SOME INVARIANCE PRINCIPLES FOR FUNCTIONALS OF
A MARKOV CHAIN!

By Davip A. FREEDMAN

University of California, Berkeley

1. Introduction. This paper is mainly expository, and deals with the asymp-
totic behavior of the partial sums of functionals of a Markov chain. Some new
results are proved in Sections 3 and 4. Section 4 contains (16), an arcsine
law for functional processes. The invariance principles of Donsker (1951) and
Strassen (1964) are discussed in Section 5 (which does not depend on the
earlier sections). In view of Section 3, these theorems generalize immediately to
cover functional processes. For precise statements, see (18) and (25).

One basic technique in this note, of partitioning the sample sequence according
to the occurrence of a fixed state, goes back to Doeblin (1938). Finally, it is a
pleasure to acknowledge my debt to Chung (1960).

2. Summary. The new results are (C), (D) and (F) below. Let X,, Xy, - -
be a Markov chain with countable state space I and stationary transitions. Sup-
pose I is a positive recurrent class, with stationary probability vector p. Let f be
a real-valued function on I. Fix a reference state se I, and let 0 < 4 < fp < -+ -
be the times n at which X, = s. Let

Y= 2 {f(Xa)it; £ n < )
and
Ui= 2 {If(X)|: t; £ n < tipa).

Let Voo = D2 71 Yyand S, = X 10 f(X;). For (C) and (D) below, assume
(A) Dir pif(3) = 0;

and

(B) U, has finite expectation.
Then:

(C) TueorEM. n  max {|S; — Vjp,|: 1 < 7 < n} — 0 in probability;
and

(D) TuEOREM. (n log log n) ™ max {|S; — Vip,|: 1 £ j < n} — 0 almost every-
where.

For (F), do not assume (A) and (B),, but assume

(E) Y; differs from 0 with positive probability.

Let vn (respectively, s,) be 1 or 0 according as V.. (respectively, S,) is posi-
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2 DAVID A. FREEDMAN

tive or non-positive. Then

(F) THEOREM. n " D {s;:1 < j<n} —psn " D {v;:1 <7< np}—0
almost everywhere.

I do not believe the convergence in (C) is a.e., but have no counter-example.

3. Proofs of (C) and (D). By the strong Markov property, Y1, Y5, - are
independent and identically distributed. So are U1, U, --- . By (A), E(Y;) =0,
(Chung, 1960, pp. 81-82); by (B), E(Y}?) < «.On [t; £ n], let: I(n) be the
largest j with t; < n; Y'(n) = 2 {f(X,):0 2 j St —1}; Y'(n) = 2 {f(X,):
b <7 S0} 00l > nllet:l(n) =0;Y(n) =8,;Y"(n) =0.

Then (Chung, 1960, p. 78)

(1) 8 =Y'(n) +Y'(n) + Viw,

and (C) follows from (2) through (6).
(2) Lemma. Let az,as, --- and 0 < by < by < - - be real numbers with b;
— o and a;/b; — 0. Then max {ay , - -+ , @z} /b — 0. -
Proor. Easy. []
(3) Lemma. n'max{Y'(j)|:1=j=n}—0ae
Proor. |Y'(n)] £ 22 {If(X)]:0 25 <6 —1}.0
(4) Lemma. n ' max{|Y'()]:1<j<n}—0ae
Proor. Plainly, |Y"(n)| £ Uiny. But I(n) £ n + 1, so |Y'(n)] <
max {U; :1 £j = n + 1}. From (B) and the Borel-Cantelli lemmas, N U1 —0
a.e., so (2) implies n  max{U;:1 £ j £ n + 1} — 0 a.e., that is, n? |¥Y”
(n)] — 0 a.e. Use (2) again. []
(5) Lemma. n'l(n) — p; a.e.
Proor. Use the strong law, or see (Chung, 1960, p. 87).[]
(6) Lmmma. 2 max {|Vipa — Vinl: 1 < j < n} — 04n probability.
Proor. Use (5) and (23). []
This completes the proof of (C). The proof of (D) is similar, using (29) instead
of (23).

4. Proof of (F). Recall (E). Replacing f by —f if necessary, suppose that
V. > 0 for infinitely many m along almost all paths.

