ON CONVERGENCE OF THE KIEFER-WOLFOWITZ
APPROXIMATION PROCEDURE

By J. H. VENTER
Potchefstroom University

1. Summary. It is shown that the Kiefer-Wolfowitz procedure for estimating
the maximum of a regression surface converges almost surely to the maximum
if this is the only stationary point of the surface and some other conditions are
satisfied. The result is in a sense stronger than those existing presently.

2. Introduction and preliminaries. Let R” denote p-dimensional Euclidian
space; the elements of R” will be thought of as column vectors; u; is the vector
with jth component &;; , the Kronecker delta; (-, -) and ||-|| denote the usual
inner product and norm. Let f be a real valued function on R”. Whenever it exists,
we write D(z) = D uifi(x) where fi(x) is the derivative of f in the direction
specified by u; at x; we write H(z) for the matrix with 7, jth element f;(x), the
derivative of fi(z) in the direction specified by u; .

Suppose f achieves its maximum at 8 ¢ R” and that for each x ¢ R” random
variables Y(z) = f(z) + Z(z) with EZ(z) = 0 can be observed. The problem is
to estimate 6 on the basis of the observed Y ()’s at a number of suitably chosen
2’s. The Kiefer-Wolfowitz (KW) procedure [1], [2], [4], [5], [6], to this effect is as
follows: Let {a.} and {c,} be positive sequences, let X; be arbitrary and supposing
that after the (n — 1)st step we have an estimate X, of 6, observe the random
variables Y(X, &+ c.u;),?2 = 1, -+, p; put

(1) A, = Zf;l ui(zcn)—l[Y(Xn + cnut) - Y(Xﬂ - cﬂui)]
and take
(2) Xn+l = Xn + anA,.

as the next estimate of 6.

Convergence of {X,} to 8 in the almost sure (a.s.) sense has been discussed
in the references above and elsewhere. Throughout this paper it will be assumed
that f has bounded second order partial derivatives. Under this assumption the
key condition on f needed by these authors (see e.g. [5], p. 401) essentially
amounts to

(3) (x —6,D(x)) <0 forall x = 0.

In order to see the geometric implication of this condition, consider the de-
rivative of f along the line through 6 in the direction specified by the unit vector
A = D Nu;. The equation of the line isz — § = r\ and the derivative becomes
df(8 + ™) /dr = > NJ(0 + r\). Hence r df(0 + ™\)/dr = 2 "\if 6 + ) =
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(*™\, D(8 4+ v\)) and it follows that (3) is equivalent to the condition:
(4) foreach 7 0 and for each unit vector \rdf(6 4 r\)/dr < 0,

i.e., along each line through 6, f is unimodal with maximum at 6. We will refer to
this condition as linear unimodality.

Since the KW procedure may be thought of as an estimated steepest ascent
procedure, one would expect that convergence would occur under conditions
weaker than linear unimodality. Calling z stationary if D(z) = 0, we show below
that if 8 is the only stationary point of f and some other technical conditions hold,
then X, converges to 4 a.s.

3. Main result. By 6 being a local maximum of f we will mean that for some
e > 0 we have f(z) < f(8) for all z # 6 in the set {z: || — 6] < €.
Ko, K, ,K,, -+, will denote finite positive constants chosen to suit the context
in which they appear.

THEOREM. Let the following conditions hold:

(a) f has bounded second order derivatives over R”;

(b) f is bounded above over R*;

(¢) 01s a local maximum of f;

(d) for each x ¢ R*, D(x) = 0 if x = 6;

(e) E|Z(z)|* < Ko forall x e R”;

() D an = ®, 2 anta < ®©, 2 (an/ca)’ < ©, s — 0 and a, < Kic,: for
all n.

Let {X,} be defined by (1) and (2). Then, with probability one, either
X, —0or | X, — .

