for EL/2p,(1 — p1)
which is a function of r and en™?. The values of the expression for selected values
of r and ¢n~? are exhibited in Table I. So, for example, if a square-grid yields an
average incorrectly assigned area (EL) of .40pi(1 — p1) then the same number
of sample-points arranged on a 2:1 rectangular grid would yield an EL about 10
per cent higher with a saving of about 30 per cent in the distance traveled. If o
is the cost of making an observation and 8 is the cost of travel per unit distance,
then for a fixed total budget B it will be possible to increase the sample size the
more we elongate the sampling grid; in fact, for a given «, 8, B there will be an
optimum value for r yielding the minimum possible EL, and in general, this
optimum sample design will not be a square grid.

In some applications the cost of making an observation is negligible compared
to travel costs, so that all that really matters cost-wise is how many traverses are
made. In such a situation it is obvious that the more densely we sample along a
traverse the smaller will be the risk ZL. Let ¢ be the spacing between parallel
traverses and let f < o be the spacing between sample-points along any traverse.
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Keeping o fixed and letting f — 0 we get the limiting case of a continuous record
along each traverse. This will be called line sampling with spacing o.

THEOREM 3. If A is an h X 1/h rectangular region (h = 1), if a two-color
pattern s generated on A by randomness model with properties (1), if A is line-
sampled by k traverses with spacing 1/hk = o, and if the simple nearest-point rule
1s used to reconstruct the pattern, then the risk is given by

(14) EL/2py = 1 — (2/0) [?* Pu(u) du.

Proor. While proving Theorem 2 we showed that for any kind of sampling
EL = 2[py — Ep(An)], where by Robbin’s theorem (5)

Eu(An) = [4Pr(seAin Ay) du(s).

But Pr (se Ain A;) = Pr{seA;,N(s) € Ay} = pPu(|s — N(s)|) by virtue of
property (1). So we can write

EL = 2pi{1 — [4 Pu(|s — N(s)|)-du(s)}.

Now for definiteness let the Cartesian (z, y) co-ordinates of the vertices of the
rectangle A be (30, 0), (ko + %30, 0), (30, h), (ko + %0, h). Then the sampling
traverses are segments of the lines ¢ = 40, ¢ = 1, --- , k. Let A be partitioned
into k rectangles R, , R, , - - - , R with the vertices of R; given by (ic — is, 0),
(te + 30, 0), (40 — 30, h), (4o + 30, h). The sample-point N(s) nearest to an
arbitrary point s = (z, y) ¢ R; will be the projection of s on the traverse line
r = 1g, ie., N(s) = (4o, y) and |s — N(s)| = |z — 4o|. Hence we can write

JaPu(ls = N(9)]) du(s) = 2k [3 [iH Pule — 4o]) do dy
kh ff'—/.f/an(lul) du = (2/0) fzm P(u) du,

since by definition A = 1/ko. This completes the proof of the theorem.
Using the exponential model (12), the result of Theorem 3 for line sampling
specializes to

(15) EL/2p:(1 — p1) = 1 — 2(1 — ¢ /co.

For example, if for a given number of equally spaced traverses we would get a
value for the risk EL of .60p1(1 — p1), then by doubling the number of traverses
we could reduce the risk by about %.

For a fixed spacing o between traverses it is interesting to note how quickly EL
approaches its limiting minimum value as f, the spacing between sample-points
along a traverse, goes to zero. Using the model (12) for Py(d), Table II in-
dicates how little is to be gained by using f spacings less than ¢/4.

4. The optimum nearest-point rule. We now return to the general case of
m-color patterns {A;, - -+, A} on a k-dimensional Euclidean region A = > 4;
of unit volume. Heretofore, the simple nearest-point rule has been used in this
paper to construct the estimated pattern {4, --- , A,.} based on observations
on n sample-points in A. This rule assigns a point s& A to the subregion A4;
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TABLE II

Values of EL/2p1(1 — p1) for 1/af sample-points on a o X f rectangular grid, using model
(12) and simple nearest-point rule

co f=0 f=o0o/4 f=0
.40 141 .099 .094
1.00 311 .226 .213
2.00 .515 .390 .368
4.00 744 .602 .568

if and only if the sample-point nearest to s, N(s), is observed to fall in 4;.
As we have seen, this rule leads in a straightforward way to quite simple ex-
pressions for the risk EL when the pattern generating model is assumed to have
properties (1). In fact, EL depends on the model only through the set of prob-
abilities {p;} and the P.;(d) functions in a vicinity of d = 0.

