STRINGENT SOLUTIONS TO STATISTICAL DECISION PROBLEMS!

By RoBeErRT COGBURN
University of California, Berkeley

1. Introduction. The statistical decision problem generally involves performing
some kind of experiment which yields partial and uncertain information about a
parameter or an a priort distribution, and decision theory studies the risks re-
sulting from basing action on the partial and uncertain nature of this informa-
tion. When, implicit in the decision problem, more reliable information is avail-
able about some relevant aspects of the parameter or a prior: distribution than
about others, a natural breaking up of the parameter space or space of a prior
distributions into equivalence classes, or “slices” (see Wesler [13]), is suggested.
The equivalence classes are chosen so there is relatively good information about
which equivalence class the parameter or a prior: distribution lies in. In this
situation the stringent decision functions appear as a class of conservative
solutions to the problem, in the way that the minimax solution appears in the
unsliced problem. The notion of a stringent solution has arisen in at least two
particular contexts previously: the first in the theory of testing hypotheses, see
Lehmann [7] (the proper source is Hunt and Stein [3]), the second in prediction
theory, see Lehmann [6].

Section 2 introduces the concept of a stringent solution for the statistical
decision problem and develops some elementary aspects of the theory of
stringency.

Section 3 applies the concept of stringency to the multivariate (non-Bayesian)
problem obtained by repeating a basic decision problem, and to the empirical
Bayes problem (see Robbins [10]). These two problems are shown to be closely
related from the viewpoint of stringency. The possibility of using stringent or
nearly stringent solutions in treating the empirical Bayes problem is discussed,
and then it is shown how these solutions may be used in some cases to obtain
interesting solutions to the multivariate problem.

Section 4 provides two examples of applications of the ideas developed in
Section 3 to estimation problems with squared error loss function. These problems
were chosen to reveal a maximum amount of the relevant structure with a
minimum of extraneous complication; stringency is in no way restricted to such
problems.

So far as I know, the results in Section 3 venture in a hitherto unexplored area.
They leave much to be desired, but I hope they may interest someone else in
further exploration.

The theory set forth in this paper should be compared with alternative ap-
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proaches for the situation where partial information about a parameter or a
priori distribution is available. See, in particular, Hodges and Lehmann [2],
Wesler [13], Robbins [10] and the papers cited by Robbins for the empirical
Bayes and related approaches.

2. Stringent decision functions. We will consider statistical decision problems
defined in terms of the following elements:

1. A parameter space ©. The elements of ® correspond to ‘“‘states of nature.”

2. An experiment space X, together with a o-algebra of subsets $. Each 6 ¢ ®
determines a probability distribution P, on S.

3. A decision space D, together with a o-algebra of subsets D. We assume all
singletons are in D.

4. A loss function L defined on ® x D to the non-negative real line such that
L(9, -) is D measurable on D for each 6 ¢ ©.
These elements specify the problem. In addition, we have

5. The space A of all functions § on & x D to the reals such that 8(z, -) is a
probability distribution on © for each xz £ X and §( -, C) is $ measurable in z for
each C ¢ D. Elements of A are called decision functions.

Of course, A is the space of “randomized decision functions” and “pure de-
cision functions’” appear as a special case, when the distributions &(x,- ) degenerate.

6. The risk function R defined on ® x A by

(2.1) R(8,6) = [« Po(dz) [ L(8, c)é(x, dc)
= [« L(6, 8, z) Po(da),

where

(2.2) L(6,8,2) = [pL(8, c)d(z, dec).

If 6 corresponds to the state of nature and the statistician uses decision function
4, then he incurs the risk (or average loss) R(9, 8).

Now let 3 be the smallest s-algebra in ® such that the functions R(6, ) and
PsS are measurable in 6 for all § € A and S ¢ 8, respectively. Then we have

7. The space II of all probability distributions on 3. The elements of II are
called a priori distributions.

8. The Bayes risk function R* defined on II x A by

(2.3) R*(w, 8) = [ R(8, 6)x(d6).
9. The Bayes envelope function r* defined on I by
(2.4) r*(w) = infsea R*(, 8).

A decision function 8, is a Bayes solution relative to = if R*(x, 8,) = r*(x).
10. The restricted minimax risk function m defined on the class of all subsets

T of © by
(2.5) m(T) = infsea supeer B(6, 8).
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A decision function 87 is a restricted minimaz solution relative to T if R(6, 6)
=< m(T) for all 6 ¢ T. When T = O, we drop the word “restricted,” and we
assume that the minimax risk, m(®), is finite.

If the statistician knew beforehand that 6 ¢ T, it might be reasonable to use a
restricted minimax solution relative to T for the decision problem, if one exists.
At least, he can choose § so that R(6, §) < m(T) + eforany e > Oand allf ¢ T.
In general, one can describe the situation where the statistician has partial, but
accurate, beforehand knowledge about the parameter 8 by introducing an equiva-
lence relation ~ on @, the statistician knowing 6 up to the equivalence ~. Let
~(0) denote the equivalence class generated by 6,

~(@0) = {6c0:6 ~ 0}.

