ESTIMABILITY OF VARIANCE COMPONENTS FOR THE TWO-WAY
CLASSIFICATION WITH INTERACTION

By Davip A. HARvVILLE

Aerospace Research Laboratories, Wright-Patterson AFB

1. Introduction and summary. Graybill and Hultquist [2] have defined a
variance component to be estimable if there exists a quadratic function of the
observations having expectation equal to the component. This definition (ex-
tended to functions of variance components) will be used in the present paper
in investigating certain aspects of the estimability of linear functions of variance
components for the two-way completely-random -classification with unequal
numbers of observations in the subclasses. It is obvious that at least some func-
tions of the variance components are not estimable for certain sets of subclass
numbers.

The objectives underlying the present paper were (1) to derive, for the two-
way classification, necessary and sufficient conditions which must be satisfied
by the subelass numbers in order for linear functions of the variance components
to be estimable and (2) to determine, for the same classification, those sets of
subclass numbers for which two commonly-used variance-component estimation
procedures, Methods 1 and 3 of Henderson [3], yield unbiased estimates of the
components or linear functions of the components.

Observations y;;x are taken as having the linear model

Y = w + as + B + vi5 + e,
withei=1,---,a;7=1,---,b;and k = 1, --- , ns; . uis a general mean, the
a; and the 8; are main effects, the v,; are interaction effects, and the e;; are
residual effects. u is regarded as fixed while the a;, 8;, v:;, and e are taken to
be mutually-independent random variables with zero means and variances
oo, 08, oy, and o, The total number of filled subclasses (subclasses such that
n;; = 1) will be denoted by p. It is assumed that @ = b, which can be done with-
out loss of generality. .

Methods 1 and 3 (of Henderson ) for estimating variance components are based
on the analyses of variance given in Tables 1 and 2 respectively where, letting
Ni. = D iMij, Ny = Doifg, and n.. = X ;m;. = D ;n.; and using ordinary
notation for means, Ry = it Yin, By = n.go.., Ra = D inuii.., Rg =
Singge., and Ry = D sniji. . Also, taking the b X 1 vector § to be any solu-
tion to

(1) W =q
where the elements of the b X b matrix W are
wii = g — 2i(nii/ng.), j=1-,b,
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TABLE 1
Source d.f. Sum of Squares
a-classes a—1 1= Ry — R,
B-classes b—1 re = Rg — R,
Interaction p—a—>b+1 r3 = Ry — Re — Rg + R,
Residual n.—p re = Ry — R,y
Total n. — 1 Ry — R,
TABLE 2
Source d.f. Sum of Squares
a-classes a+m—> Y = Ras — Rs
B-classes m ty= Ras — Ra
Interaction p—a—m ts'= Ry — Rag
Residual n.—p td= Ry — R,
and
Wik = —Z,(nwn,k/m), j#Fk=1,---,0b,
and the elements of the b X 1 vector q are
G = Nsfq — 2oiNifi Jj=1---,b

R.s = Ro + §a.

The system (1) represents the 3;-equations of the normal equations for the two-
way classification without interaction after absorption of the p 4 a; equations.
m is defined to be the rank of W.

Letting r' = (11, 72, 75, T4), t' = (b, b, ts, ta), and &' = (oo, 05", 0y, 0c)
and taking E to be the expectation operator, we have E{r} = Cé and E{t} = Dg;
where

n. —0; 01— 6, 0 — 65 a—1
0 —0; n. — 0 0, — 05 b—1
€= 03 —6, 60,—6, n.—06,—6,+6 p—a—>b+1
0 0 0 N... — P
and
n.. — 0, 0 6 —0,+6 a+m—2>
n.. — 0 Os m
D=
0 0 N.—0—0 p—a—m
0 0 0 n..—p
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Wlf;h 01 = Zij (nf,/m), 02 = Z,;j (n?,/n.,-), 03 = (l/n) Z,nf, 04 =
(1/n..) 225m%, 05 = (1/n..) 2Ziimly, and

0 = Za’ wj‘:zu nfmj -2 Ziz w?w Zu (nu,xjni.xz/nuJ
) + ij w;‘l Ziu(ni,xjni,xzngu/n%.) H

W¥, a matrix whose jxth element is w},, is the inverse of an m X m matrix,
with jxth element w,, ., , formed by deleting from W b — m columns and the
corresponding rows (the columns to be deleted are chosen in such a way that
the remaining columns are linearly independent).