The same simplicity property is characteristic of any nearest-point rule de-
fined in the following manner: For an arbitrary point s £ A let the unique sample-
point nearest to it, N(s), be observed to fall in A; ; then s is assigned to A;-
where ;' may depend only on s and j. (Once again there is a zero-volume set A,
of points in A not having a unique nearest sample-point on which any nearest-
point rule is not defined or may be arbitrarily defined.) For any rule of this class
we get from the definition (2) and Robbin’s theorem (5)

(16) BEL=1— > 7 [4Pr(secd;n A;) du(s)
=1— > 7 faDmPriscd;n A;|N(s)eAs} Pr{N(s)e A} du(s).

The event {s& A;| N(s) € Ax} cannot occur unless j = &’ in which case it must
occur by our definition of nearest-point rules. So by exchanging the orders of
summation and integration and using the model properties (1) we get

EL=1— 2 r [4Pr{seAw|N(s) e A} Pr {N(s) ¢ Ai} du(s)
=1— 2 [a Pells — N(s)} du(s).

It is clear that if for each s and k we choose that &’ which makes
Piifls — N(s)|} largest, then EL will be minimized in the class of nearest-
point rules. This method of choosing k' therefore defines the optimum nearest-
point rule. In other words, the optimum rule assigns to each point its most
probable color given the observed color of the sample-point nearest to it—an in-
tuitively reasonable conclusion. We remark that at some points there may
be “ties” for most probable color and that the set of such points may have positive
volume; any choice of color among these tied colors yields the same minimum
value of the risk so that any choice corresponds to an optimum rule.

Such a rule usually implies that Eu(4:) # Eu(4;), thus bias is introduced in the
areal representation of the colors. In fact, the areal biases can easily be large,
especially when Eu(A;) = p;is small and P;;(d) decays rapidly.
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A disadvantage of the optimum rule is that we are unable even to construct
the estimated pattern unless there is some knowledge of the Py;(d) functions.
On the other hand, the simple rule of the previous sections was defined by tak-
ing ;' = j for all points s hence the construction of the estimate could proceed in-
dependently of the model. We will show that, for a further restricted class of
models, the simple rule 4s the optimum rule if the number of sample-points is
sufficiently high. Furthermore, a sure method will be given of improving the
simple rule when it is not optimum.

The restricted class of models we will consider is defined by imposing the follow-
ing conditions on the P;;j(d) functions:

(i) Uniform preference: ps > pi: implies Py;(d) = Pij(d) for alld e [0, D]
and all 3, h 5 j, where D is the diameter of the region 4.
(17) (ii) Monotone effect of distance: Px;(d) is a monotone function on [0, D]
for all k and j. Necessarily, P;;(0) = 1so that P;;(d) isnon-increasing,
and for b 5 j Py;(0) = 0 so that Py;(d) is non-decreasing.

In the next section specific pattern-generating models having these properties
will be demonstrated. In the meantime we observe that for any such restricted
model there is an optimum nearest-point rule with a quite simple structure.

TrEOREM 4. Let py = max; p:, assumed unique, i.e., Ay is the random sub-
region of A having largest expected volume. If the randomness model is of the iso-
tropic stationary type (1) with the uniformity and monotonicity properties (17),
then we can find m numbers {r;} on [0, D] which define an optimum nearest-point
rule as follows: “If N(s), the sample-point nearest to a point se A — Ao, is ob-
served to fall in A; then place s € A;1f |s — N(s)| < r;j and otherwise place s edy

Proor. As we showed before, an optimum rule places a point s into A
whenever N(s) is in A; where j/ is chosen so that Pj;{|s — N(s)|} =
Pii{ls — N(s)|} for b 4. By the uniform preference property (i) it follows that
Puy;(d) = Pij(d) for M, h 5 j and alld ¢ [0, D]. Hence, we may restrict ourselves
to the two possibilities ;/ = j and i =M.