We then introduce
11. The envelope risk function r_ , relative to ~, defined on © by

(2.6) r_(8) = m(~(6)).

Now this envelope function represents the best the statistician could do if he
knew 6 beforehand up to the equivalence ~. When he lacks this beforehand
knowledge, the random variable X may still provide some, but less than certain,
information about the aspect of  corresponding to ~. A measure of the effect of
this uncertainty on the risk is

12. The excess relative to ~.

(2.7) e. = infs.a supseo (B(6, 8) — r_(8)).
A decision function §_ is stringent relative to ~ if
R(6,6.) =r_(08) +e. forall 6¢®.

Note that in 12 we might have used any function »’ on ©, rather than one of the
envelope functions described in 11. Then we would define the excess and stringent
solutions “relative to r’.”” Of course, the excess is simply the minimax risk when
the risk function R(6, 8) is replaced by R(8, §) — r_(8), and a stringent solution
is a minimax solution relative to this new risk function. Thus the existing decision
theory can be transferred in a trivial way to yield information about stringent
solutions, and we will not have much more to say about this. However, the first
two theorems are obtained by this transposition and are noted for later use.

TuroreM 2.1. If 7 is an a priori distribution and 6, is a Bayes solution relative to
m, and, if there exists a set T ¢ 3 such that #(T) = 1 and for all0 ¢ T

(2.8) R(6,5) — r(8) = supw.o (R(6,8) — r(6)),
then &, is stringent relative to ~, and, if r_ is 3 measurable on T, then,
(2.9) e. = r*(x) — [rr_(0)w(d6).

Such a distribution = is ‘“least favorable” relative to R(6, §) — r.(0) according
to the usual terminology. We might call it ‘“least informative” relative to ~.
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When G is a group leaving the decision problem invariant (see, for example,
Wesler [13]), a natural equivalence relation on ® is obtained by setting 6 ~ 6" if §'
is the image of 6 under some member of the group acting on © (i.e., if 6, 8’ are on
the same orbit). Clearly, the problem then remains invariant under G if R(9, 6)
is replaced by R(6, 6) — r_(6). Thus the Hunt-Stein theorem and its generaliza-
tions (see, for example, Kiefer [5], Lehmann [7] and Wesler [13]) can be applied
under suitable regularity conditions to conclude that, if Ag denotes the class of
decision functions invariant under G, then

(2.10) infseaq supsee (R(6, 8) — 7.(8)) = e,

so attention can be restricted to invariant decision functions in looking for a
stringent solution. In particular, this result will hold if G'is a compact group in its
natural group topology (see Loomis [8]) and necessary measurability conditions
are satisfied, and as a trivial case we have

THeOREM 2.2. If G is a finite group leaving the decision problem invariant, then
(2.10) s satisfied.

The more interesting aspects of the theory of stringency revolve around the
relation of various equivalences or envelope functions to the information at hand.
Consider the information about the parameter 6 available to the statistician.
Given any equivalence ~ on ©, we can split this information into two parts: the
information about which equivalence class 8is in (location “between’” equivalence
classes) and the information about the position of 6 in a given equivalence class
(location ‘“within” equivalence classes). An equivalence relation will be of prr-
ticular interest from the viewpoint of stringency when there is relatively accurate
information about the location between the equivalence classes. The excess rela-
tive to such an equivalence should be small. We would also like the information
within the equivalence classes to be relatively unimportant to the decision prob-
lem, in which case the envelope function should also be small. Of course, we can-
not expect to obtain a small excess and a uniformly small envelope function for
the same equivalence relation. What we can try to do is to make the envelope
function small at least for some values of 8 (it never exceeds the unrestricted
minimax risk in any case) and keep the excess small.

A natural partial ordering is defined on the set of all equivalence relations on
O by saying that = follows ~, denoted =~ D ~, if

00 =06~0.
In this partial ordering there is the first member, which identifies all members of
0, and the last member, equality on ©. As an immediate consequence of the
definitions, we have

TrEOREM 2.3. If & C ~, then

(2.11) 0=r. 2r. £m(0O)
and
(2.12) 0<e =e. =m(O).
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Moreover, for any two envelope functions ri and r. with corresponding excesses e
and e ,

(2.13) ler — €] < supees [11(8) — 72(8)].

The risk functions of all stringent procedures are uniformly bounded:
THEOREM 2.4. If §_ s stringent relative to ~,
then

(2.14) R(6,5.) £ m(®) + r_(0) — infror_(0) < 2m(0).
For, from (2.7),
e. < infsa {supsee B(0, 8) — infeeo 7_(0)} = m(®) — infse r_(8).