The usual problem in variance component estimation is to estimate g linear
functions of the variance components A:'d, 7 = 1, -+, g, where A;is a 4 X 1
vector whose jth element is the constant \;;.

The Method 1 estimate of 2.'¢ will be taken to be 2;8* where §* is any solu-
tion to

(2) Cé=r

subject to the restriction that those elements of 8, corresponding to the columns
of C remaining after selection of a set of some p, (= the rank of C) linearly-
independent columns, are set equal to zero. Similarly, for Method 3, the estimate
of 2,’¢ will be taken to be A;/6* where ¢* is any solution to

(3) Dé =t

subject to the restriction that those elements of 6, corresponding to the columns
of D remaining after selection of a set of some ps (= the rank of D) linearly-in-
dependent columns, are set equal to zero.

It will be made clear in Sections 3 and 4 that solutions to (2) and (3) always
exist.

DrrFinrTion 1. A Method 1 estimate of 2./¢ is said to exist if and only if
E{2/3%} = a6

DeriniTioN 2. A Method 3 estimate of A;¢ is said to exist if and only if
E{lilé*} = 15’6.

The above definitions for the Method 1 estimate and the existence of a Method
1 estimate are motivated by the following easily-proven observations: (i) If b
is a 4 X 1 vector such that E{b'8*} = a/¢, then b'3* = A.8%; (ii) E{2/3%}
= /¢ if and only if there exists a 4 X 1 vector a such that E{a’t} = a/¢;
(iii) E{2/8*} = /¢ if and only if there exists, for each possible solution & of
the unrestricted equations (2), a 4 X 1 vector b such that E{b'8} = a,s; and
(iv) if E{%/8*} = a6, then for each possible solution & of the unrestricted
equations (2) &8 = .8, The definitions for the Method 3 estimate and the
existence of a Method 3 estimate are motivated by similar observations.

It is easy to show that a Method 1 or 3 estimate of ;¢ exists if and only if
2 is an element of the space spanned by the rows of C or D, respectively. Thus,
the maximum-possible number of elements in a set of linearly-independent linear
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functions of the elements of ¢ for which there exist Method 1 (or 3) estimates is
exactly p. (or pa).
Define conditions 1-6 as follows:

condition 1: @ = 2; condition 2: b = 2; condition 3: ¢ > b;
condition 4: p > a or, equivalently, m > 0; condition 5: p > a + m;
condition 6: n.. > p.

If condition 1, 2, 3, 4, 5, or 6 is unsatisfied,e = 1,b = 1, = b,p = aand m = 0,
p = a + m, or n.. = p, respectively. The equivalence of the two condition 4’s
will become clear in Section 4. Let ¢; and d;, 7 = 1, - - -, 4, denote the ¢th rows
of C and D; let ¢! and d’, ¢ = 1, .-+, 4, represent the sth columns of the two
matrices; and take 0 to be a vector or matrix of appropriate dimension having
all zero elements. .

The major results of the present paper are summarized in Theorems 1 and 2.

