LIMIT THEOREMS FOR FUNCTIONS OF SHORTEST TWO-SAMPLE
SPACINGS AND A RELATED TEST'

By SaurL BLUMENTHAL

New York Unwversity

1. Introduction and notation. Limit theorems for certain functions of two-
sample “sample spacings’ are given, and then applied to obtain the large sample
properties of a procedure for testing whether two distribution functions (F(z)
and G(z)) are the same. The present limit results extend earlier work of Blum
and Weiss [1], and the proposed test is analogous to one used by Weiss [6].

Denote observations from one population by X;, X;, -+, X, and from the
other population by Y;, Y, -, Y,, with labels chosen so that m = 6n with
0 = 1. The X’s are independent with common distribution function F(z), and
the Y’s are independent with common distribution function G(z). Let p, (0 <
po < 1) be given (choice of a value for p, will be discussed in Section 3).

The ordered X-values will be denoted X;" < --- < X, and the ordered ¥’s
by VY £ --- £ Y, . Let Y, denote — and Y,,; denote + «. By S; we de-
note the number of X, ---, X,, which are contained in the interval [Y:-_l YD)
(z =1, ---,n + 1). The S; are the numbers of X’s ‘“‘separating” adjacent or-
dered Y’s and are sometimes referred to as ‘“sample spacings.” S; will be seen
to be a measure of the “probability content” of the interval [Yiei, YJ).

For an arbitrary k and collection of indices (7; , - - -, %) we write

(1.1) I, = UI;=1 [Y:j-—l ) Y:,)
and we denote the ‘“content” of I, as
(1.2) Hy = 2 (85 +1)/(n +m +1).

We shall study I,.(po) where the indices ¢; are chosen so that intervals [Y:_l ,
Y.) with small corresponding S; values are included in I, »(p0), and enough in-
tervals are included so that H,(p,) is as close to py as possible without exceeding
po . Thus if any interval with an S; value of r is included in 7,(p), all intervals
with S; values of less than r will be included. Generally many intervals will have
a given S; value, and if inclusion of all intervals with S; = 7, (say) would make
H,(po) > po, then an arbitrary subset of those intervals can be chosen subject to

(1.3) po— [(ro +1)/(n +m + 1)] < Ha(po) = po.

To formalize the definition of I,(po), we define K, as the largest integer such
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SHORTEST TWO-SAMPLE SPACINGS 109

that
(14) sz ((Si+1)/(n+m +1)) < po
< Dtisisrarn (8 +1)/(n + m + 1)).
Further, define L, by
(L5) L.(Kn+2) = (n+m+1)p
— Dtisisxa (8i +1) < (Ln + 1) (Ka + 2).

Then I,(po) is the union of all intervals [Yi_;, ¥,) with S; values < K, and
L, of the intervals with S; values of K, + 1, chosen at random or by a conven-
tion such as including the L, associated with the smallest values of Y.

Let E, be the event which occurs if and only if an arbitrarily chosen Y-value
(say Y.41) falls in the region I,,(po).

In the next section we shall show that the probability of E, converges wp 1
as n increases to P and that P = p,, with equality if and only if F(z) = G(x)
(a.e. z). This fact will be used to construct a two-sample test in Section 3.

2. Convergence results. The quantity of interest is
(21)  pa=P(B) = Zatric . viner (HYY) — G(Yim)).
We shall show that p, converges wp 1 to a specified constant P (given by

(2.27)).
The method of attack will be to study the quantities
(2:2) Pa(r) = Lpisemn (K(Y{) — G(Yia)),
i.e. the probability assigned to the Y-spacings containing exactly r X’s. Note that
(2.3) Dn = 212 Pa(r) + pu(Kn + 1, La)
where

(24) pa(Kn + 1, L) = 200, tpsgmmatn (G(Y) — G(Yi,0)).

It will be necessary in establishing the convergence of p, to show that the four
quantities p.(r), K., Ln , and p,(r, L) all converge (K, and L, are defined by
(1.4) and (1.5) respectively).