Let Q@ = O/~ be the quotient space of O relative to ~, so ~(6) is the canoni-
cal function mapping 6 into its equivalence class in @, and suppose that for each
q € Q a restricted minimax solution §, relative to {# ¢ ®@: ~(8) ¢ ¢} exists. Then a
natural way to find an at least approximately stringent solution would be to try
to find a good “estimate’ of ¢ (that is, a function ¢ on & to @) and then use the
decision function §; . To apply our apparatus, we must assume that § is chosen so
83 (z, C') is $ measurable in z for each C ¢ D. Then we have

(2.15) R(6, &) = r(6) + [IL(6, b4, ©) — L(6, 6., ©)| Po(da).
For example, if we can take @ to be a finite dimensional real linear space and
(2.16) |L(6,82,%) — L(6, 6., 2)| < A|§ — ~(0)| + B|§ — ~(O)[,
then

(2.17) R(9, &) < r_(0) + AM¢' + BM,
where M, is the mean squared error of ¢
(2.18) My = Eo g — ~(0)[.

The notion of stringency can be applied to Bayesian problems (that is, problems
where “nature employs an a priors distribution’’) by taking IT to be the parameter
space in the preceding discussion. Then the restricted minimax function is defined
in terms of R™ on subsets of II, and the equivalences and corresponding envelope
functions are defined on II. In particular, the Bayes envelope is the envelope
function relative to equality on II. This device will be used in treating the em-
pirical Bayes problem in Section 3.

3. Multivariate and empirical Bayes problems. In this section we consider
decision problems obtained by repeating a basic decision problem. More pre-
cisely, if ©, (%, 8), (D, ®) and L are as described in Section 2, then we may
consider a new problem with parameter space ®™ and experiment space (™,
8™) (the ‘superscript (n) referring to the n-fold cartesian product of the basic
space). For each 6™ ¢ ™, we define Py by making X, - - - , X, independent,
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X having the distribution corresponding to the kth coordinate of 6. That is,
for 6™ = (8, --- , 6,),

Po(n)[Xl & Sl, e, X, ¢ Sn] = Pol[Xl & Sl] Pon[Xn & Sn]

We take the decision space for this problem to be (D™, ™) and the loss
function to be

(3.1) La(Bi, -+, 0n5 di, ~oo, da) = 07 200 L(6k, di).

A decision function is then a function, 8™ = (8,, --- , 8,), where each & is a
function on X™ x D to the reals such that 6:(z™, -) is a probability distribu-
tion on O for each 2™ ¢ ™ and (-, C') is $™ measurable in 2™ for each C & D,
and an a prior: distribution is a probability distribution defined on a sufficiently
large o-algebra in ©“”. The risk function, obtained by integrating L., is then

(3.2) R.(6™, 6™) = n 7' 2ry [a Lu(0k, 6, 2™ )Pocw (dz™),
where
(3.3) La(0i , 8, 2™) = [ L(6, c)ou(z™, dc).

This problem is invariant under the group of permutations of coordinates,
and we henceforth restrict attention to those procedures invariant under this
group in discussing stringent or approximately stringent solutions, as justified by
Theorem 2.2. (A decision function ™ is invariant under this group if, and only
if, & depends on X, ---, X, symmetrically and each coordinate 8, may be
obtained from §; by interchanging X; and X; in & ; thus an invariant §™ is
specified completely by the form of any one of its coordinates.)

We call the decision problem defined above the n-stage multivariate problem.

Parallel to this we will consider the n-stage empirical Bayes problem: the
parameter space is I and the experiment space is (™, $™). For each = ¢ II,
we define P, on (™, $™) by

(34) P,[Xlé‘sl, ,ansn]
= [ [Py[X1e8] -+ Po[XneSu]dm(6:) - dm(6a).

In other words, a vector 8™ in ®™ is selected by choosing the components of
0™ independently with distribution =, and then (X, , *++, Xa) is given dis-
tribution Psny . The decision space is (D, ), so a decision function 8, is a
function on ™ to the reals such that 8.(z™, -) is a probability distribution on
D for each 2™ £ ™ and 8,(-, C) is 8™ measurable in z™ for each C ¢ D. We
then define the risk function R,* directly by

(35) R.*(m, 8,) = [em(ds) - [em(d8a) [ La(6n, 8n, 2™ )Pocm (dz™)
where L,(6, , 8, , 2™) is given by (3.3).

In particular, R,*(, 8) = R*(n, 8) as defined by (2.3), and, in fact, the 1-stage
empirical Bayes problem is simply the Bayesian problem.
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It is important to note that, for every n,
(3.6) infs, R,*(, 8,) = inf; R*(x, 8) = r*(x),

since, taking 8, to be a function of X, , we see that the left side is at most 7*(#),
while, given , the use of a 8, based on X, --- , X, to make a decision about 6,
amounts to using a randomized decision in the Bayesian problem, since
X1, -+, Xu1 are independent of 6, and X, under P, .