TABLE 3
¢ = Maximum-
Set of Set of P?S};ilble N;.m_:ber Properties of ¢ Lincarly-Independent
Line | Satisfied | Unsatisfied | o, Srsnwsna roperties o inearly-Independen
Conditions | Conditions ng.tl?iin%‘%ﬁlc':;?é - Equations (2) Estimable Sums
of the Components
1 1,2,4,6 4 0a2, O, 02, 0
2 [1,2,3,6/4,5 3 Ty = —r3 o + o4f, og?, 0
Cy = —C;
cl = ¢t
3 |1,2,6 3,4,5 2 rL=Ty = —T; oot + ogt + 0%, 0
€ = Cy = —C3
¢l =¢?=ct
4 |1,3,6 2,4,5 2 re =13 =0 oot + o2, 0
Cc=¢6 =20
cl=2¢c%ct=0
5 |6 1,2,3,4, 1 rr=ry=1r3=0 ol
5 CiL=C =¢C =20
cl=c¢2=¢2=0
6 11,2,4 6 3 re=0,¢c4=0 ool, 0g%, 042 + 0l
¢ = ¢t
7 1: 2,3 4: 5, 6 2 r4 = 0, re = —73 o.® + 0'.,2 + 0',2, 0'32
¢t =0,¢c2= —c3
¢l = ¢® = ¢t
8 1,2 3:4y5:6 1 7'4=0,C4=0 U¢2+¢762+"'12+ﬂ'e2
ry = Te = —1Is3
Ci1 = €2 = —Cs
cl=c¢2=¢d = ¢t
9 |1,3 2,4,5,6 1 ro=r;=174=0 0a2 + o2 + oo
C2=¢=¢1=0
cl=ct=chcE=0
\10 1,2,3,4, 0 r=0,C=0
) 5,6
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TABLE 4
Set of Set of pa = Properties pd Linearly-Independent
Line Satisfied Unsatisfied Rank of o Sums For Which Method-3
Conditions Conditions | D-Matrix Equations (3) Estimates Exist
1 ] 1,2,4,56 4 oo, ag, a2, o
2 | 1,36 4,5 2 lta=1t;=0 ol + 0.f, ol
dy=d; =0
dr = d3,d2 =
3 6 3,4,5 1 lh =ty = l3 = gl
d1 = dz = d3 =0
di=d=4d" =0
4 | 1,2,4.6 5 3 |t3=0,d;=0 o + o2,
dr 4 42 = d2 ag2 + 0,2, 0
5 | 1,2,4,5 6 3 |ti=0,di=0 oal, og, 0,F + o
ds = g4
6 1,3 4,5,6 1 o = i3 = b4 = g2 + o2 + o
dz = d3 = d4 = 0
dt = d3 = ¢¢
=0
7 3,4,5,6 0 |t=0,D=
8 1,2,4 5,6 2 3 = g = g2 + o2 + o,
d; =ds =0 o + 0% + o
4@ == d

TaeoreEM 1. When certain of the conditions 1-6 are satisfied and others unsai-
wsfied as giwen on line k of Table 3; then ¢ (= the maximum-possible number of
elements in a set of linearly-independent estimable linear functions of the variance
components = the rank of the mairiz C), certain properties of the equations (2),
and ¢ linearly-independent estimable sums of the variance components for which
Method-1 estimates exist are also as given on line kb, k = 1, ---, 10.

THEOREM 2. When certain of the conditions 1-6 are satisfied and others unsat-
isfied as gien on line k of Table 4; then pg, certain properties of the equations (3),
and pq linearly-independent sums for which Method-3 estimates exist are also as
given on linek, k =1, ---, 8.

Theorem 1 will be proved in Sections 2 and 3, while Theorem 2 will be proved
in Section 4.

Note that specifying whether certain of the conditions 1-6 are satisfied or
unsatisfied determines a subset of the set of all possible sequences {n;} (¢ = 1,
cev,a;7 =1, ---,b), and that the subsets so determined by the lines of Table 3
(or Table 4) are mutually-exclusive and exhaustive. Then note that all linear
functions of the linearly-independent sums associated with a set of satisfied condi-
tions listed on a given line of Table 3 (or Table 4) can also be expressed as linear
functions of the sums associated with any other set of conditions containing the
first as a subset.

. It follows that the set of satisfied conditions listed on a line of Table 3 comprises
a sufficient set of conditions for the estimability of all linear functions of the
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linearly-independent estimable sums listed on the same line. This same set of
conditions is also sufficient for the existence of Method-1 estimates of all linear
functions of these sums.