Proor. Without loss of generality we may take § = 0. By Taylor’s theorem

(5) (26)Mf(Xn + caus) — f(Xn — caws)}
= fi(Xﬂ) + %cﬂ{fi'i(Xﬂ + d’:ncnui) - fz'i(Xn - ¢:,ncnui)}

where 0 < ¢1n , ¢in < 1. From (1)

(6) An = D(X,) + Lo+ Us

where

(7) Lo = 3o 20w fii( Xn + bincatts) — fir Xn — dincatis)},

(8) Un = (26) 7 i ui Z( X + catts) — Z(Xn — catti)}.
It follows that

(9) E{U, | X.} = 0as.;

(10) E|UJ" £ &K ;

(11) Lol < caKs;

where we have used conditions (a) and (e). Again from Taylor’s theorem and (2)
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(12) f( X)) = f(X2) + an(An, D(X,)) + 3a.°(An, Halrn)

where H, = H(X, + ¢.0.A,) with 0 £ ¢, = 1. By Schwarz’s inequality, con-
dition (a), (6) and (11),

(13)  [(An, Hadw)| = [AlPKs = 4{|ID(X)|P + e’ + [|U} K,
Similarly

(14) (Lo, D(Xa))| S ILall IDCX)] = @Kl 1 + [ DO

Substituting (6) into (12) and applying the bounds derived above together with
condition (f), it follows that

(15)  f(Xun) = f(X2) + audu DX + an(Un, D(X4)) + Ba

where
(16) |A,| £ Ks,A, - 1as. and 2 E|B,| < =.

From (9) E{(Un , D(X,)) | Xa} = 0a.s.Henceif ) a, E{(U,, D(X)) | Xa) <
for some sample sequence {X,} then according to Lemma 10 of [3] we may take
it that D a.(Ua, D(X,)) converges. Iteration of (15) then shows that if
> aa|D(X.) | = », we must have f(X,) — o« which is impossible in view of
condition (b). Hence we may take it that

(17) 2 a|DX)I < =,

(18) {f(X,)} converges

for sample sequences such that > @ E{(U,, D(X.))* | Xa} < . On the other
hand, if this series diverges, then according to Lemma 8 of [3] we may assume that

(227 a(Us, D(X)) /228 e’E((Ur, D(X)))' | X)) — O.
Hence using Schwarz’s inequality, (10) and condition (f) we get
{227 @(Us, D(X)}/( 228 axdel DX} — 0

and now iteration of (15) again shows that if (17) does not hold then f( X,) — .
It follows that (17) and (18) may be taken to be true generally. Further, from

(2) and (6)
(19) X — Xn = a.D(X2) + anln + a,U, .

It follows from (9), (10), condition (f) and Lemma 10 of (3] that > a.U,
converges a.s. and hence a,U, — 0 a.s.; from (11) a,L, — 0 and from (17)
a,.D(X,) — 0 a.s. Hence

(20) Xop — X, —0as.

Now, supposing that we have a particular sample sequence { X,} for which the
results above hold, we have four possibilities, viz.
(i) 0 = lim inf ||X,]| < lim sup || X.|;
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(ii) 0 < lim inf || X,|| £ lim sup || X.|| < o}

(iii) 0 < lim inf | X.| < lim sup [|Xa] = «;

(iv) the statement of the theorem holds for { X.}.
To rule out case (i), choose e such that 0 < e < lim sup || X.|| and such that
f(z) < f(0) forallz > 0 in the set {z: ||z]| < ¢}. Then, due to (20) there must be
at least one limit point of {X,} in the set {z: 3¢ < [lz]| < ¢}, say z*. Let {X.,,}
be a subsequence converging to z*. Then f(z*) = limgae f(Xn,) = liMnae f(Xa),
due to (18) and continuity of f. There is also a subsequence, { X,,,} say, converging
to 0. Hence f(0) = limp.wf(Xa,) = limu..f(X,), from which follows the
contradiction f(0) = f(z™).

In case (ii) condition (d) implies that lim inf [|[D(X.)|| > 0; this contradicts
(17) and condition (f).

