A THEOREM OF LEVY AND A PECULIAR SEMIGROUP!

By Davip A. FREEDMAN
University of California, Berkeley

1. Introduction. Let I be a finite or countably infinite set. For each ¢ = 0 let
P(t) be a stochastic matrix on I, such that P(¢ + s) = P(t)P(s), P(0) is the
identity matrix, and P(¢) — P(0) coordinatewise as ¢ — 0. Then P is called a
standard stochastic semigroup on I.

The result of Lévy (1958) referred to in the title is:

(1) TaEOREM. For each pair i, j with i # j, there are only two possibilities: either
P(t,4,7) = 0forallt = 0,0r P(t,%,7) > 0forallt > 0.

One object of this note is to sketch an alternative proof of this fact. For histori-
cal discussion and some of the known proofs, see (Chung, 1960).

Asis well known, P has a coordinatewise derivative at 0, called the infinitesimal
generator Q. Another object of this note is to sketch the construction which
proves
(2) TuEOREM. There is a standard stochastic semigroup P on I = {1, 2, ---}

whose infinitesimal generator Q is given by:

(3) Q(t,2) = —o forall 7 in I
(4) Q(Z,7) =0 forall 73 in 1.

These results are discussed together because they involve the same technique,
restricting a Markov chain to a subset of its state space. For simplicity, suppose
all states are recurrent.

2. Restricting a Markov chain. Give I the discrete topology, and let T = I
when I is finite, I = one point compactification of I when I is infinite. Let
{X(8):0 £t < »} be an I-valued stochastic process on a probability triple
(2, %, u), which is a Markov chain with stationary standard transitions P. For
technical safety, suppose the sample functions of X are quasiregular (the defi-
nition is in Section 5). Let J be a finite subset of I, and let X ; be the restriction of
X to J, that is, X watched only when in J. More formally, let 7,(¢) be the greatest
s such that the Lebesgue measure of {u:0 < u =< s, X(u)eJ} is ¢&. Then
X,(t) = X[rs(t)]. From the strong Markov property, X is a Markov chain with
stationary transitions, call them P, . Plainly, P; is a standard stochastic semi-
group on J. Call its infinitesimal generator @, , and say that P, (respectively,
Qs) is P (respectively, @) restricted to J. Plainly, for K < J, (P,)x = Px and
(Qs)x = Qx . It is not hard to check that

(5) Q=Qq,.
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Indeed, let 5 # j be in J, and suppose X(0) = 5 a.e. Then X(t) = j implies X,
hits j before time ¢; up to an event of probability o(t) as ¢ — 0, this implies
X,;(t) = j. It is tempting to conjecture that lim;1; Qs = Q.

It is possible to show that X;(¢) — X(¢) in probability (this result will not be
used). It would be very nice if {P,} were equicontinuous or equidifferentiable,
but I have no results on this point.

For convenience, let I = {1,2, ---},I, = {1, --- , n}. Write X, , P, , @, for
X1, , P, , Qr, respectively. Let Tn(4, ) = Qu(7,7)/ —Qu(4, 1) for i = Jjin I, and
Qn(7, ©) # 0; let T'(7, j) = O elsewhere. Let mpiq(2) = 1 — Toa(2, n + 1)-
Tni1(n + 1, 7). It is not hard to check that for ¢ ¢ I, ,

(6) Qn(% Z) = 7rn+1(z)Qn+l('L7 1)
and for ¢ £ jin I, ,
(7) To1(DTn(?, §) = Tuia(4, ) + Tapa(4, 0 + DTun(n + 1,5).

The balance of this section is concerned with the conditional distribution of
X given X, . Of course, both have sample functions which are right continuous
step functions.

