SAMPLE SEQUENCES OF MAXIMA

By James Pickanps III
Virginia Polytechnic Institute

1. Introduction and summary. Let X;, X;, -+, X, - -+ be a sequence of
independent, identically distributed random variables with common distribution
function F. Let Z, = max {X;, Xa, - Xa}.

Conditions for the stability and relative stability of such sequences with the
various modes of convergence have been given by Geffroy (3], and Barndorff-
Nielsen [1]. The principal result of this paper is Theorem 2.1, which is an analogue
for maxima of the law of the iterated logarithm for sums (Logve [6] pages 260-1).

In Section 3, it is indicated that the theorem is satisfied by a wide class of dis-
tributions, and specific forms are given for the normal and exponential distribu-
tions.

2. The result.
LemmA 2.1. Let b, be such that

1 — F(b,) = Cn'(logn)™%0 < C < .

Then Z, > b, infinitely often (i.0.) with probability one iffa =< 1, and
Zy, S byio. iffa = 0.

Proor. Clearly Z, > b, i.0.iff X, > b, i.0. Since the X; are independently and
identically distributed, and by the Borel zero-one criterion (Lo&ve [6], page 228),
Zn > b, i.0. with probability one iff D_n—s (1 — F(b,)) = «. But, clearly, this is
soiffa < 1.

Note that if « = 0, P{Z, < b,} = (1 — C/n)"— ¢ °, as n — «. Hence

Zy < b, i.0. with probability one, if « = 0. Clearly
—log P{Z, = bu} = —nlog F(ba)
= —nlog (1 — C(logn)™*/n)
= C(logn)™ 4+ O(n*(logn)™).

So
(2.1) P{Z, < b,} = exp (—C(logn)™*)(1 + o(1))

asn — . Now suppose a < 0. Since Z, > b, i.0., if in addition Z,, < b, i.0., infi-
nitely many of the events E, = {Z,1 > bna, Z, £ ba} occur.To prove the
lemma, then, it is sufficient to show that P{E,} is summable. Clearly

F"7(bs) = F"(bs)(1 — C(logn)'*/n)™
= F"(ba)(1 + Cn”~(logn)'* 4 O(n~*(logn)™"*))
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asn — «, But
(2.2) P{E,} £ P{bpy1 < Zp1 = by}
= F™(by) — F" ™ (baet) + Cn*(logn)'*F*(5.)(1 + o(1)),
asn — . Clearly Y mms (F"(by) — F* (bye1)) = liMysw F*(bs) — F(b) < .
So it is sufficient to show that the last term on the right hand side of (2.2) is
summable. By (2.1), this is proportional to
o = n"'(logn)'* exp (—C(logn)')(1 + 0O(1))
as n — o, which is summable if & < 0. This proves the lemma.
Let .
(2.3) ‘ Y(z) = —log (1 — F(z)).
This is a non-decreasing function which goes from zero to infinity, as z increases.
Let
(24) Q(y) = inf {z:y(x) > y}.

That is, @(y) is the inverse function for ¢(z).
If the distribution functions F () is such that

(2.5) limg,., F*(anx + b,) = exp (—e 7),

for a pair of sequences {a,} and {b,} with a, > 0, we say the distribution function
F(z) lies in the domain of attraction of the double exponential distribution func-
tion. Following Gumbel [5], we will simply say that F(z) is of the ‘“‘exponential
type.” According to Gnedenko [4], this is true iff

(2.6) limgaen(l — F(ax +b,)) = € °.
By (2.3), above, this can be rewritten

(2.7) limype ¥u(z) = 2,

where ¥,(2) = Y(a.x + b,) — logn. Let

(2.8) Q(y:s) = inf {z:¢u(z) > v}

where s = logn. Then Q(y:s) = (Q(s + y) — B(s))/a(s), where a(s) and
B(s) are a, and b, respectively. Equation (2.7) can then be rewritten

(2.9) lim,., Q(y:s) = y.
Suppose it is required that, in addition to (2.5),
(2.10) LMo 0 F™ (@ + by)f(anx + b,) = exp —(z + €°).

That is, in (2.5), the limit of the derivative is the derivative of the limit. Clearly
by differentiating in (2.9), a sufficient condition is that

lim,e 0Q(y:8) /9y = liMew Q'(s + y)/a(s) = 1.
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If, in addition, it is assumed that the density f(x) is itself differentiable and hence
continuous we can assume without loss of generality that a(s) = Q'(s), and
B(s) = Q(s). Then Q(y:s) = fﬁ“ Q'(t) dt/Q'(s). A sufficient condition, then, is
that .

lim, e SUPs <1540 [(Q'(£)/Q'(s) — 1| = 0.
Equivalently
1,0 SUPs <1 <04 [log @' (£) — log Q'(s)| = 0.
So, a sufficient condition is that
(2.11) lim,.., 8 log Q'(s)/ds = 0.