Let r; = t;;1 — t;. The r; are independent, identically distributed, and have
mean 1/p, . Theorem (F) will be proved by establishing:

(7) pn (w12 S pd — 0t D (o1 S5 S U(n) — 2} —>0ae.
and
(8) W' X forim:1 7= Un) —2 —n ' 2D {sm:1 =m0} —0ae.

Relation (8) says that essentially allm < n are in [{;11 , t;+2) over which s, = v; .

The proofs of (7) and (8) require lemmas (9) and (10). For (9), let
71, 72, + -+ be any independent, identically distributed random variables. Let
F1 C o C - - - be o-fields, such that r, is F,41-measurable, and &, is independent
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of ny Tnp1, -+ . Let 21, 25, - - - be random variables taking only the values 0
and 1, such that 2, is F,,;-measurable, and D 1 2z, = « a.e.

(9) Lemma.  If E|rj| < o, theratio of D 1= 2iri11t0 2 1=y 2; converges to E(r;)
a.e.

Proor. Let Z, = D 7 z;and W,, = 1 + smallest n such that Z, = m. Because
[Wn = jl€5;, the joint distributon of 7w, , rw,, - -+ coincides with the joint
distribution of 1, 72, - - - . By the strong law, n™* >_¢ rw; — E(r1) a.e. Because
Zy— 0,2, > {rw; :1<j £ Z,) > E(r) ae.But 2 {21 : 1 S S n} =
Z.Z7 D {rw s L £k 2 Z,). )

For (10), let Y1, Y., --- be any sequence of independent, identically dis-
tributed random variables, with V, = >, ¥;. Make no assumptions about
the moments of Y; . Let M be a positive, finite number; let d, = 1 or 0 according
as |V, £ Mor |V, > M.

(10) Lemma. Unless Y;is0ae.,n ' 2 ¥ d; —0 ae.

Proor. Let C, be the concentration function of V,. Fix r equal to one
of 0,---,k — 1. The conditional probability that |Vau., < M given
Y1, -, Yapesris at most Cx(2M). Consequently, lim supp.e 7" Dty djgsr <
Cw(2M) a.e., for example using (1) of (Dubins and Freedman, 1965). The result
is clear unless Y; is nondegenerate, in which case lim.., Cx(2M) = 0 (Rogozin,
1961). []

Proor or (7). As is clear from (9), with &, = $(X, :n = ¢;) in the sense
of (Chung, 1960, p. 72) : the ratio of Y 7" v; to ) 7 0,711 converges to p, a.e. Set
m = Il(n) — 2:

(11) theratioof p, ™" > {0;:1 <j < Un) — 2}

J=
to ' D {oria:1 27 < I(n) —2} convergesto 1 a.e.
From (5),

(12) pm 7 2w i1 2521ln) —2 —p 0t D {01 < J = np) —>0a.e.

Combine (11) and (12). []

ProoF oF (8). Fix e > 0. Choose M so large that [v,<uj2r; = (1 — %e)/p, .
It will now be seen that for almost all sample sequences, for all but finitely many
n, for at least (1 — €)n of the m < n, there is a (unique) j = 1, 2, - - - such that
tin Em < tiys =, |Vj| > M, and |U;pa| < M/2. For such an m, s, = v;, pro-
vided D {|f(Xu)|:0 £ k £ & — 1} £ M/2.

Indeed, by (9) and (10) (using assumption (D)), for almost all sample se-
quences, for all but finitely many =, at most ien of m < n are in intervals
tin S m < tjyp < nwith [V} £ Mandj = 1, 2, ---. By the strong law,
K'Y {rim:12j<k—2and U, < M /2} has lim inf at least (1 — %¢)p, a.e.
Specialize £ = I(n) and recall (5), to see that for almost all sample sequences,
for all but finitely many n, at least (1 — %e)n of m < n are in intervals ¢;,; <
m < e = n with Uj+1 = M/Zand] = 1, 2, .D

Now consider the exceptional case
(13) Yj =0 a.e.
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As is easily seen, if (13) holds for one s, it holds for all s. Suppose
(14) Xy =s ae,

sot; = 0 a.e. Because V; = Sy;,,.1 = 0 a.e., the vectors Sm : {; = m < tj for
j =1,2, - are independent and identically distributed. By the strong law,

(15) (1/n) D7 sm— PBIY. {sm:0 S m < 1o} | Xo = 5] ace.