Form the function Q;(d) = Pjj(d) — Pu;(d). Then an optimum rule puts
j =7ifQ;(|ls — N(s)|) = 0 and §' = M otherwise. By the monotonicity condi-
tion (ii) it follows that Q;(d) is non-increasing on [0, D]. Since Q;(0) is necessarily
non-negative, the set of values of d ¢ [0, D] for which Q;(d) is non-negative must
be an interval [0, r;) or [0, r;] for some unique number ; ¢ [0, D). Hence, an
optimum rule is to take j = jorj = M according as |s — N(@s)| <rj
or |s — N(s)| > ;. Since the set {s} for, which |s — N(s)| = r; has zero volume
we may arbitrarily put such points in A , and the proof of the theorem is com-
plete. Note that if the P;;(d) functions are continuous on [0, D] then the Q;(d)
functions are continuous and r; is the smallest root of @;(d) = 0; if this equation
has no root in [0, D] then r; = D.

A definition analogous to (3) for the simple nearest-point rule can be written
down for the optimum rule in the case where Theorem 4 applies. As in Section 2,
let S;, -+, Sa be the regions of influence of the sample-points sy, -+, $n. Let
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T:iij(s=1,--+,m;5 =1, ---, m) be the spherical region of radius r; centered
at the sample-point s;. Then Theorem 4 says that an optimum nearest-point
rule for reconstructing a pattern can be defined by

PN

(18) Aj= Deen; 8inTij, j¥* M;
j{M = A bl Ao bl Zj,gyfij.

This formulation is convenient for the statement of the next theorem.

TaEOREM 5. Let V;j; = S;n T ;. If the pattern is generated by a model with
properties (1) and (17), then the risk EL for the optimum nearest-point rule is
given by

(19) 1 — 21 2 pidfve; Pii(ls — sil) du(s)
+ [si—v.; Pui(|s — si) du(s)}.

Proor. Since the {S;} are a partition of A — Ao, since {Vi;, S — Vi;} isa
partition of S; for each j, and since N(s) = s; for all points s ¢ S;, we can put
formula (16) into the form

EL=1— 37ap; 20 fvi; Prils — si) du(s) + [s—v,; Pirs(|s — sid) du(s)].

This last formula is valid for any nearest-point rule. But in Theorem 4 we showed
that the optimum rule puts j/ = j for all points s ¢ V;,; and puts ;' = M for all
points s ¢ 8; — V. ;. Substituting these results into the last formula completes
the proof of the theorem except for interchanging the order of the two sum-
mations.

If the sample-points are arranged so that for every ¢ and every point-s £ S; we
have |s — N(s)| < min;.u7;, then T;; O S;forall 7 and allj # M. In this case
the definition (18) of the optimum rule reduces to (3) which defines the simple
nearest-point rule of Section 2. So we have a case where the simple and optimum
rules coincide, and necessarily the expression (19) for the risk will reduce to (4).
For a sufficiently large number of sample-points there will always be a sample-
point arrangement with the above-stated property provided none of the r;’s are
zero. (None of the r;’s will be zero provided the boundary of every A; has finite
expected length since in that case P;;(d) is continuous at d = 0; see Matérn
[2].) More will be said later about the coincidence of these rules in the special
situation of two-color patterns in the plane.

If the sample-points have a systematlc arrangement as defined in Section 2,
then formula (19) reduces to

(20) EL = 1 — n 2274 pil [ve; Pii(lsl) du(s) + [so—vo, Pui(ls]) du(s)},
where S, is the nearest-point region of influence of the sample-point located at
the origin, and Vy,; = Son T,; where T,; is a sphere of radius r; centered at the
origin.

Now we consider the specialization of the optimum nearest-point rule to the
case m = 2, i.e., two-color patterns generated by models with properties (1) and
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(17). It is easily checked that the properties (17) obtain provided only that
Pyu(d) is non-increasing. Take p; < % for definiteness, then po = 1 — p1 > m
and in our earlier notation 4, = A, . The radius r; of the spherical regions T'; is
the supremum of the set of values for d such that Py(d) = Pu(d) = 1 — Pu(d),
i.e., the “largest” value for d such that Pu(d) = %. The optimum rule for two-
color patterns can therefore be stated as follows: A point s ¢ A — A, is placed in
A, if N(s) e A1 and Pufls — N(s)l} =3 othermse it is placed in A, . Alterna-
tively, Ay = Dsea, SinTix, Ay = A — Ao —

The risk EL for two-color patterns using the optlmum rule can be put in the
form

(21) EL/pr=1—227 v, [Pu(ls — si) — 3du(s); m <3}

This expression can be derived by making the substitutions p, = 1 — p1,
sz(d) =1— pl(l —_ pl)-l[l —_ Pu(d)], and le(d) =1 — Pu(d) in formula
(19). The same substitutions made in formula (20) yield the corresponding risk
for systematic sample-point arrangements, viz.,

(22) BEL/pr =1 — 2n [y, [Pu(lsl) — 31du(s); p <3

We indicated earlier that in the general m-color case the simple and optimum
rules coincided under certain conditions. For the two-color case with p1 < 3 the
condition is that no point in A be further than the distance r, from a sample point.
When the two rules do not coincide then by definition the optimum rule will yield
a smaller EL than the simple rule. However, the application of the optimum rule
requires knowledge of the Py(d) function sufficient to determine the radius 71 .
The next theorem shows what we might do if we are vague about r; .