Before undertaking that task, we note that

(2.5) G(Y)) = GF\(F(Y/))

assuming that F'(z) is well defined. Note also that the quantities S; are un-
changed under a monotone transformation such as that which sends all X; into
F(X;) and all Y; into F(Y;). The quantities F(X;) have the uniform distribu-
tion U(z) on (0, 1). Thus p, is the same if F(z) and G(z) are the distributions
of the X’s and Y’s respectively as if U(z) and GF(z) are the distributions of
the X’s and Y’s respectively. For notational convenience, throughout the remainder
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of this section, we assume the X’s to have the uniform distribution and write the
distribution GF () of the Y’s simply as G(z).

The first step will be to establish the stochastic convergence of K, and L, .
Define

(2.6) Q.(r) = (1/n+ 1) (thenumbersof S;, - -+, Sp41 which equal r),

(i.e., the proportion of the Y-spacings which contain exactly r values of X.)
The stochastic convergence of @,(r) has been established by Blum and Weiss
[1] and will be stated here.

TaeOREM 2.1. Define

(2.7) Q(r) = 0 [ ¢"(y) (0 + 9(3)™"* dy.
Giwven ¢, 86 > 0 and B > 0 (R an inieger), there exists N (e, 8) such that
(2.8) Plsupr20|@a(r) — Q(r)| < & all n > N(ed)] 21—,

(2.9) Pl f0r@Qu(r) — 2275%rQ(r)] < all n>N(ed)] 21 -0

where N (e, §) does not depend on R.

Proor. Statement (2.8) is proved by Blum and Weiss [1], and a slightly
modified version of (2.8) is derived by this author in [2]. Statement (2.9) follows
from (2.8) and

(2.10) (n+ 1/n) 2o rQu(r) = (I/n) 20E Si = 6 = 270 rQ(r),

completing the proof.
Next, we define a quantity analogous to the “sample content” H, (see (1.2)),
namely

(2.11) Ho(K) = Xpisiem (Si +1)/(n(6 + 1) + 1)

= 25 (r + 1)Qu(n)((n 4+ 1)/(n(6 + 1) + 1))
where K is a fixed integer. Further, define
(2.12) H(K) = 2% ((r + 1)/(6 4+ 1))Q(r).

An immediate corollary to Theorem 2.1 is the convergence of H,(K) to H(K).
CoOROLLARY 2.1 Gien ¢, 6 > 0, and a positive integer K,

(2.13) PlH.(K) — H(K)| < ¢ dall n>N(ed)] 21—

This corrollary will be used to demonstrate the stochastic convergence of
K., as follows. Define the integer K, by

(2.14) H(Ky) £ po < H(Ko+ 1),

which is a direct analogue of the defining equation (1.4) of K, .
CororLLaRrY 2.2 With K, and K, defined by (1.4) and (2.14) respectively, and
if H(K,) < po, and given 8,

(2.15) PK, =Ky all n>N(8p,G)]=1-—35,
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where N (8, po, G) depends on 8, the parameter py and the distribution G but on
nothing else. If H(K,) = po, then

(216) P[K, = Kor Ko — 1, all n > N(, po, G)] =2 1 — 4.

Proor. For (2.15), take e = min ((po — H(Ko))/2, (H(Ko + 1) — po)/4)
in (2.13). Since K, , H(K,) and p, depend on p, and G (only), (2.15) follows.
For (2.16), take ¢ = min ((po — H(Ky — 1))/4, (H(Ko + 1) — po)/4). This
completes the proof.

The case H(K,) = p, introduces slight complications into the argument which
can only obscure the general ideas, so only the case H(K,) < po will be consid-
ered. The modifications for the other case should become apparent.

Next, define Ly (an integer) as

(2.17) Ly = (po — H(Ko))(8 + 1)/(Ko + 2).
COROLLARY 2.3. With L, defined by (1.5) and Lo by (2.17), given ¢, & > 0,
(2.18)  P[(L./n) — Lol < ¢ all n> N(e8,p0,G)] =1 — 4.

The proof follows easily from the definition (1.5) and the previous two corol-
laries.

With the convergence of K, and L, established, the convergence of p,(r)
(see (2.2)) will be demonstrated next.

TaEOREM 2.2. Define

(2.19) P(r) = (r+ 1)6 [d" (¢ ()/(8 + g(y)"™*) dy.