The limit may depend on s.

Further information about case (13) can be found in (Chung, 1960, Theorem 2
on p. 95).

To state the arcsine law (16), define F,, as follows. For @ = 0 or 1, let Fo be
the distribution function of point mass at a. For 0 < a < 1, let F, be the dis-
tribution function on [0, 1] with density proportional to y — y“ (1 —y)™
(16) COROLLARY. Suppose (E). The distribution of n~ Ty cmverges to

F. if and only if its mean converges to a.
Proor. This is immediate from (Spitzer, 1956, Theorem 7.1) and (F). ]
This corollary appears in (Freedman, 1963).

5. Some invariance principles. Let g ge a real-valued function on the positive
integers, whose value at n is g» . Let g be the continuous real-valued function
on [0, 1] whose value at j/n is n~ 45, , and which is linearly interpolated. Let
Y1, Ya, -+ be a sequence of independent, identically distributed random vari-
ables, of mean 0 and variance . LetVo=0and V, = Y1+ --- + Y.. Let
B,:0 <t < » be standard Brownian motion. Let C[0, 1] be the space of con-
tinuous functions on [0, 1], with the supremum norm. The distribution B2 of
Bu2:0 < t < 1 is a probability on C[0, 1]. Let ¢ be a bounded, real-valued,
measurable function on C[0, 1], continuous B,2-a.e. The invariance principle of
Donsker (1951) is:

(17) THEOREM. Ele(Ven)] = [recrom ¢(f)Ba(df).

A proof of (17) will be sketched below. With the help of a topological fact
(19), Theorems (17) and (C) imply this invariance principle for functional
processes:

(18) COROLLARY. If (A) and (B) hold, then

Ele(Sm)] = [secton o(F)Ba(df),

where o* = pE(Y}).
(19) LEMMA. Let (¢, p) be a metric space.

(a) Let Co and Cy be subsets of % with p(Co, C1) > 0. Then there is a p-uni-
formly continuous, real-valued function f on &, with 0 < f = 1, f=00onC,
f =1lonC;.

(b) Let ¢ be a bounded, real-valued, function on X. Then there are bounded, real-
valued, p-uniformly continuous functions fi and gr on X, with

1) e Efeirn £ 0 = gt = G
(ii) lim fi(z) = ¢(z) iff ¢ is lower semicontinuous at ,



INVARIANCE PRINCIPLES FOR FUNCTIONALS OF A MARKOV CHAIN 5

(iii) lim gx(z) = () iff g 7s upper semicontinuous at x.

Proor oF (a). Let g(z) = p(x, Co), v = inf {g(z): 2 ¢ C1},f = min {v'¢, 1}.[]

Proor oF (b). Without real loss, suppose 0 < ¢ =< 1. The dsicussion of g; is
omitted, being similar to that for f; . Using (a), construct a p-uniformly con-'
tinuous, real-valued function f(n, m, j) on &, bounded between 0 and j/n, such
that: for z with () < j/n, f(n,m,j)(xz) = 0; for x with p(z, [¢ < 7/n]) = 1/m,
f(n,m,3) = j/n.Clearly, f(n,m,j) < ¢.Let fi = max {f(n,m,j);1 <n,m=k
and 1 = j < n}. Clearly, fi £ ¢, f& is nondecreasing with &, and f; is bounded and
p-uniformly continuous. Suppose ¢ is lower semicontinuous at z. Let j/n < o(z)
< (j 4+ 1)/n. Then z is a positive p-distance from [p < j/n], and for large
m, f(n, m,j) = j/n.[]

With the help of (19), Theorem (17) follows easily from
(20) LemMmA. There s a standard Brownian motion B, :0 £t < «, and a
stochastic process V1*, V¥, - - -, on the same probability triple, such that:

(i) the joint distribution of Vi*, V¥, - - coincides with the joint distribution of
Vi, Vo, -+

(i) 2 max {|V;* — Bje2|: 1 £ 7 < n} converges to 0 in probability.