TraEOREM 6. For the two-color patterns generated by a random model with proper-
ties (1) and (17) with p1 < 3 and Pu(d) non-increasing, let ™ be any overestimate
of 11, then the sub-optimum pattern reconstruction rule which is the same as the
optimum rule with ry replaced by r* never gives larger values of the risk EL than the
simple rule.

Proor. Let T71 be the spherlcal region of radius r,* centered at the sample-
point s; , and let Vi1 = Sin T¥, where S is the region of influence of the point
s; as earlier defined. Then, by analogy with (21), the formula for the risk using
the sub-optimum rule is

EL/p1 = 1 — 2 220 [vi, Hi(s) du(s),
where Hi(s) = [Pu(|s — si|) — 3]. We can write
[vr  Hi(s) du(s) = [o, Hi(s) du(s) — [s—v}, Hi(s) du(s).

But since Pu(d) is a non increasing function and n* > rl by assumption,
Pu(n™*) = Pu(rl) 1. Furthermore, all points s ¢ §; — V71 will be not less
than distance r* from s; by the definition of V¥, hence, for all such points
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Pu(ls — i) = Pu(n™) £ &, ie., Hi(s) < 0forseS; — Viy. Therefore,

[y  Hi(s) du(s) 2 [s; Hi(s) du(s)

and
EL/p1 = 1 — 227704 [s; Hi(s) du(s) = 2 — 2 221 [, Pu(ls — sil) du(s)

since Y, u(8S:) = u(A — Ao) = u(A) = 1. But the right-hand side is just the
expression for EL/p; when the simple nearest-point rule is used and the theorem
is thus proved. Note that if Py( r*) is strictly less than Py (71) then the sub-
gptimuril rule of the theorem has strictly smaller risk than the simple rule—pro-
vided these two rules do not coincide.

As carlier indicated the optimum and simple rules are likely to coincide when
the number of sample-points n gets large, provided they are fairly evenly dis-
tributed over A. This occurs because, whereas 7, is a fixed number not depending
on n, the furthest distance to the nearest sample-point will generally shrink as n
gets larger—and once this furthest distance falls below r; the two rules become
equivalent.

On the other hand, for small » the minimum distance between any two sample-
points may exceed 2r; if the sample-points are fairly evenly distributed over 4.
It is easily seen that this is a sufficient condition for the spherical region T';; (with
radius r; centered at the sample-point s:) to be wholly contained within S; (the
region of influence of s;) for each ¢ = 1, - - - | n. For consider any point s ¢ T,
then |s — s;| < r1; let s; be the sample-point nearest to s, then necessarily
[s — sj| < |8 — si < r1whence|s — s;| + |s — si| = 2ry ; butif ¢ 5 j then by the
triangle inequality |s — s;| + |s — si| = |si — s;| > 2r; by assumption; therefore,
we have a contradiction unless 2 = j and we conclude that s ¢ T';; implies s € S; ,
i.e., S,‘ ) T."l fOf all 1.

In this case of large spacing between sample-points we have seen that
S:n T;; = T, foralli. So we see from (18) that the optimum rule with p; < 3 is
defined by taking Ay =D se4, Ts, ice., Ay is a union of disjoint k-dimensional
spheres of radius r, centered at those sample-points which are observed to fall in
A; . Formula (21) for the risk EL becomes

(23) EL/py = 1 — 2 2% [r,, [Pu(ls — i) — 3] du(s)
= 1 = [4na™/T(/2)] J.El [Pu(u) — %]uk'1 du.

It is interesting to observe that the risk is linear in the sample-size for this case.
Furthermore, this last expression in no way depends on the arrangement of the
sample-points, so we can conclude that if the spacing between sample-points is
sufficiently large and if Py(d) is non-increasing, then the risk EL associated with
the optimum rule ceases to depend on the sample-point arrangement in any other
way.