The X,11-sample function is obtained by cutting the X,-sample function, and
inserting those time intervals on which the Xnt1-sample function takes thevalue
n + 1. See the figure. Given X, and the locations of the cuts, the lengths of these
inserted intervals are independent and exponentially distributed, with common
parameter —@Q,1(n + 1, n 4 1). It remains to specify the conditional distribu-
tion of the cuts, given X, . There are two kinds of cuts: the first kind appears at a
jump of X, , and the second kind appears interior to an interval of constancy for
X, . At a jump from 7 to j, the probability of a cut appearing is the ratio of
Tona(t,n + 1)Tapa(n + 1, 7) t0 waga (2) Tu(4, 7). Cuts of the first kind appear inde-
pendently from jump to jump, and independently of the location of cuts of the
second kind. Locations of cuts of the second kind within each interval of con-
stancy for X, are independent from interval to interval. Within a particular
k-interval, the location of cuts has a Poisson distribution, with parameter
—Qnia(k, k)1 — mapa(k)].

Only the last claim will be argued. It is equivalent to this proposition about a
Poisson process ® of points on [0, « ), with parameter 1. Let 0 < = < 1. Given
®, toss a m-coin independently at each point of @, from left to right, until a head
is first obtained. Let 7' be the abscissa of the first head.

(8) ProrosiTioN. T is exponentially distributed with parameter w. Given T, the
restriction of ® to [0, T) is distributed like a Poisson process with parameter
1—7onl0,T).

This proposition is equivalent to (9). To state (9), let ® be a Poisson process
of points on [0, =), with parameter 1 — . Let S be independent of ®, and ex-
ponentially distributed with parameter .

(9) ProrosiTiON. The restriction of ® to [0, S) is distributed like the restriction of

" ®to[0, T).
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Fig. Intervals with the same number have the same length.

Proor. Let 7 be the waiting time from 0 to the first point of ®, an exponential
random variable with parameter 1 — 7. Now, 7 > S has probability =, and this
is the probability that no points of ®& lie in [0, S). Given r < 8, 7 is exponential
with parameter 1, so if a point of ® lies in [0, S), the waiting time for the first such
point is exponential with parameter 1. Given 7 < 8 and given 7, the restriction of
® to [r, ), translated to the left by =, is again Poisson with parameter 1 — ,
independent of S — 7, which is again exponential with parameter «. This proves
(9).

3. Proof of (1). Since P(¢, k, k) = P(/n, k, k)", P(t, k, k) > 0 for all ¢. Fix
1 % j. Suppose P(t, %, j) > 0. Then

P(t + s,1,j) = P(4,4,j)P(s,4,§) > 0.
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Consequently, {¢:P(t,7,7) > 0} is either empty or an open half-line. Suppose by
way of contradiction that P(¢,7,7) > 0 fort > 1,and P(,4,j) = 0for0 < ¢ < 1.
Let X be a Markov chain on the probability triple (2, &, u), with stationary
transitions P, starting from <, having quasiregular sample functions. Let o be the
least ¢ if any with X(¢) = j, ¢ = '"if none. Plainly, ule < 1] = 0, u[lse < 2] > 0.
A contradiction will be obtained by proving ule < %] > 0. Namely, let a, =
Lebesgue {£:0 < ¢ < o, X(¢) > n}. Plainly,one < ©,a, [ 0asn ] «. Fix n
8o large that ula, < %, ¢ < 2] > 0. Consider X, . Let 8, be the least ¢ if any
with X,(¢) = j, 8, = o« if none. Plainly, 8, < ¢, 50 u[a, < 3,8, < 2] > 0.Let Z,
Zs, - - be the states X, passes through, with holding times Uy, Us, - - - respec-
tively. There must be a positive integer m, and states 42, - - - , @w € I, , such that
,u[an<%,Z1=i,Z2 = ’iz, "',Zm = ’im,Zw,.l =j,U1+ e +Um<2] >0.Let
ua be u conditioned on the event A = [Z; = ¢, Zs =%, -+, L = Tmy Zmp1
= j]. The finite random variables Uy, - - - , U, are ps-independent and exponen-
tially distributed. Let G be the set of m-vectors uy , - - - , u» with positive coordi-
nates having sum less than 2, such that, given Uy = w1, - - - , Up = Un , the event
[en < %] has positive conditional u4-probability. Plainly, G has positive Lebesgue
measure. Thus, 1G has positive Lebesgue measure, and u4[(U1, - - - , Un) £ 3G] > 0.
If (v, - ,0m) = ¥w,: -+, Un), where (U1, -+, um) € G, the conditional
wa-distribution of &y, given Uy = 01, - -+, Un = vy, is stochastically smaller (the
definition is below) than the conditional u4-distribution of a, given U; = u ,
-++, Un = Um . This claim follows from Section 2, by an argument sketched
below. Thus, given Uy = v, -+, Un = vn , the conditional us-probability
that a, < % is positive. But v1 + -+« + v, < %, 50, pafon < 2 and Uy + - --
+ Un <3 >0.Butond, e =+ Ui+ -+ + Un,andu(4) > 0,50 ylo < %]
> 0. This completes the proof of Lévy’s Theorem (1), provided the claim is argued.