Given ¢, & > 0 and R a positive integer,
(2.20) Plsup,»o|pa(r) — P(r)| < ¢ all n> N(ed)]=1—34,
(2.21) PlD Fopa(r) — 2o P(r)| < ¢ all n>N(ed)]21—5,

where the constant N (e, 8) depends only on € and é, not on R.

Proor. The proof of (2.20) is contained in [2] and will not be given here. It
can be obtained using (2.8) and the main result of Weiss [5].

Expression (2.21) is derived easily from (2.20) and

(2.22) Do pa(r) =1 = 27 P(r).
Next, consider for0 < A < 1,

(2.23) pa(r, Mn + 1)Qn(r)) = ?‘=’i.‘f3$’:j.'=)n(G(Y§,-) — G(Yi;1)).
Note the similarity between (2.23) and (2.4).
COROLLARY 2.4. Given ¢, 6 > 0,

(2.24) Plsup,zo|pa(r; NM(n 4 1)@n(r)) — AP (r)| <€, all

n> N(gd)]=1—34.
Proor. From the proof of (2.20), it can be seen that (2.20) remains true for
n' = \n with the obvious insertions of M’s as in (2.24).
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Finally, the convergence of p, can be demonstrated.
TureoreM 2.3. Given ¢, 6 > 0,

(225) Pllp. — 2272 P(r) — (Lo/Q(Ko + 1))P(Ko + 1) < ¢, all
n> N(e 6, po,G)] =1—06.

Proor. Using (2.3) to represent p,, the theorem follows from the straight-
forward application of Theorems 2.1 and 2.2 and Corollaries 2.2, 2.3, and 2.4.
COROLLARY 2.5. Given ¢ > 0,

(2.26) Pllp. — 272 P(r) — (Lo/Q(Ko +1))P(Ko 4 1)| > ¢ < C(e)/n".

Proor. It is not difficult to establish that the 2rth moment of
(Pn — 202 P(r) — (Lo/Q(Ko + 1))P(Ko + 1)) is 0((n—*)2’) This is seen
during the proof of Theorem 2.3 where the case r = 1 is carried out in detail.
(See [2]). To get (2.26), take r = 2 and use the generalized Chebychev inequality.

Stronger results than Corollary 2.5 are obtainable (e.g. n° could be replaced
by n', any r > 0) but are not needed here. Regarding the behavior of p,, it
is seen from (2.1) that p, is a sum of a random subset of a set of interchangeable
random variables (namely the {G(Y)) — G( Yi-1)}). Except for the indices
in the summation being chosen at random, the results of Hanson and Koop-
mans [4] on exponential convergence rates for sums of interchangeable variables
would apply here and we believe that these rates do apply to these p, . Also, the
central limit theorem on Chernoff and Teicher [3] for sums of interchangeable
variables “almost’’ applies here (with the same exception) and again we believe
that these p, do obey the central limit theorem. These properties will not be
studied in this paper.

We shall show now that p, tends to po when F(z) = G(z) and to a greater
value otherwise. Let P be defined by

(2.27) = 2R P(r) + (Lo/Q(Ko + 1))P(Ko + 1).

Theorem 2.3 demonstrated the almost sure convergence of p, to P. It will be
shown now that P = p, with equality if and only if F(z) = G(z) (e.g. G(x) is
uniform).

LemMa 2.1. Let o(t) be a positive, strictly decreasing function of t(t = 0), and
let g(x) be a continuous density function on [0,1].

(2.28) Jo'e(g(z))(1 — g(z)) dz 2 0

with equality if and only if g(z) = 1 (a.e.) on [0, 1].
Proor. Write [0, 1] = SoUS: where the mutually exclusive sets S and S; are

(2.29) So = [z:g9(zx) < 1];
8= [eig(a) 2 11.
Clearly, since ¢(t) is decreasing
(2.30) s e(g(x)) (1 — g(x)) dz Z ¢(1) [ (1 — g(2)) do
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with equality if and only if Sy has measure zero. Similarly, since (1 — g(z)) is
negative on S; and ¢(¢) decreases,

(2.31) Joi0(g(@))(1 — g(z)) dz Z (1) [s, (1 — g(z) dz

with equality if and only if the set [z:g(xz) > 1] has measure zero. Adding (2.30)
and (2.31) gives (2.28). This proves the lemma.
THEOREM 2.4. With P defined by (2.27),