We now return to briefly consider the more general loss function L’ as defined
in (10). For the case of two-color patterns it was shown in Theorem 2 how the
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risk EL’ could be directly obtained from EL when the simple nearest-point rule
is used to construct the estimated pattern. A similar connection between EL’ and
EL exists also when the optimum rule is used with two color-patterns, viz.,

(24) 2EL' = (L + Lu — Ly — Ln)EL + (L — Lu + Ly — La)p:
4+ (=L + Lu + Ly — Le)npu(Vo) + 2Ls,

a formula valid for systematic sample-point arrangements and pattern-generating
models of the type (1) with p; < %; the region V; was defined in the explanation
of formula (20). To prove (24) recall that L' = Lpu(Ar) + Lap(An)
+ Luw(An) + Lou(As) where A;; = A;n A; ;asin the proof of Theorem 2, it is
easily shown that when the optimum rule is used with a systematic arrangement

Eu(An) = Ep(A) — pill — nu(Voa)l,
(25) Eu(Au) = p1 — Eu(Ar),
Eu(A») = (1 — p1) — Eu(A4n);

hence, EL is linear in Eu(Ay), say; but EL is the special case of EL’ with
Ly = Ly = 0and Ly, = Ly = 1,50 EL is linear in Ep( A1) whence EL’ is linear
in EL; the particular linear relation (24) can be found by repeated use of (25).
This section is concluded with an example based on two-color patterns on a
plane region A. Let the n sample-points be systematically arranged on the vertices
of a square n~? X n~? grid; the nearest-point regions of influence will therefore
all be n~? X n™* squares with a sample-point at the center of each. We will let the
shape of A be altered so that this will always be possible, but A will always have
unit area. For illustrative purposes, we will once again use the model (12),
viz., Pu(d) = p1 + (1 = p1)e™*, ¢ > 0. Since this Py;(d) is non-increasing the
main results of this section are applicable. Assume for definiteness that p1 < 3.
Solving the equation Pu(r) = 1, we get

(26) rn = (1/c) logs ((1 — p1)/(3 — p1)).

The furthest distance from an arbitrary point in A to a sample-point in A is
easily seen to be (2n)~*. Therefore, the simple rule becomes the optimum nearest-
point rule provided the sample size is greater than (2r,")™" where 7, is given by
(26).

For example, suppose we want a sample size n large enough so that the risk
EL will be less than p1(1 — p1). Then it may be surmised from Table I for the
simple rule that this risk level canbe achieved only if n is large enough to make the
simple rule an optimum rule—for any p; greater than about 1 and less than 1. In
fact, if we want to achieve a level for EL of .6pi(1 — p1) or less, then for any p:
the sample-size will always need to be so large as to make the simple and optimum
nearest-point rules equivalent. To see this we first note from Table I that to
achieve such values of EL the quantity cn ™ must be less than .98 approximately
if the simple rule is used, i.e., » must be greater than 1.04¢’; now the maximum



RECONSTRUCTING PATTERNS FROM SAMPLE DATA 151

value of (2r,®)™" is also approximately 1 04c son > 1.04¢’ implies n > (2r®)?
always; but as noted earlier n > (2r°)™" makes the simple and optimum rules
equivalent for this example.

Formula (23) for widely spaced sample-points specialized to this example
becomes

(27) EL/py =1 — (nx/&)[2 — (1l — 2p1)(2¢ + &r)]

where 71 is given in (26). In fact, as pointed out earlier in a more general context,
the expression (27) is valid for any arrangement of the n sample-points provided
the distance between any pair of sample-points is always greater than 2r, . The
superiority of the optimum rule compared to the simple rule is most pronounced
in this case of widely spaced sample-points, the difference being more noticeable
as p1 gets smaller. Table III exhibits a comparison of the two rules for this
example.

TABLE III

Values of EL(optimum rule)/EL(simple rule) for n points on a n~* X n—? square grid,
using model (12)

ent p1—0 p = .10 1= .20
2.00 .87 .93 .98
3.00 .73 .80 .88
4.00 .65 .72 80

6. Some models of random patterns. Models for patterns of more than two
colors seem to have received little or no previous attention. We will therefore
begin with some examples of models for two-color patterns.