The significance of the empirical Bayes formulation is that, if 7 is not known,
then some information about = is obtained from the sample X;, ---, X,.
In [10], Robbins considers conditions under which a sequence of decision fune-
tions, 8, for the n-stage empirical Bayes problem, n = 1, 2, 3, - - - , exists such
that, as n — o,

(3.7) R,*(m, 8,) — r¥(m)

for every = ¢ II. Several approaches to this problem, using the theory of stringent
procedures, are possible. In particular, remembering that II is the ‘“‘parameter
space’ for this problem, we may take the equivalence relation on II to be equality,
so the envelope function is 7*(r). If the excess relative to equality for the n-stage
empirical Bayes problem is &, , and if &, — 0 as n — o, it then follows, not only
that a sequence 8, exists satisfying (3.7), but also that 8. can be chosen so (3.7)
holds uniformly in 7. Of course, in many problems the convergence of é, to 0
may not hold, or even if it does hold, the convergence may be very slow. Thus,
for a given value of n, stringent procedures relative to less fine equivalences on
IT may be of interest. The remarks of Robbins in [10], particularly on pages 8 to
11, obviously have a natural interpretation in terms of stringency. We may, for
example, choose a sequence of equivalence relations on II, for the n-stage em-
pirical Bayes problems, so both the envelope functions and excesses behave
nicely as n — . Or, perhaps more realistically in terms of what can be com-
puted in most problems, the choice of the equivalence relation in the n-stage
problem may be based on certain features of = that can be estimated easily
from the sample X;, - - - , X, . For example, we may identify these distributions
m having a specified set of moments or quantiles the same.

To treat the general case of an equivalence, ~, on IL, we first tmpose the hypothests
that for each equivalence class V = ~(w),

(3.8) inf; supgey R*(, 8) = supqey inf; R*(m, 8).

In other words, we assume each of the Bayesian (1-stage empirical Bayes)
restricted decision problems has a value. The envelope function, r.*, relative to
~, for the Bayesian problem is defined on II by the left side of (3.8) and becomes

(3.9) r.¥(m) = SuPsenn ().

Now if r_*" is the envelope function relative to ~ for the n-stage empirical
Bayes problem, then it is clear that r_*" < r_* (consider decision functions
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depending only on X,), but then (3.6) and (3.9) yield
r.*"(x) = infs, SUPsre_(r) Ra™ (7, 82)
2 SUPx’en(m) "'*(7",) = T~*(7")7

hence r_* = r_*" is the envelope function for the n-stage problem, as well.

As has been intimated, the n-stage multivariate and n-stage empirical Bayes
problems are related. To explore this relationship, we first define a mapping
7 from O™ to II by letting (61, - - - , 6,) be the distribution obtained by
attaching probability n™* to each of the points 61, ---, 6, . (If a particular
value 8 is repeated & times in the sequence, then the total probability attached
to 0 is k/n.) Then we define an equivalence relation, ~", on ®™ by setting

(01 y Ty 0’”) ~" (01,7 ] on/) = T”(el y TN 0") ~ T"(ollr ] 0",)
The envelope function, 7, , relative to ~", is defined on O™ by
(3.10) a(0™) = Infsn) SUPym eon(atm)) Rn(go("), ™).

Throughout the remainder of this section we impose the following additional
hypothesis on the equivalence relation ~: for each n and equivalence class ~"
(a(n)) n @(n),

(3.11)  infsm) SUPpmenam) Ru(@™, 8™) = SUPym eunqamy infim R(o™, ™).
In other words, we assume that each of the n-stage multivariate restricted
decision problems, as determined by ~", has a value.

In the remainder of this section we establish that under certain conditions
the envelope functions for the n-stage multivariate and n-stage empirical Bayes
problems are close for large n.

The decision functions are also related. Thus the nth coordinate of a decision
function for the n-stage multivariate problem can be used as a decision function
for the n-stage empirical Bayes problem. Conversely, a decision function for the
latter problem generates a unique invariant decision function for the former
problem. The hope is that stringent or nearly stringent solutions for one of the
n-stage problems will correspond to nearly stringent solutions for the other
n-stage problem. Such a relationship will not be valid in general, but under
certain conditions it may be used to obtain reasonable solutions to complex
problems. At the end of this section we discuss the possibility of obtaining
decision functions for the m-stage multivariate problem in this way, and in
Section 4 we illustrate with two examples.

THEOREM 3.1. 7, < r_Yo7,.