DeriniTioN. Let F and H be distribution functions on the real line. Then F is
stochistically smaller than H iff F(x) = H(z) for all z.

Suppose it is possible to construct random variables £ and { on a common prob-
ability triple, £ having distribution F, { having distribution H, and ¢ < { every-
where. Then F is stochastically smaller than H.

LemMmA. Let F; be stochastically smaller than H ;. Then the convolution of Fy and
Fs s stochastically smaller than the convolution of Hy and Ho .

ARGUMENT FOR cLAIM. For simplicity, suppose m = 2. One immediate problem
is to specify the version of the conditional distribution for which the claim is true.
To specify it, consider the regular conditional distribution obtained in Section 2
for X1, Xnye, - - - given the X,-sample function, with Zy = ¢, Z, = 42, Z; = j,
Ui = w1, Us = us . Let @, be the sum of the lengths of the intervals inserted at or
before the second discontinuity in X, . Plainly, the distribution of &, coincides
with the conditional u,-distribution of «, given Uy = 41, Uz = u2. Now @, is
the sum of four random variables: v; , the sum of the lengths of the intervals in-
serted interior to the #th interval of constancy for X, , with ¢ = 1 or 2; and é;,
the sum of the lengths of the intervals inserted at the <th discontinuity of X, ,
with ¢ = 1 or 2. These four variables are independent, and the distribution of
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d; does not depend on u; , us . In view of the lemma, it is enough to show that if
w; and u, are decreased the distribution of v, becomes stochastically smaller. Only
y1 will be argued.

Construet inductively a sequence { Y, (u):0 S u < o}, {YV,u(u):0 S u < =},
< ofI,, Iy, - - --valued stochastic processes, whose sample functions are right
continuous step functions. Namely, Y,(u) = ¢ for all . Suppose Y, is defined.
The Y,imii-sample function is obtained by cutting the Y,.,-sample function,
and inserting those time intervals on which the Y, n1-sample function takes the
value n + m + 1. Given Y, and the locations of the cuts, the lengths of these
inserted intervals are independent and exponentially distributed, with common
parameter —Quimi1(n + m + 1, n 4+ m + 1). It remains to specify the con-
ditional distribution of the cuts, given Y,i» . There are two kinds of cuts: the
first kind appears at a jump of Y, , and the second kind appears interior to an
interval of constancy for Y,i, . At a jump from 7 to j, the probability of a cut
appearing is the ratio of

I‘n+m+1(’i, n+m-+ I)Fn+m+1(n +m+1, J) t0  Tuimi (7/) Pn—l—m(i’ .7)

Cuts of the first kind appear independently from jump to jump, and inde-
pendently of the location of cuts of the second kind. Locations of cuts of the
second kind within each interval of constancy for Y,.., are independent from
interval to interval. Within a particular k-interval, the location of cuts has a
Poisson distribution, with parameter —Quimi1(k, £)[1 — mnimia(k)].

Let 74.m(u) be the least ¢ such that Lebesgue

{810 £ s =1, Yaum(s) = 1} = w.