The following lemma has thus been proved.

LemmMA 2.2. Let F(x) be twice differentiable for all sufficiently large x, then equa-
tions (2.5) and (2.10) hold, provided equation (2.11) does.

Clearly a possible choice of sequence a, and b, , a, > 0is given by ¥(b,) = logn,
and a,, = 1/¢/(b,), since it can be required that ¥,(0) = 0, ¥,'(0) = 1, for all n.
Equivalently 1 — F(b,) = 1/n, and a, = (nf(b,))". Consider the condition,
(2.11), which can be rewritten, lim,.., (Q”(s)/Q'(s)) = 0, or equivalently
lim,o, (dQ'(s)/dQ(s)) = 0. By the definition (2.4),

(2.13) Q'(s) = (1 (2)),

and so dQ'(s)/dQ(s) = d(1/¢¥/(x))/dx, which gives the result of von Mises
([7], page 285). That is, a sufficient condition for equations (2.5) and (2.10) is

(2.14) limg.. d(1/¢'(x))/dz = 0,

where ¢(z) is given by eq. (2.3).
TaEOREM 2.1. If

(2.15) liMisse (log ¥())8(1/¢ (2)) /02 = 0,
then equations (2.5) and (2.10) hold, and in addition,
(2.16) P{lim inf,»0 (Z, — b,)/a,loglogn = 0,

lim Supp-w (Zn — bs)/anloglogn = 1} = 1,

where a, and b, are any pair of sequences, satisfying equation (2.5).

Proor. Clearly (2.15) implies the von Mises condition (2.14), and so there
exist sequences a, and b, with a, > 0, satisfying (2.5) and (2.10). For (2.16),
by Lemma 2.1, it is sufficient to prove that

lim, . n(logn)’(1 — F(b, + a.f8loglogn)) = 1,
for all 9 in some open interval (a, b), which includes the closed interval [0, 1].
Equivalently, using the definition (2.3), it is sufficient to show that

¥(b, + a.f0loglogn) — logn — 6loglogn — 0,
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asn — o, for all 8 € (a, b). In other words the trajectory of points (. , ¥n(xs))
is agymptotic to the straight line y = x, where x, = 6 log log n. Using the defi-
nition (2.8), it is sufficient that the family of points (s, @(68 log s:s))be asymptotic
to the same straight line. But this is true, iff

(Qs + 0logs) — Q(e))/Q(s) = [ (Q'(1)/Q(5)) di 0,
as § — o, Clearly it is sufficient that
lim,,e SUPs <t <ot010gs |(Q’(t)/Q/(3)) -1/ =0,
or equivalently, that
1M, »eo SUPs <t <a40108s [log Q'(£) — log Q'(s)| = 0.

Therefore, it is sufficient that .

lim,., (log 8)d log Q'(s)/ds = 0.
From the definitions (2.3) and (2.4) and the relationship (2.13), it follows that
this is equivalent to the condition (2.15).

Let a, , and b, , with a,” > 0 be any other sequence satisfying (2.5) and (2.10).
It follows from a result due to Gnedenko [4] that lim,.. (@./a,) = 1, and
limyse (bn — by')/an = 0. Clearly, then, the result (2.16) still holds with a,’, and
b, replacing a, and b, . The theorem is proved.

3. Discussion and examples. Condition (2.15) is slightly stronger than the
von Mises condition (2.14), but it is satisfied by the principal distributions of
the exponential type, in particular the normal, lognormal, and gamma distribu-
tions. To see this, it is sufficient to note that the condition (2.15) is satisfied, if
either

limg.e (Y(z) — (alogz + 2°)) = 0, —w <a< ®, B3>0,

or

lim,e (Y(2) — (aloglogz + (logz)?)) =0, —w <a< o, B> 1,
where ¢(x), given by equation (2.3), is twice differentiable for sufficiently large.
x. If

limg. (¥(x) — log z(loglogz)) = 0,

the von Mises condition is satisfied, but ours, (2.15), is not. It is not known
whether Theorem 2.1 holds for all distributions of the exponential type. Nor is it
known, whether the same principle, or an analogous one holds for distributions not
of the exponential type, although it is conjectured that one does not.

If X is normal with mean zero and variance one, Cramér ([2], page 374) gives
an = (2logn) ¥ and b, = (2logn)? — (2logn)*(loglogn + log4w)/2. By
Theorem 2.1, then,

P{lim inf .. (21log n)}(Z, — (2logn)?)/loglogn = —1,
‘ lim supnow (2logn) (Z, — (2logn)?)/loglogn = 3} = 1.
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For the exponential distribution
P{lim inf,., (Z, — logn)/loglogn = 0,
lim supp-« (Z, — logn)/loglogn = 1} = 1.
The author thanks the referee for ﬁlany helpful comments.
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