First, we have the so-called “bombing” models, an example of which can be
specified as follows: Points (bombs) are dropped by a Poisson process with in-
tensity § into k-dimensional Euclidean space E; and each such point generates
(destroys) a spherical region of fixed radius r with itself at the center. By this
procedure, a fixed region A C E; is randomly partitioned into {4;, 4 — Ay}
where A; consists of that part of A which is contained in the union of spherical
regions generated by the points of the Poisson process, i.e., 4, is the bombed-out
portion of A. For this model Pr (s 4;) = p1 = 1 — exp { —6°C)} identically
for points s ¢ A, , and

(28) Pr(s'eds,sedi) = pPu(d) = (2p1 — 1) + (1 — py)"®"

1dent1cally for all pairs of points s, s’ ¢ A with |s — §'| = d, where H (k, u) =
2 — C*(k,u)/Ch , C is the volume of a unit radius k- sphere, and C*(k, ) is the
volume common to two-unit k-spheres when their centers are distance u apart.
A version of formula (28) has been given essentially by Matérn [2]. For any fixed
r and 8, Pu(d) decreases contmuously ford = 2r, and ford = 2r, Pu(d) = p: .

In one dimension C; = 2, C*(1,u) = 2 — uforu < 2, and C*(1, u) = O for
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u Z 2;in two dimensions C; = 7, C*(2,u) = = — u(1 — u*/4)* — 2 arc sin (u/2)
foru < 2, and C*(2,u) = 0 foru = 2.

Since this bombing model does not treat A; and A; symmetrically, it is not
clear how one should generalize it to m-color patterns. Another two-color model
discussed by Matérn [2] does treat A; and A, symmetrically and can be easily
generalized to m colors. This model, which we will call an “occupancy’” model, can
be specified as follows: Two Poisson processes drop points into E} ; one process
with intensity 6 drops black points and the other process, with intensity 6,
drops white points. Each of these Poisson points spreads out to occupy a cell
consisting of all points in Ey which are nearer to it than to any other one of the
Poisson points. This procedure randomly partitions the fixed region A C E; into -
{A1, A — A} where 4, is the subregion of A occupied by black cells and
A; = A — A, is the subregion occupied by white cells. (Points on cell boundaries
can be assigned to 4, to complete the specification of the model.) Equivalently, a
Poisson process with intensity § = & -+ 6, drops points in Ej ; the points induce a
partition of E) into cells in the manner described and the cells are then inde-
pendently colored black or white with fixed probabilities 6,/ and 8/, respec-
tively; then A, is the intersection of A with the union of black cells. For every
point se¢ A, Pr(seA;) = 8/6 = pi. For every pair of points s, s’ ¢ 4,
Pr(seAi,s € A1) = p1 Pr (s, s in same cell) + p,* Pr (s, s not in same cell).
It is easily seen that Pr (s, s’ in same cell) depends on s, s’ only through |s — s'| = d,
say, so we can write

(29) Pr(sed,| s'eAl) = Pu(d) = pr+ (1 — p)W(d)

where W(d) is the probability that any two points which are d apart are both in
the same cell. An expression for W(d) is given by Matérn, but it has an elementary
form only in the one-dimensional case, viz., W(d) = (1 + &d) exp { —25 d}.

A generalization of the two-color occupancy model to m colors is immediately
obvious. A partition of E; into cells is induced by a Poisson point process in the
manner previously described. The cells are then each independently given one of
m colors according to a fixed set of probabilities p1, p2, - , pm . The random
subregion A4 ; of the fixed region A C E} is defined to be the intersection of A with
the union of j-colored cells. For this model, p; = Pr (se A;) for every point
s ¢ A, and for every pair of points s, s’ ¢ A with |s — §'| = d,

Pr(s'ed;|sed;) = Pi(d) = p; + (1 — p)W(d)
(30) and
Pr(s'eA;|sed;) = Py(d) = pdl — W(d)], i j.
Note that P;;j(d) does not depend on j.
Actually, the occupancy model can be conceived as one of a large class of

models for m-color patterns which we will call “cell-structure” models. All such
models begin with a random countable partition of Ej into cells. The partitioning
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process must have the property that for any two points in the fixed region
A C E) , the probability W(d) that they are both in the same cell of the partition
may depend only on the distance d between them. Each cell is then independently
given one of m colors according to a fixed set of probabilities p1, -+, Pm,
> pi = 1. The random subregion A; is defined to be the intersection of 4 with
the union of j-colored cells. It is clear that formulas (30) hold for any model of
the cell-structure type.