(2.32) Pz p

with equality if and only if G(x) is the uniform distribution on [0, 1].
Proor. Using the definitions (2.12), (2.14), and (2.17) of H(K), K,, and
L, respectively, po can be expressed as

(2.33) po= (Lo/Q(Ko+ 1))H(Ko+1) + (1 — (Lo/Q(Ko + 1)) ) H(Ko).
Rewrite (2.27) as

(234) P = (L/Q(Ko+1)) 222%"P(r) + (1 — (Lo/Q(Ko +1))) 27%P (7).
Comparing (2.34) and (2.33), (2.32) follows from the fact that

(2.35) H(K) £ 270 P(r)

for any K with equality if and only if G(z) is the uniform distribution on [0,1].
To establish (2.35), use (2.7), and (2.12) to show

(2.36) H(K) =1— (65"/(1+0)) [¢' (6 + (K +2)g(2))/(0 + ()" da.
From (2.19), comes
(237) 2 P(r) =1 — 6™ [ (8 + (K + 2)g(2))g(x)/ (8 + g(x))*" da.
Using (2.36) and (2.37), (2.35) becomes
(238) (6°7/(1 4 0)) [ ((6 + (K + 2)g(2))/

0+ g(x)")(1 = g(z)) dz 2 0.

But (2.38) follows from Lemma 2.1 witho(t) = (a + bt)/(a + t)° (a,b < 1).
This completes the proof.

3. A two sample test. We shall now use the previous convergence results to
construct a statistic for testing the hypothesis

(3.1) Hy:F(z) = G(x)

against general alternatives.

Assume for convenience that 6 is an integer, and that X;, ---, X, ; and
Y1, -, Y.y1 have been observed. Let po be fixed. On the basis of X;, X», -- -,
X and Y, , form the region I;(p,). Define

(3.2) 61 =1 lf Y2 iS in Il(po)

= 0 otherwise.
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Then form I,(p,) based on (Xi, -, Xa), (Y1, Y2) and define §; in terms of
Y; and I,(po). Successively, 83, - -+, 8, are defined in this manner. Let
(3.3) D, = Z?s-l 0; .

Thus D, is the number of occurrences of the event E; (see Section 1) in n
trials—which are not independent.

Using Theorem 2.3, it is easily verified that E(D,/n) converges to P (given
by (2.27)) as n increases. Further, it can be shown that E((D,/n) — P)* con-
verges to. zero as n increases. The demonstration is a direct parallel of that in
Section 3 of Weiss [6] and will be omitted. Thus (D,/n) converges stochastically
to P. In view of Theorem 2.4, it is seen that a test which rejects H, for large values
of [(D,/n) — po), and accepts otherwise, will be consistent.

To find the approximate critical values for (D,/n) the limiting distribution
of D, is needed. It is conjectured that

2} [(Da/n) — PJ/(P(1 — P))}

is approximately normally distributed for large n.

The normality assumption is made plausible by noting that for large values
of %, 8;, 8i41, *** , 0, is a sequence of Bernoulli random variables, which though
not independent all have (approximately) the same probability P of attaining
the value unity. The fact that the limiting variance does not reflect the depend-
ence may be justified by the following heuristics: The covariance of 8;, 6:41
depends on terms such as P(8; = 1, 8,41 = 1), and thus on P(8;41 = 1| 8; = 1).
The condition affects the probability involved because §; = 1 means that the S;
value of one interval contained in I;(p,) is increased, which could mean that in
forming I;;1(po) one interval contained in I;(p,) might be forced out and
replaced by another interval. If two intervals are interchanged because of this
condition, p;y; would change from its unconditioned value by the difference
between the probability contents of the intervals involved. Since these contents
are of order (1/7), the difference is of order (1/7)°, and is thus relatively negligi-
ble.

On the normality assumption, the critical region of size a will be approxi-
mately

(3.4) (Da/n) > po + (Ka(po(1 — po))i/nt),

where ®(K,) = 1 — a and®( ) is the standard normal cdf. Further, the approxi-
mate power of this test will be

(35) 1 —@n'[(pe — P)/(P(1 — P))Y} + Ku((po(1 — o))}/ (P(1 — P))})}.