To determine (from Table 3) necessary conditions for the estimability of (or
for the existence of a Method-1 estimate of) a linear function of the variance
components, two successive steps are followed: (i) ascertain from Table 3 the
collection of all sets of conditions that are sufficient for the estimability of the
funetion and (ii) eliminate from that collection those sets having proper subsets
in the collection. It is necessary for estimability (or for existence of a Method-1
estimate) that all the conditions in at least one of the sets remaining after step
(i1) be satisfied.

In the same manner, Table 4 can be used to determine necessary and sufficient
conditions for the existence of Method-3 estimates of linear functions of vari-
ance components.

Three interesting points stand out: (1) A Method-1 estimate of a linear func-
tion of the components exists for all sequences {n} (1 =1,--+,a;5=1,---,b)
for which the function is estimable, (2) Method-3 estimates of some linear func-
tions of the components do not exist for certain sets of sequences for which the
functions are estimable and for which Method-1 estimates exist (an example will
be presented in Section 5), and (3) Method-1 estimates of linear functions of the
components may exist even when the interaction “sum of squares” in Table 1,
which is not really a sum of squares, has negative degrees of freedom.

In addition to the above results, the paper contains an algorithm that can be
used to determine the rank of the matrix W and to ascertain which rows and
columns of W to delete in order to obtain an m X m matrix of full rank. This
algorithm is useful in establishing necessary and sufficient conditions for the
existence of Method-3 estimates.

The results mentioned above are useful in applying Monte Carlo techniques to
the problem of establishing certain properties of Methods 1 and 3 variance-
component estimators when the subclass numbers are assumed to have distribu-
tional properties. Such an approach ordinarily involves the repeated generation
of sets of subclass numbers and sample data and computation of variance-com-
ponent estimates for each set. If these operations are being carried out on a com-
puter as is generally the case, generalized inverse methods for obtaining solutions
for the systems of equations (1), (2), or (3) and for determining linearly-
estimable functions of the variance components may not be satisfactory because
of computer rounding errors in computing the entries in the C, D, or W maitrices
or the r, t, or q vectors and/or in the actual solving of the equations. However,
methods based on the use of the conditions and algorithm presented in this
paper are not affected by these difficulties.

The algorithm is also useful (for reasons similar to those given above) when the
assumed model is the two-way classification with no interaction and with fixed
a;.and B;, one objective then being to determine and estimate linearly-estimable
functions of the 8;’s.
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2. Estimability of linear functions of the variance components. A linear func-
tion of the variance components is said to be estimable if there exist constants

Wijk-ulz;iyu=1)"')a;j7x=1)"'7b;k=1)"'7"’71]';3:17"')"“2’
such that the expected value of
(4) Zijk z;hz Tijh umel %Y uvz

is equal to the function. The expected value of the quadratic form (4) is
e’ + eu0s + esos + 67072 + el ‘

where

€e = Zijk T ijk,ijk »

Oy = Dk D Tijeyiis = €6 + D Dk T ije

O = D ik Doz Tijbuss = Oy Diih Dyui Oz Tijhsuie »

Ca = Diie Dona Wifkins = €y T D i Dyasi Dz Tijhion

€ = Ziﬂc Zuzz Tijkuze = €y + (€2 — €y) + (65 — ;)

D i Durti D ami Dy Tijh s -

The proofs of the results concerning estimability specified by the ten lines of
Table 3 and set forth in Theorem 1 are straight-forward and similar. The proof for
the result specified by line 6 of the table is typical. If condition 6 is unsatisfied,
ey = e for any choice of the m;jk,us . If, in addition, conditions 1, 2, and 4 are
satisfied, a linear function of the components, say 2., is estimable if and only if
i is of the form

(ea 2 eB ) ee ) ee) = ea(l, O) O} O) + 63(07 17 0’ 0) + 66(07 07 17 1))

where e, , ¢g , and e, are arbitrarily chosen constants. Thus, when conditions 1, 2,4,
and 6 are as given on line 6 of Table 3, ¢ = 3, one choice of ¢ linearly independent
estimable sums is o4’, 05, and ¢,> 4 ¢”, and a linear function of the components is
estimable if and only if it can be expressed as a linear function of these three sums.