TaEOREM 7. If an optimum nearest-point rule is used to reconstruct an m-color
pattern on a region A generated by a cell-structure model in which all the cells are
convex, then the risk EL can be expressed as

(81) (1 — pau) — 2iwapi 20 {[vi; W(ls — ) du(s) — (px — p3)
Srey 1= W(ls — sl du(s)},

where to review some notation, py is the assumed unique maximum of the {p.}, the
{si} are the sample-point locations in A, and V; ; is the region S; n T ;—where S; is
the set of points in A nearer to s; than to any other sample-point, T'; ; is the spherical
region of radius r; centered at s;, and r; is the largest value of d for which
P;i(d) 2 Puj(d).

Proor. The expression (31) is obtained upon simplification by direct substi-
tution of (30) into the expression (19) of Theorem 5. This substitution is valid
provided that the P;;j(d) functions of (30) satisfy the conditions (i) and (ii) of
(17).

Since for any cell-structure model P;;(d) = pi[l — W(d)] for all 7 5 j and all
d, it is clear that the uniform preference condition (i) is satisfied whether or not
the cells are convex. Convexity is introduced here as a simple sufficient condition
for the monotonicity property (ii). It will be enough to show that convexity of
the cells implies that W(d) is non-increasing since P;;(d) is linear in W(d) for
all 7, 7 and for all cell-structure models.

Let a, b, ¢ be three distinct collinear pointsin 4, let |a — b| = dy, |b — ¢| = ds,
and |a — ¢| = di + d; = do, and let xy denote the event that the points z and y
are both in the same cell of the random partition of A. By convexity of the cells
P(ac) = P(ab, bc). Then provided W(d,) > 0, W(dy + d») = P(ac) =
P(ab, bc) = P (bclab)W(dy) < W(dy). If W(dy) = 0 then P(ab) = 0 so W(d,
+ dy) = P(ab,bc) = 0. Hence, W(dy + d2) < W(d1) for every dy , d2 = 0,
i.e., W(d) is non-increasing and the proof of the theorem is complete.

In addition to the occupancy model discussed earlier, we now give two further
examples of cell-structure models both for patterns in a plane region. In the first
example the plane is partitioned checkerboard style into A X h squares; the origin
of the plane is chosen with uniform probability over any h X h square and the
checkerboard is then rotated through an angle chosen with uniform probability
on (0, 27). The cells are the squares of the checkerboard and the cells are now
independently colored with fixed probabilities. For this cell-structure model of
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the checkerboard type
W(d) =1 — x'(4d/h — d°/H), d < h,
(32) =1 — 72+ 4cos" (h/d) + &/K — &(&/K — 1Y,
h<d s h2
=0, d = h2t.

In the second example the plane is partitioned into cells by ‘“Poisson” lines
defined thus: A Poisson point process with intensity § chooses points (6, p) in the
infinite rectangular strip 0 < § < 7, — o < p < o« ; each point so chosen cor-
responds to a “Poisson’’ line 2 cos § + y sin § — p = 0 given in terms of an (z, ¥)
Cartesian co-ordinate system. This method of partitioning the plane is explored
by Kendall and Moran [1]. The resulting cells are then independently colored
with fixed probabilities. For this cell-structure model of the Poisson type it can
be shown that

(33) W(d) = ¢¥,

This gives Pu(d) = p1 + (1 — p1)e *, which is precisely the model used for the
illustrative comparisons of Sections 2 and 3 involving two-color patterns. So we
see that patterns with this Py;(d) function can actually be generated.

6. Conclusion. We have been principally concerned with the risk structure
for the problem of reconstructing a pattern from point observations. Some
sample design comparisons were made. A somewhat ‘obvious method for im-
proving the common nearest-point rule of reconstructing a pattern was proposed
and shown to be optimum in a suitably restricted context. Some pattérn-generat-
ing models were briefly explored.

We did not at all discuss the statistical problem of estimating the risk in the
case where the generatingsmodel is not completely specified. For example, if we
use the exponential model (12) for two-color patterns then we may wish to leave
p1 and c as free parameters to be estimated from the data. Some tentative com-
puter sampling experiments have yielded estimates of the risk, based on naive
data estimates of p and ¢, which were surprisingly close to the actual loss even
for moderate sample sizes. But no attempt has yet been made on the general
estimation problem.

Another neglected aspect with important potential applications concerns the
use of designs in which the sample-point locations are chosen in some sequential
manner, e.g., a two-stage design.
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