To consider rational choices of po and 6, we shall make an approximate evalua-
tion of the power when F(z) is the uniform distribution on [0, 1] and G(x) is
“close” to F(x) and has density g(z) given by

(3.6) g(x) =1+ ch(z), 0=sz=1,
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where,

(3.7) ch(z) > —1; [dh(z)dz = 0; [k (z) dv = D < o.
Also assume

(3.8) limg.o C*7* [ #*(z) dz = 0 uniformly in K(>2).

This assumption makes approximate computing formuli easier to obtain.
Use (3.6) for g(z) in the formula (2.36) for H(K), and simplify by means
of (3.8) to obtain

39) HWEK)=1—-6"0+K+2)/A+0)*"4+0(), (c—0).

Thus H(K) differs under G(z) by O(c’) from its value under F(z). With K,
defined by (2.14), and K* defined by

(3.10) 66+ K* +3)/(1 + 0) " <1 — po
S0+ KF+2)/(0 + 6)<P,

(3.9) implies that Ko = K* for ¢ < ¢*, where ¢* depends on po, h(z) and 6.
With P defined by (2.27), using the definitions (2.7), (2.12), (2.14), (2.17),
and (2.19) gives

P=po+ (6%7/(1 + 0) [ ((6+ (Ko+ 2)g(z))(1 — g(2))/
(38.11) (64 g(z))* ) dz +[po — 1 + (6°°/(1 + 0))
Jo (64 (Ko + 2)g(z)/(6 + g(=))™*) da] [o* (¢'(z)(g(z) — 1)/
(8 + g(2)) %) da/[[o (65" ¢*(2)/(0 + g(x))***) da] ™
Use (3.6), (3.7) and (3.8) in (3.11) to simplify it to
P = po+ D6"/(1 + 0){(Ko + 1) (Ko + 2)/(1 + 0)%°°
(3.12) + ((20 — Ko — 1)/67(1 + 6)*)(po — 1
+ 6970 + Ko + 2)/(1 + 6)™)} + o().

For given 6 and po, (3.12) gives approximate values of P for small c. We
abbreviate (3.12) as

(3.13) P = po + ¢Dd(0) + o(c’).

Since for fixed =, the total sample size, the “information” available, and
the power must increase with 6, we shall fix N = n(1 + 9) (the total sample size),
and find the “best” 6—division of X’s and Y’s—subject to this constraint.
Using (3.13) in (3.5), and writing n as N/(1 + 6) we have for power

(3.14) 1 —&{[(—Dd(8)N*)/((1 + 8)po(1 — 0))*] + ON*e) 4 Ko + 0(c)}.
Clearly, as N increases, this power has a nontrivial limit when

(3.15) Cc =C'/N?
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where C’ is arbitrary, and (3.14) then becomes
(3.16) 1 —&{[—Dd(6)(C")*/((1+ 8)po(1 — po))*] + Ko + O(N ).

Limiting power will be maximized when p, and 6 are chosen to maximize
(d(8)/((1 + 6)po(1 — po))*) or to minimize

(3.17) [po(1 — po) (1 + 6)/d"(6)].

This minimization is complicated by noting that d(8) depends on p, through K,
(see (3.12) and (3.10)). ‘
Table 3.1 shows the behavior of (1 + 6)/d*(6) for po = 3.

TABLE 3.1
6 K, (1+6)/d*(6)
1 0 103
2 1 69
3 2 65
4 3 68

Since (1 + 6)/d’(6) continues to increase for 6 > 4, the optimum 6 in this
case is 3. This gives po(1 — po) (65) = 18.9. Similar computations show that for
Po = 3, the “best” 6 is also 3, giving a (1 + 0)/d*(0) value of 35, with po(1 — po)
(35) equalling 8.7. These computations indicate that § is a better choice for po
than %, and we conjecture that po = % minimizes (3.17).

A reasonable choice of po and 8 would then be po = % and § = 3 to give locally
good power using this test procedure.

4. Remarks. Analogously to Weiss [6], we can construct a sequential test
based on D, , but the determination of the average sample size properties of that
‘test are quite difficult and the study thereof will be left for a later paper.

I would like to acknowledge the help and inspiration of Professor L. Weiss
in the original research on this problem, and the helpful editorial suggestions of
Professor I. R. Savage who read an early version. I am also indebted to the referee
for his careful and detailed reading and extremely helpful comments.
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