3. Existence of Method-1 estimates. In determining those sets of sequences
{ni}(¢=1,---,a;5 =1, ---,b) for which Method-1 estimates of linear func-
tions of the variance components exist, the following three lemmas are used.

Lemva 1.n.. — 603 > 0¢fa=2and =0ifa=1,andn.. — 0, > 0ifb = 2
and = 04 b = 1.

LeMMA 2.n.. — 0, > 0ifp > aand =04fp = a,andn.. — 6> 0if p > band

=014 p =0
LeMMA 3.n.. — 03 — 0,4+ 6; > 04fa = 2and b = 2 and = 0 otherwise.
Lemma 1 becomes obvious when #7.. — 6; and n.. — 6, are rewritten
as (1/n.) D QouwiNetye and  (1/m.) D; DawjNojny, respectively. Like-
wise, Lemma 2 becomes clear when n.. — 6; and n.. — 6, are rewritten as

Y i(1/n) (nk = 3;ind) and D; (1/n.) (% — D ini;). The proof of Lemma
3 consists of noting that n.. — 6; — 6, + 05 equals (1/n..) Z,—,- Nij Zu#,- D i Tous -
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The result (concerning the existence of Method-1 estimates) specified by line 1
of Table 3 and set forth in Theorem 1 is: If conditions 1, 2, 4, and 6 are satisfied,
then C is of full rank and Method-1 estimates exist for o.’, o5, 0,7, and o.%. To
prove this result it suffices to show that, when conditions 1, 2, 4, and 6 are satis-
fied, the determinant of C is nonzero; since, when det C 5 0, the solution to the
system of equations (2) is uniquely given by

=C7r, and E{8*} = CE{r} = ¢
Det C can be put in the form
(n.. —_ 01)('"; —_ 02)('", —_ 03 —_ 04 + 05)(7& —_ p).

It is clear from Lemmas 2 and 3 that, when conditions 1, 2, 4, and 6 are satisfied,

det C > 0.
The result specified by line 2 of Table 3 is: If condltlons 1,2, 3, and 6 are satis-

ﬁed and conditions 4 and 5 are unsatisfied, then C has rank 3,7 = —73,C0= —¢3,
¢ =c and Method 1 estlmates exist for oo + o7, 05’, and o”. That ry = —ry R
¢z = —¢;, and ¢! = ¢’ when the conditions are as specified is obvious from in-

spection of the elements of r and C. Taking C* to be the 3 X 3 matrix formed by
deleting the 3rd row and the 3rd column of C, we find by use of Lemmas 1 and 2
that, when the conditions are as specified,

det C* = (n.. — 8)(n.. — 6)(n.. —p) >0

and consequently C has rank 3. An appropriate solution 8* to the system of equa-
tions (2) is obtained by taking 8 = 0 and

2

[z} 71
a2 k—1
age =C Te
2
‘ G4 T4
Since
2 2
1 go + oy
3k 2
E | r =C (] 5
2
T4 O¢

EB{8™} = (aa + o, 04’5 0, 0), and the result specified by line 2 of Table 3 is
proved.

Proofs for the results (concerning the existence of Method-1 estimates) speci-
fied by lines 3-10 of Table 3 can be constructed by employing the same approach
used in proving the result specified by line 2.