Proor. Given an equivalence class 7' in O™ and an ¢ > 0, let V denote the
corresponding equivalence class in II and choose a & for the 1-stage empirical
Bayes problem so that, for r ¢V,

R*(m, 8) £ r.*(m) + e
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Then let 5™ be the decision function for the n-stage multivariate problem whose
kth coordinate is 8, = 8(X:). Applying (3.2), we have, for 6 ¢ T and ¢ V,
Ra(6, 8™) = n7' 201 R(6k, 9)
= R*(ra(6™),8) = 7. %(m) + ¢,

and the theorem follows since ¢ > 0 was arbitrary.
An equivalence relation ~ on II is preserved under convex combinations if,
whenever 1, ~ m’, my ~ 7 and0 £ w < 1, it follows that

wry + (1 — w)ym ~ wm’ + (1 — w)m, .
In this case the envelope function is concave on II since
r M (wm + (1 — w)m)
2 infien SUPr oy rarry B (wm 4+ (1 — w)m, 8)
= infien {W SUPryror, R¥(m, 8) + (1 — W) SUPryrr, R¥(m2, 8)}
z wr *(m) + (1 — w)r*(m).

An analogous property holds for the envelope functions r, of the n-stage
multivariate problem:
Lemma 3.1. If the equivalence relation ~ is preserved under convex combinations,

then
(312) (7 + K)rjpa(Br, -+, Oix) = Jri(6y, -+, 0;) + kre(Oia, <o, Oi).

Proor. Let T, T’ be equivalence classes in 87, 6*, respectively. Since ~ is
preserved under convex combinations, it follows that

7007, 0%) = j(j + k) Ti(09) + k(G + k) T'm(6®)

is in the same equivalence class in II for every 09 eT,0% & T, where (6, 6%)
denotes the vector in @Y™ obtained by following the coordinates of 6 by those
of 8*. Let T” be the equivalence class in ©“** so determined.

Now given ¢ > 0, by (3.10) and (3.11), there exist o o* such that

7ri(6?) + kr(6%) — ¢ < inficir jRi(0?, 87) + infsw kRu(0®, 6©).
But, letting y9° = (o, o®),
infscih jR; (¢, 89) = infsnr Qi f Li(¢:, 8i, #P)P iy (dz?)
< infyi+m Dimr | Lipa(¥i, 8¢, TNV Py i (da).

Since from each decision function 8** a randomized decision function for the
j-stage multivariate problem can be constructed by performing an experiment
independent of X , - -+ , X; to obtain X1, - - - , X, distributed by the param-
eters ¥j11, -+ , ¥+ and then applying the first j coordinates of 3" as a func-
tion of X1, - -+, X; . Similarly,

infsr Ri(o®, 8%) = infycirm 20250 [ Lia(¥s, 8i, €)Pycivn (dz™).
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But then, since ™ ¢ 7”7,
§ri(6?) 4 kr(6%) — € < infscivn D125 [ Lia(¥i, 80, 8™ ) Pycivn (da¥™)
< (7 + F)ra(6”, 6%),
and, since ¢ > 0 was arbitrary, the lemma is proved.

Let I, = Uj_; 7.(0™), so IIy is the set of all distributions = in II that con-
centrate on a finite number of points in © and such that ({6} ) is a rational num-
ber for each 0 ¢ ®. We introduce the following regularity hypotheses, which
will be used in some of the subsequent results:

(A) For each equivalence class V in I1, there exists a finite n(V') such that, for
eachn = n(V), 1.(0™) n V is non-empty.

(B) For each equivalence class V in 1I,
SUP#e vNII, r*(1r) = SUPrev T*(T).

(C) For each equivalence class V in II and each integer n and each decision
function 8, for the n-stage empirical Bayes problem such that R,*(w, 8,) is bounded,

SUPreviI, Rn*(7r, 67;) = SUPrev Rn*(‘ll', 67,).

Let e, denote the excess relative to ~" for the n-stage multivariate problem
and e,* denote the excess relative to ~ for the n-stage empirical Bayes problem.
Note that we can define 7, on equivalence classes V in II if we set r.(V) =
(0™ if 7,(6™) eV and (V) = 0 if 7,(0™) n V is empty. We use this
device to state subsequent results.

Lemma 3.2. If the equivalence relation ~ 1is preserved under convexr combina-
tions and (A) is valid, then im r, (V') exists for every equivalence class V in II.

Proor. The argument is a minor modification of that needed in [9], p. 17,
number 98. Let j = n(V) (see hypothesis (A)) and (¢ + 1)j £ k < (¢ + 2)5.
Then it follows from Lemma 3.1 that

ri(V) 2 ri(V),
kri(V) = gri(V) + (B — 9)re-ii(V),
hence
(V) Z (4/k)ri(V) = (1 = 2§/k)ri(V).

Letting k — oo, lim inf (V) = r;(V), and, letting j — o, lim inf rx(V) 2
lim sup r;( V'), proving the lemma.