In order to rule out (iii) put d = lim inf || X,|| and let ¢ > d. Let e > 0 satisfy
0<d—e<d+ e<c Put
(21) o = inf {||[D(2)]:d — € £ |lz|| = c}.
By continuity of D(z) and condition (d), « > 0. Let {X,,} be a subsequence of
{X.)} such that d — € < ||X,,/| £ d + eforall k. For each k let ms be the smallest
positive integer such that [[Xn.mJ Z ¢; in the present circumstances 1 =
mi < . Iterating (19), taking norms and using the various bounds established
above, we get

[ Xnprmall S 1 Xl + 22757 @il DX i) | + 0
where 6,, — 0 as k — «. Hence
(22) S0 Gl D X))l Z ¢ = d — € = b
Tteration of (15) together with arguments similar to those used in establishing
(17) and (18) now show that for all k large enough

f(Xnk+mk) 2 f(Xnk) + %aijniﬁ-l a"k+jllD(X"k+f)ll + 51'1:

where &, . — 0 as k — . Substituting (22) we find
(23) H(Xupim) Z f(Xa)) + dac = d — ¢ = ) + b,

and letting k — o the left hand side of this inequality tends to lim f( X,) accord-
ing to (18) whereas the right hand side tends to lim f(X,) + 3a(c —d — €¢) >
lim f(X,), yielding a contradiction.

The theorem therefore follows.

4. Discussion. 1. The “usual’”’ choice a, = an™, ¢» = en~" with @, ¢ > 0 and
0 < v < 1 satisfies condition (f).

2. In the one dimensional case (p = 1) the possibility |X.| — « can also be
ruled out under the conditions of the theorem, as follows. There are three cases,
viz. (2) X» — —», (b) lim inf X, = — o, lim sup X» = + =, (¢) Xn— + .
In case (b) there must be a limit point of {X.} at 6 due to (20) and the argument
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of case (i) above becomes applicable. Further, the assumptions imply that
D(z) < 0 for x > 6. Hence in case (¢), from (19), for all n large enough
X — X. < ayL, + a,U, and iteration together with the convergence of
> a.L, and D a,U, show that {X,} is bounded above, contradicting the as-
sumed X, — + «. Similarly for case (a).

3. It seems unlikely that the possibility || X.| — « can be ruled out under the
conditions of the theorem in the multi-dimensional case (p > 1). We have been
able to construct an example satisfying all conditions except boundedness of
second order derivatives in which || Xa| — .

4. A simple additional condition sufficient for ruling out || Xa|| — o is

(g) lim,., inf {[|D(z)|: [z — 6] > & >0,
for this implies lim inf ||[D(X,)|| > 0 if | Xa4|| — «, which would be impossible
in view of (17) and condition (f).

5. Condition (g) is not satisfied by functions such as f(z) = exp {—|lx — 0)|*}
for which one would expect convergence. Such cases are covered by the following
weak linear unimodality condition.

(g') For some T (x — 6, D(x)) < O for all z such that ||z — 6| > T.

Convergence under this additional condition is proved as follows. Suppose
f = 0 and || X,.|| = «. From (2)

(24) [ Xniall? = 1Xal* + 2a0(Xa, An) + an’l|An]l"
From (6), (11), Schwarz and (g")
(25) (Xu, Bn) = (Xo, D(Xn)) + (X, La) + (X, Ua)

< GKofl + | XY} + (Xa, Ua)
for all n large enough. Also from (6) and (11)
AP < 4{ID(XD)I + e’Ks* + | Uall*)
and substitution into (24) shows that
(26) [Xnaall® < {1 + 20.6,Ks + Val Xul 31 Xall* + Fo

where Vo = 2a.(X», Ua)||Xa] ™ and X |Fa| < = a.s. Hence E{V.|X.} = 0
and E{V,}| X.} < 4a,’c, 'K according to (9) and (10). By condition (f) and
Lemma 10 of [3] it follows that ) V. converges and hence also 3Vl X
converges. Also EV,’ < 4a.’c. K. and hence > V.' < « which implies
> V. X2 < . Lemma 1b of [7] is applicable and iteration of (26) shows that
{1 X.||} is bounded, a contradiction.

6. The argument just given shows that condition (g) can be weakened as
follows

(g") lim,., inf {[x — 6] [D(2)]|: [l= — 6l > &} > 0,
for, in this case there exists K; > 0 such that for all n large enough (6 = 0),

(Xa, D(X)) < | Xall ID(X)|| S Kl Xul*ID(X0) I
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if || Xa4|| — =, and using this in (25) an alternative to (26) with 2Ksa,|D(X,)|*
added to the coefficient of || X,||* is obtained. (17) ensures that the rest of the
argument goes through.
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