4. Existence of Method-3 estimates. We begin by defining an algorithm for
partitioning the set G of all integers k, k = 1,2, - - - , b, into »™ mutually-exclusive
subsets. These subsets, whose construction is based in a simple way on the se-
quence {n}(¢ =1,--- ,a;7 =1, --+,b), can be used to find the value of m and
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to determine dependencies among the set of equations (1). The algorithm is also
used in the proof of Remark 3 which is, in turn, used in proving Theorem 2.
AvcorrtaM. Taking Gy to be the empty set,

Gy = 2.2 Gua w=1,---,u%
where G is any element of G — D i55 G ; Gy is the set consisting of those

elements k of G not contained in D 1o G; or D _s=s G for whichngni > 0 for
some ¢, 7 = 1, -+, a, and for some f & Gy »—1 ; 2. is the first integer g such that
G, = Go; and u* = the first integer g such that 244G =G.
ReEMARK 1.m = 2% (m; — 1), wherem; = the number of elements in the set G; .
Proor. The normal equations for the two-way classification without inter-
action, with fixed mean u, and with fixed main effects a;, ¢ = 1, -+, a, and
Bi:j = ]-’ 7b73're

(5) Se =y,

where

=
S
<

’ ’
N..  Spa  Sup

rS

S = Sua Sea Saa , 0 =

L= NN
«

1

&

7’
Sus Sas Sgs Vs

Sue is an a X 1 vector with entries ;. , 72 = 1, - -+, a; susis a b X 1 vector with
entries n.;, j = 1,+-, b; See is an @ X @ matrix with diagonal elements
ni.,5 =1, -+, a, and with off-diagonal elements all zero; Sgs is a b X b matrix
with diagonal elements n.; ,7 = 1, - - - , b, and with off-diagonal elements also all
zero; S.g is an a X b matrix with ¢jth element n;;, 4 =1, -+ ,a,5 = 1,---,b;
& and § are a X 1 and b X 1 vectors, respectively; y. is an a X 1 vector with
entries n:.J:.., 1 = 1,---, a; and yg is a b X 1 vector with entries n.;7.;. ,
j=1,---,b.

Let ¢ = (u, o, 8),0 = (., n,ng), and v = (v, va, vg ); where the
a X 1 vector e has elements a;, %2 = 1, -+ , a; the b X 1 vector 3 has elements
Bi,j=1,---,b;nisana + b + 1 vector of known constants with @ X 1 and
b X 1 subvectors n, and ng, and visan @ + b + 1 vector witha X 1 and b X 1
subvectors v, and vs .

By Theorem 11.1 in Graybill [1], the linear combination n'y (where the ele-
ments of ¥ are regarded as fixed effects) is linearly estimable if and only if there
exists a solution for v in the equations

(6) Sv = n.

When n, = 0 and n, = 0, the equations(6) are soluble if and only if there exists
a solution to the reduced system of equations
(7) W\’p = ng.

‘

Let j be any element of Gy , & = 1, - -+ , 2, — 1. Then there exists some element
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g € Gy o1 for which nsn > 0 for some ¢, ¢ = 1, ---, a. When the statistical
model is the two-way classification with fixed main effects a;,72 = 1, - -+ , @, and
Bi,J = , b, we have that E{g:;. — 7.} = B; — By and, consequently, that

B; — By is hnearly estimable. This implies that 8; — S, is linearly estimable where
f is the single element of G,o. Thus, B — B is estimable where k and h are any
two elements of G, , and the number of linearly-independent vectors ng for which a
solution to (7) existsis at least Y%y (m; — 1). Since these linearly-independent
vectors can all be expressed as linear combinations of the columns of W, the rank
of W is at least D sy (m; — 1).

It is clear from the statement of the algorithm that, for any choice of 7, _7, and
k,if ni > 0,ng > 0, and j & G, , then k € G, . Thus, taking w;, 7 = 1, , b,
to be the th row of W, ‘

Zieauwj=07 u=1""yU*)
and consequently the rank of W is at most Y _j— (m; — 1). Q.E.D.

REMARK 2. An m X m matrix formed by deleting from W rows j1 , -+ , jur and
columns jy, -+, Jur, Wheregi , kb = 1, +++, u*, is any element of Gy, has full
rank.