LemMa 3.3. If the equivalence relation ~ s preserved under convex combinations
and (A) is valid, then

(3.13) inf;, supy {Suprevnm, Ra*(m, 8,) — lim r(V)} < en,

where V ranges over all the equivalence classes in II.
Proor. Given ¢ > 0, choose a decision function 8™ for the n-stage multi-
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variate problem so that 8™ is invariant under permutations of coordinates and
(3.14) R.(6™,86™) £ ra(6™) + en + e

Let 6x be the kth coordinate of 8™, and, given V, choose j = n(V) and let
e (09) n V. By (3.5),

R (7, 8.) = 57" 2hims -+ 2hamt [ La(84, 5 80, &) Py e s p(d2™).
From the invariance of 6™ under permutations of coordinates and the symmetry
of the above sums, it follows that the value of the formula is unchanged if 6;,
and &, are replaced by 6;, and 8, , simultaneously, for any 1 < k£ < n. Hence the
integral can be replaced by

n—l Zl?=l _[ Ln(gzk ] 6k ] x(n))P(Gil.-“'ain)(dx<n)) = R”((on y " 0.,"), 8<n))'
Applying the upper bound (3.14) on the right side and then using Lemma 3.1
repeatedly, we obtain

R (m, 8,) < rapn(8™™) 4 €0 + ¢,

where 6™ is obtained by laying the ;" vectors (8:, ---, 0;) end to end. But
then

Tain(0777) = .
Also, by Lemma 3.1, r(V) = (V) for each k, and, by Lemma 3.2, lim rx(V)
exists, hence
R (m, 8,) < limr(V) + en + e
This holds for all m ¢ V n Iy, so
SUprevny o™ (m, 8) — im r(V) < ea + «

Formula (3.13) follows directly from this, and the lemma, is proved.

Combining Lemma 3.3, (C) and Theorem 3.1, we have

THEOREM 3.2. If the equivalence relation ~ 1s preserved under convexr combina-
tions and (A) and (C) are valid, then e,* < e, for each n.

TuroreM 3.3. If the equivalence relation ~ 1s preserved under convex combina-
tions and (A), (B) and (C) are valid and e, — 0 asn— o, then ro(V) — r.*(V)
as n — o for every equivalence class V in II.

Proor. For each é, , by (C), (3.6), (3.8) and (3.9),

SUDrevNII, Rn*(ﬂ', 87») = SUDrev Rn*("r; 67),) = 7'~*(V)-
Hence by Lemma 3.3,
supy (r.5(V) — limr(V)) £ e,

Letting n — o we have r_*(V) = lim r(V), and the theorem follows upon

combining this inequality with Theorem 3.1.
The examples in the next section are based on estimation of Bayes solutions
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to obtain stringent or nearly stringent solutions to the n-stage empirical Bayes
problem for large n. These decision functions are then seen to determine decision
functions with nearly stringent properties for the n-stage multivariate problem.

The success of this procedure depends on two factors. First, the risk functions
7. and r,* must be uniformly close for large n. Theorem 3.3 suggests that this
may be the case under certain conditions, but unfortunately the convergence
in Theorem 3.3 is not uniform. Second, to apply this procedure in the multivariate
case it is necessary to estimate the Bayes solutions to the distributions ,(§™),
and the estimator must be of comparable accuracy in the multivariate case to
that in the empiricial Bayes case. Fortunately the situation is often favorable
here.

For example, if the Bayes solution depends on a real valued parameter ¢ and
for some function f on X to the real line E.f(X) = onf(X)vr(dG) = ¢(m)
for all = and this unbiased estimator f(X) has finite variance, then we may use
the estimator

$n =07 20 f(Xh)

in either n-stage problem. Clearly, ¢, is an unbiased estimator of ¢ in the n-stage
empirical Bayes problem, while in the n-stage multivariate problem

Eowdn = 07" Doty Eo f(Xi) = ¢(ma(6™)),
s0 again &, is unbiased. The variance in the n-stage multivariate problem is
Varsm ¢n = n > D ey Varg, f(X4),

but in the n-stage empirical Bayes problem it is

Var, én = 0™ [ Bo(f(X) — ¢())*n(d0)

= 07" [ {Var f(X) + (Eef(X) — ¢(w))"}w(db).

When 7 = 7,(6") this becomes

Var, ¢, = Varw éa + n7° 2 i (Bof(X) — é(m))?,
so the variance of the estimator in the multivariate case is less than or equal to

the variance in the empirical Bayes case.

4. Two examples. (a) Estimation of binomial p with squared error loss.

The basic problem is to estimate the binomial parameter p from the observation
of X having distribution B(j, p), with squared error loss. If p has a prior: dis-
tribution m, then

PAX =4 = (}) [p'(1 — p)" dn(p)

depends only on the first § moments of w. Thus a natural equivalence relation
on II for this problem identifies those a prior: distributions having the same first
j moments. The Bayes solution, on the other hand, depends on the first j + 1
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moments of the a priori distribution. In this problem we can, and do, restrict
attention to non-randomized estimates.

The n-stage empirical Bayes problem for the case j = 1 has been discussed by
Robbins in [10], but will bear some further examination here. If = is a distribu-
tion with mean p and variance Au(1 — u) (where, necessarily, 0 < N = 1),
then the Bayes solution for the B(1, p) case is

(4.1) (X)) =AX 4+ (1 — N

and the Bayes envelope function is

(4.2) r*(m) = M1 = Nu(l = p).