The restriction of Y, to the time interval [0, 7o4m(%)) is distributed like X, im
up to the first discontinuity of X, , given U; = u. Let {(u) =limu.. Lebesgue
{8:0 = 8 = Toym(u), Yuym(s) = n + 1}. On the one hand, {(«) is nondecreasing
with %. On the other, the distribution of {(«) coincides with the distribution of
v1 given U; = u. Incidentally, { has stationary and independent increments.

4. Outline of construction for (2). The method is inverse to that of Section 2.

Namely, choose a sequence @, Q;, - -- of matrices which are the infinitesimal
generators of standard stochastic semigroups P2, P3, --- on Iy, I3, - -+, where
I, = {1, --- , n}. Make the choice so that:
(10) Q. is the restriction of Q.1 to I,;
(11) For any pair ¢ j in I, Q.(4,7)
is 0 for all large n;
(12) - Forany ¢ in I, Q.(%,7) — —;
(13) Quu(n + 1,n + 1) > —o very quickly.

In view of Section 2, these conditions are compatible, as the next two paragraphs
show.
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For any n, @, , ¢ in I, , there exists a @11 satisfying (10) with Q.,1(7,7) = 0
for allj £ ¢in I, and @ny1(n 4+ 1, n 4+ 1) arbitrarily negative. To see this, sup-
pose Q.(7,¢) # 0. For k 5= ¢in I, , let Tphya(k, n + 1) = 0, and Tyu(k, j) =
Iu(k, j) for jel,. Let Towpa(?, n + 1) = 1, Tnya(4, j) = 0 for jel,, and
Tppa(n 4+ 1, k) = Tu(s, k) for keI, . Let Quua(j, ) = Qu(j, j) for je I, and
Qni1(J, k) = —Qn1a(J, J)Tnia(f, k) forj 5 kin Inys .

For any n, Q. , ¢ in I, , there exists a Q.1 satisfying (10) with Q,,1(7, 7) and
Qni1(n + 1,n 4 1) arbitrarily negative.

In view of (13), P, will converge coordinatewise to a limiting standard
stochastic semigroup P on I, with infinitesimal generator @, and @, will be the
restricton of @ to I, . Then (3) and (4) follow from (5).

To study convergence, it may be helpful to construet, on a common probability
triple, a sequence X, , X3, - - - of stochastic processes, whose sample functions are
right continuous step functions, such that X, is a Markov chain with stationary
standard transitions P, , and X, is the restriction of X,4; to I,, . In view of Section
2, (13) can be interpreted so stringently that the sum of lengths of the time inter-
vals inserted to the left of each point on the X,-time scale is finite. Then, there is a
unique 7-valued process X, with quasiregular sample functions, such that X, is X
restricted to I, . If Quu1(n + 1, n 4 1) is very negative, X,1(¢) = X.(¢) with
high probability, uniformly on compact ¢-sets, by Section 2. By interpreting (13)
even more stringently, X, must converge a.e. The limit is necessarily X. This com-
pletes the proof of (2).

In general, I do not know which sequence @, have the property that @, isthe
restriction of some Q to I, . I also do not know when a matrix is the infinitesimal
generator of a standard stochastic semigroup.

6. Definition of quasiregularity. Let i,:a ¢ A be a net with values in I. If
jeIbut eI, ¢-limi, = 7 means lims, = j in the usual sense. If je I,
¢-lim 7, = j means: for any finite subset D of I — {j}, there is an a(D) ¢ A
such that for all @ > a(D), 4« £ D; and for any a ¢ A there is an &’ > « such that
1o = j. Let f be a function from [0, « ) to I. Say f is quasiregular iff for all ¢ = 0,
f(&) = ¢-lim f(r) as binary rational r decreases to ¢, and for all { > 0, ¢-lim f(r)
exists as binary rational r increases to ¢. If P is a standard stochastic semigroup on
I, there is a Markov chain with stationary transitions P starting from any % ¢ I,
all of whose sample functions are of quasiregular (Chung (1960), I1.7).
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