Proor. The proof follows from Remark 1 and the last paragraph of its proof.
Q.E.D.

REMARK 3. Ifp = a + m, thendy; = n.. — 6, — 0 = s = O;and, if p > a + m,
then ds; > 0.

Proor. From least squares theory, we have that Ry = Rag . Clearly, R, = Rag
if and only if there exists a solution to the normal equations for the two-way
classification with interaction when the estimates of the interaction effects are all
taken equal to zero; that is, if and only if there exists a solution for 8 (where § is
defined as before) in the equations

(8) $*% =y*
in which; with p;; = 1if ng; > Oand =0 otherw1se, po =0, and p; = Z,,_lpf,,,
f=1, .-, a;the elements Yn * of the p X 1 vector y* and the elements sy of the

p X (a + b + 1) matrix S* are given by
yh* = ’nu:cguz- ) S}Tl = s;tk,u+1 = Sita+x+1 = Nug ‘

and sp, = 0 for k not equal to 1, w + 1, or a 4+ = + 1, where, for a given value of
h, u is taken to be the smallest value of wand x is taken to be the smallest (for that

u) value of = such that h = Z}:ol pf + Zg_l Pug -

Those columns Sprr41, k = 1, , b, of ¥ such that k ¢ G, sum to the same
vector asthose columns si4, , 7 = 1, -+, a, for which ng > 0 for some k ¢ Gy, .

Also, D% s¥1 = s,". Consequently, the rank of S* is at most a + m.

Each of the rows of the matrix S introduced earlier is a linear combination of
the rows of S*. Therefore, the rank of S* is greater than or equal to the rank of
S. But S has rank a 4+ m since, in the system of equations (5), someb — m + 1
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of the unknowns can be prescribed arbitrarily and the remainder are then
uniquely determined.

Thus, the rank of S* is a + m.

If p = a + m, the equations (8) are soluble for all vectors y*. However, if
p > a + mand ¢, > 0, a solution for 8 in the equations (8) does not exist for
certain sets of y* vectors having nonzero probability, and, for those vectors,
R, > R.s.Thus,ifp > a + m,dss > 0,and,if p = a + m, dss = t3 = 0. QE.D.

The proof of the result specified by line 4 is typical of the proofs of the results
specified by the lines of Table 4 and set forth in Theorem 2. This result is: If con-
ditions 1, 2, 4, and 6 are satisfied and 5 is unsatisfied, then D has rank 3, ¢ = 0,
ds = 0,d" + d&® = d°, and Method-3 estimates exist for o,” + o', 05'+ o5, and
ol. Thatt; = 0,d;, = 0, and d' + d* = d® when the conditions are as specified
follows from Remark 3. Taking D* to be the 3 X 3 triangular matrix formed by
deleting the 3rd row and the 3rd column of D, we find by use of Lemma 2 that
when the conditions are as specified,

det D* = (n.. — 6)(n.. — 6,)(n.. — p) > 0

and consequently D has rank 3. An appropriate solution é* to the system of
equations (3) is obtained by taking &’ = 0 and

& b
& = D*|t
& la
Since
h oo + o‘.,2
E|t =D*|os + o, ||,
ts ol

E{8*} = (0a’ + 0,08 + 0,7, 0,0”), and the result specified by line 4 of Table 4
is proved.

Proofs for the results specified by the other lines of Table 4 can also be con-
structed by using the above approach.

5. An example. As an example of a sequence {n;}(t =1, --- ,a;5=1,---,b)
for which Method-1 estimates of certain linear functions of the variance compo-
nents exist but Method-3 estimates do not, takea = 5 and b = 3andlet the5 X 3
matrix of subclass numbers be given by

OO O~ w;
S oo wo
N O O



ESTIMABILITY OF VARIANCE COMPONENTS 1519

Wehavem = 2and p = a + m = 7. By reference to Tables 3 and 4, we find that
Method-1 estimates exist for o,’, o5°, and o, but Method-3 estimates do not exist
for these three components.
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