Thus, setting # ~ =’ when 7 and =’ have the same mean, we have
(4.3) r.*(m) = w(l — p)/4,

where u is the mean of m; a distribution = with mean u and X = 1 is least favorable
for the restricted problem, and the restricted minimax solution is

(4.4) ou(X) = (X + u)/2.

The hypotheses of Section 3 are easily seen to be satisfied in this case.

Now in the empirical Bayes n-stage problem, as Robbins states in [10], it is
natural to estimate the (unknown) value of u by X = (X; + -+ + X.)/n,
and then use

(4.5) u(Xy, oo, Xa) = (X + X)/2

as an approximation to the stringent solution.
For this §, a little algebra will show that

(4.6) R (m, 8.) < r.*(x) + 3/16n

with the right side being obtained when = concentrates on {1}, since then nX
is B(n, 1) and
(4.7) R,*(w, 8,) = Var (8,) = }{Var (X,) 4+ 2 Cov (X, , X) + Var X}
1/16 + 3/16n.

A solution §, of the form

(4:8) an(Xl, M ,Xn) = len + w2X + %w3 )

where
wy + we + ws = 1
(4.9) nw’ + 2wy + wet — nwst = n/4
(wr + we)’ — wi' +2(n — Dwy, = n — 1,

and, as n — «,
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(410) wi=3+0n), we=3%— (207 +0(n7"), ws = (2n)) 7 + O(n7),
can be shown to have risk
(4.11) R.*(m, 8,) = r.*(7) + ws'/4 = v.*(x) 4+ 1/16n + O(n™}).

That this 8, is stringent can then be shown by applying Theorem 2.1, since
R.*(m, 8,) — r.*(w) = constant, provided we can show that 8, is a Bayes solu-
tion for the n-stage empirical Bayes problem.

Now select the parameter u according to a beta distribution with density of
the form cu® (1 — u)*, @ > 0, and then use an a priori distribution with
mean p and variance Au(l — u), the value of N being fixed, for the n-stage
empirical Bayes problem. The Bayes solution with respect to this distribution
onp: ,---,Pais then

E(pnIXlr"'yXﬂ) =E{E<pnIX11"'any/‘)IXlr”'rX"}
=E{)\X"+(1 _)‘)ﬂley"'yX"}
=AX, + (1 = NE{p| X1, -+, Xa}

=X, + (1 = N {(n/(n + 2a))X + (2a/(n + 2a))}}

since nX has the conditional distribution B(n, u), given u. The first equation in
(4.9) is then satisfied, and it is easily seen that values of N and a can be chosen so
that 8, as given by (4.8) is the Bayes solution.

In the multivariate n-stage problem, the equivalence classes induced by ~
are the hyperplanes specified by

(4.12) P = (pr+ -+ + p.)/n = constant.

As suggested at the end of Section 3, for the multivariate problem we use the
estimator 8™ whose kth coordinate is

(4.13) (X1, -+, Xa) = (X + X)/2.
Again, a little algebra will show that
(414) ra((p1y -+, pa), 87) S B(1 — §)/4 + 3/16n.

We have discussed the case j = 1 in considerable detail because it reveals
the essential elements of the problem in their simplest form. For larger values
of j, the restricted minimax solution given the first ; moments of = can be cal-
culated and then approximately stringent solutions can be formed, by estimating
the moments of 7, as in (4.5). We content ourselves with noting that, forj = 2,
the restricted minimax solution given 7 has mean p and variance Au(1 — u) is

(4.15) (X)) = ANX + u)/(L+MN).

(b) Estimation of a location parameter with squared error loss.
The basic problem is to estimate a location parameter 6 from the observation
X = 0 + Z, where Z has a distribution not depending on 8, with squared error
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loss. If the values of  are unrestricted, then Z must have finite variance in
order for this decision problem to have a finite minimax risk, and to fix ideas we
assume Z has mean 0 and variance 1. If the characteristic function of Z does
not vanish on any non-degenerate interval, then distinct a priori distributions
for 9 yield distinct distributions of X (see [12]), so from this viewpoint the
natural equivalence on the space II of a prior: distributions of 6 is equality.

On the other hand, if we take a partially non-parametric attitude by assuming
that, while Z has mean 0 and variance 1, we do not know the exact distribution
of Z, then we will see that a natural equivalence, ~, on II identifies those dis-
tributions having the same finite mean and variance. (Those distributions for
which the variance does not exist will be considered as constituting a single
equivalence class, whose members will be said to have infinite variance.)