In turn, (20) follows from (21) and (22). Here (21) is trivial, since B has con-

tinuous sample functions. Proposition (22) is an elegant result of Skorokhod
(1964), which I learned from Strassen.
(21) LEMMA. Let ¢ > 0. The probability that max {|B; — B;|:0 £ s < n,
s =t = rs} exceeds en? does not depend on n, and converges to 0 as r decreases to 1.
(22) PROPOSITION. Suppose there is a random variable independent of B
and uniformly distributed on [0, 1]. Then there is a sequence 11 = 79 < - - - of stop-
ping times for B, such that:

(i) 71,72 — 71, T3 — T2, + - are independent, identically distributed, and have
mean o°;

(ii) the joint distribution of B, , B., , B., , - - - coincides with the joint distribu-
t?:O'nOfV1,V2,V3,' .

Proor. Suppose first P(Y; = —a) =b/(a +b)and P(Y; =b) = a/(a + D),
where a, b > 0. Let 7o = 0 and let 7,41 be the least ¢ > 7, with B, = B,, — a
or B; = B,, + b. Because B is a martingale, B, is distributed like Y; . Because
{B — t:t = 0} is a martingale, E(r1) = ab = E(Yy’). Use the strong Markov
property to complete the proof in this case. For the general case, represent the
distribution of Y, as an average of two-point distributions having mean 0. []
(23) COROLLARY. Let € > 0. The probability that max {|V; — Vi|: 1 <
J=n,j =k =1} exceeds ent converges to 0 as r decreases to 1, uniformly in n.

Proor. Use (21) and (22).]] ‘

There is a beautiful a.e. invariance principle of Strassen (1964), which gives a
remarkable insight into the law of the iterated logarithm. To state it, let K,z
be the set of absolutely continuous functions f on [0, 1] satisfying: f(0) = 0
and [31f () dt < o

Strassen’s result is
(24) TuEOREM. For almost all sample sequences, the subset {(2 log log
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) WV in = 3,4, - }, of C[0, 1] is relatively compact, and its set of limit points
18 Koo .

This result and (D) imply
(25) COROLLARY. If (A) and (B) hold, then for almost all sample se-
quences, the subset {(2 log log n) S :n = 3, 4, -} of C[0, 1] is relatively com-
pact, and its set of limit points is K,» , where a® = p,E(Y}).

Strassen’s proof of (24) will now be outlined. Let C, = B2 . The main
step is this special case of (24):

(26) ProposITION. For almost all sample functions, the subset {(2 log
log n)iClmy :n = 3, 4, ---} of C[0, 1] 4s relatively compact, and its set of limit
points 18 Ko .

The argument is omitted.

Now (24) follows from (26) with the help of (2), (22) and
(27) LEMMA. (n log log n)}|B,, — C.| — 0 a.e.

Here 7, is the stopping time of Skorokhod’s proposition (22).

In turn, (27) follows from ’

(28) LEMMA. Let ¢ > 0. There is anr > 1 such that A, occurs infinitely
often with probability 0, where A, s the event that max {|B; — B,|: 0 < s < n,
s =t < rs} exceeds e(n log log n)?.

Proor. Let E, be the event that max {|B; — BJ]: 1 £ s < n,s <t < rs}
exceeds e(n log log ). Plainly, it is enough to prove that E. occurs infinitely
often with probability 0. Let F, = u{E, : ¥ £ n £ r**'}. By Borel-Cantelli,
it suffices to prove that Y, P(F;) < «. Let F.,; be the event that
max {|B, — Byl: v’ £t £ v} exceeds ie[*(log k + log log r)]'. Clearly,

Frc Ui F,;, s0 P(F,) £ * 1 P(Fi;). But P(Fy,;) is easy to estimate from

the reflection principle (Doob, 1953, Theorem 2.1 on p. 392), and P(F}) is
0k, a = &/[8(+* — 1)] > 1 for smallr > 1. []

(29) COROLLARY. Let € > 0. Thereis anr > 1 (depending only on €) such
that A, occurs infinitely often with probability 0, where A, is the event that

max {|V; — Vil: 1 £j = n,j £k < nj}

exceeds e(n log log n)t.
Proor. Use (22) and (28). []
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