Again with squared error loss we need consider only non-randomized es-
timators. Suppose we take § to be a linear estimator,

(4.16) 8X) = aX + b,
In the Bayes problem. Then
R*(w,8) = En(aZ + b — (1 — a)6)?
= E(aZ + b)* — 2(1 — a)bE,6 + (1 — a)’E.¢°

depends only on the first two moments of Z and 6. Thus in each equivalence
class of II the risk is constant for a given linear estimator. But it is a quadratic
function of @ and b, and it is easily seen that, if = has mean u and variance o,
then the risk is minimized by the estimator §, ,2 with

(4.17) a=d/(1+d), b=pu/(l+d)

(where, if the variance is infinite, we set @ = 1, b = 0), and the constant value
of the risk on the equivalence class is then

(4.18) R*(m, 6u02) = o’/(1 + o)

(the value being 1 if the variance is infinite).

If Z is normally distributed, then this estimator will be recognized as the
Bayes solution when = is normal with mean u and variance ¢°, thus 8,2 is an
admissible restricted minimax solution for this case. But the estimator &,
will perform in the same way whatever distribution ‘“nature picks” for Z having
mean 0 and variance 1.

To consolidate these ideas, we can redefine the parameter space to be ® X &,
where & is the class of all distributions with mean 0 and variance 1. The dis-
tribution Py r of X is then obtained by setting X = 6 + Z, where Z is a random
variable having distribution F ¢F. A priori distributions are then formally
defined on ® x &, but we still define two distributions to be equivalent if the
mean and variance of their marginals on ® coincide, so in identifying equivalence
classes we can restrict attention to II, the space of marginals on © of the a priori
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distributions. Since nature can now choose the distribution of Z to be normal
with probability 1, and then give 6 a normal distribution, the estimators 8, .2
are admissible restricted minimax solutions for this problem and

(4.19) rX(w) = /(1 + o).
Now in the n-stage empirical Bayes problem, we might estimate the mean,
uw, of # by X = (X; + --- + X.)/n, and the variance o’, of = by

&= (X (X — X)) — (n—1))"/(n — 1), where (a)* equals a if a = 0
and 0 if ¢ £ 0, and then set

(4.20) (X1, -, Xa) = (X + X)/(1 + 6°).

Similarly, in the multivariate problem, we may define the kth coordinate of
8™ by

(4.21) (X1, o+, Xa) = (X + X)/(1 + 6°).

In [1], the asymptotic behavior of a class of estimators including these as par-
ticular cases is investigated.
It is shown there that, for each =,

(4.22) R.*(x, 8.) — r.*(w)

as n — o, and similar results are obtained for the multivariate problem. Under
the assumption that the fourth moment of Z is bounded by a fixed constant,
the convergence in (4.22) is shown to be uniform in , with R,*(w, 8,) — r_*(x)
bounded by a term of order 7

Two other equivalence relations on II may be considered: namely ~’, iden-
tifying those = having the same mean, or ~", identifying those = having the
same second moment. But even if Z is normally distributed, the envelope func-
tion for ~ is identically 1, the same as the over-all minimax risk, so the problem
is unchanged. On the other hand, for ~”, the estimator

(4.23) 8,(X) = (v/(1 +v))X
has constant risk
(4.24) r(m, 8) = v/(1 + v)

in the equivalence class of all = having second moment v, v/(1 + v) being the
value of the corresponding envelope function in this equivalence class.
In this case estimators of the form

(4.25) (X1, oy Xn) = (7 X — n)T/ 2 X Xe

for the n-stage multivariate and empirical Bayes problem might be used as
approximately stringent solutions. The asymptotic behavior of these estimators
again follows from the general result in [1]. The theory of Stein [11], James and
Stein [4], using estimators for the multivariate n-stage problem similar to those
in (4.25), investigates the asymptotic behavior when Z is normally distributed.
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These results may be considered in the context of this problem, and the theory
of stringency provides a natural interpretation of their results.

We may attempt to improve the asymptotic situation for the empirical
Bayes problem by defining equivalences on II involving higher moments of the
a priort distribution; but the restricted minimax solutions then involve higher
moments of Z, and we must move closer to the “parametric”’ case where the
distribution of Z is completely known.

In the multivariate problem, the equivalence classes in ™ corresponding to
~" are the surfaces of spheres centered at the origin, and the equivalence classes
in @™ corresponding to ~ are (n — 2)-dimensional spheres lying in (n — 1)-
dimensional planes perpendicular to the equiangular line, having center in the
equiangular line. Moreover, the envelope risk function is constant on the surfaces
of cylinders whose axis is the equiangular line, and the problem is invariant
under translations along the equiangular line. In [1] it is shown that equivalence
relations in ®™ identifying points on the surfaces of spheres whose centers lie
in an arbitrary specified linear subspace can be treated similarly: only the first
two moments of Z need be known, and, as the number of coordinates increases,
the estimators have asymptotic risk d*/(n 4 d?), where d is the distance of the
parameter from the specified subspace. This function is constant on surfaces
whose points are the same distance from the specified linear subspace. It is

the function 7_* o 7, .
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