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1. Introduction. Early work on probabilities of large deviations had to do with
probabilities of deviations of the sample mean as the sample size increased. The
papers of ‘Chernoff [3] and Bahadur and Rao [1] are notable in this area. More
general sets were considered by Borokov and Rogozin [2], Hoeffding [4], and
Sanov [7]. Sanov [7] proved a result concerning probabilities of sets contained in
the space of maximum likelihood estimates of the parameters of a multinomial
distribution as the sample size increased. His result was of consequence only
when the true parameter point was sufficiently “far” from the set in question.
Hoeffding [5] sharpened this result to the following. If @ is defined by

Q={(m--a) =20, 520z+ -+ =1}

and 2™ as the k-vector of maximum likelihood estimates of the k-vector p of
parameters for a k dimensional multinomial distribution based on a sample size
N; then the probability Px(A |p) that 2™ ¢ A C @ is given by

Py(A|p) = exp [-NI(A®, p) + O(log N)]
where
I(A™,p) = inf {I(x,p):xe AY}
for
I(x,p) = 2iaailog (z:/ps),

ifp=(p, -+ ,ps),Xx= (2, -+ ,a); uniformly in A and p. Here A™ is the
intersection of the space of maximum likelihood estimates, 2™, with A.

Applying this estimate to the error probabilities involved in testing simple and
composite hypotheses, Hoeffding was able to substantiate the following propo-
sition: “If a given test of size ay is ‘sufficiently different’ from a likelihood ratio
test, then there is a likelihood ratio test of size <ax which is considerably more
powerful than the given test at ‘most’ points p in the set of alternatives when N
is large enough, provided that ay — 0 at a suitable rate.”

This result depends almost entirely on the probability estimate. It is con-
jectured by Dr. Hoeffding that such an estimate holds for a wide class of dis-
tributions of exponential type. The present work is an attempt to extend the
probability result to the class of non-singular multivariate normal distributions
and to apply this result in a way analogous to that of Hoeffding [5] to the problem
of comparing tests of simple and composite hypotheses with appropriate likeli-
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hood ratio tests in the multivariate normal case. As Hoeffding points out in his
paper Wald [8] has shown that the likelihood ratio test (LRT) has certain asymp-
totically optimal properties when the error probabilities are bounded away from
zero, but the present results are of a different nature.

The principal barrier to an easy extension is the key probability estimate. In
the multinomial case the probability of any non-empty set in the space of maxi-
mum likelihood estimates for the parameters is bounded below by the proba-
bility of any singleton subset, which is positive since the multinomial distribution
is discrete. This fact leads to a uniform lower bound for the probability of any
such non-empty set and from this the desired probability estimate is easily ob-
tained. In the multivariate normal case however the distribution of the maximum
likelihood estimate (MLH) of p is continuous so that non-empty sets may have
probability as close to zero as desired and no positive uniform lower bound exists.
The problem then is to restrict attention to a class of sets which is relatively large
and for which a desirable lower bound exists. We have chosen to consider all
measurable sets which contain a “sphere’” with radius depending on N and satis-
fying some additional restrictions. This choice is somewhat arbitrary and was
dictated by the simplification which resulted.

It is shown that for such a class of sets, Bo(p), in the space of maximum likeli-
hood estimates of the parameter p = (u, A), u the mean vector and A the vari-
ance-covariance matrix, of a multivariate normal distribution; the probability
Py(B|p) of a set B in the class Bo(p) satisfies

Py(B|p) = exp[=N(1 + O(N"))J(B, p) + O(log N)]
uniformly in B and p. Here J(B, p) = inf {J(p, p):p & B} for
J(p,p) = AtrAA™ — k — log |AA7Y + (n — w)' A7 (0 — w)]

if p = (u, A) is the maximum likelihood estimate of p. Note that the result only
has significance if J(B,p) > 0 which implies that p is “far”’ from B. In this sense
we are dealing with probabilities of large deviations.

This probability estimate is then used to find sufficient conditions for sub-
stantiating Hoeffding’s proposition in the case of tests concerning hypotheses
about the parameter p = (u, A) of a multivariate normal distribution. The set
of alternatives to the hypothesis p ¢ Hy for which a likelihood ratio test is not
“sufficiently different”” from a given test is considered for a wide class of sets Hy .

An example is considered in which it is shown that there is a likelihood ratio
test which is asymptotically better at “most’’ alternatives than a test of S. N.
Roy’s [6] for the composite hypothesis A = I, the k by % identity matrix, versus
A # I in the case k = 2, in the sense that the likelihood ratio test has smaller
size and the ratio of the type II error probability of the likelihood ratio test to
that of Roy’s test tends to zero faster than any power of N.

It is of interest to note that these results supply partial answers to questions
concerning the extension of Hoeffding’s results to distributions other than the

ymultinomial raised by Chernoff in his discussion of Hoeffding’s paper [5] and
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further reinforce the ideas expressed by Chernoff concerning the ‘“distance”
interpretation of the function J. As is glaringly brought out in the example and
elsewhere, the class By(p) is too complex and limited for these results to be an
entirely satisfactory extension of Hoeffding’s work. However, the work here does
shed some light on the problems encountered in such an extension.

Before continuing a comment on the notation used will be helpful. In the
k-variate normal case the MLH estimate of the mean vector and of the variance-
covariance matrix are respectively a % dimensional vector and a real, symmetric,
almost everywhere positive definite, & by k& matrix [8]. The notation used is re-
spectively © and A. However, when considering the pair (u, 4) as variables or
points in a space, we are actually thinking of the n = (k(k + 1) /2.) + k di-

mensional vector obtained from (u, 4). If w = (£, ---, ) and 4 = (&),
1 = k; this vector is
(1.1) (tl, ,tk, b, tie, ~oo b, oo, tes, + oo, bow, b33, o v, ).

In the analysis of the problem at hand the notation (u, 4) is by far the most
convenient since the function J depends on the vector in (1.1) only through
w and A. For this reason we adopt the convention that whenever possible we shall
use the notation p = (u, 4).

It is hoped that these few comments will make it possible to read the following
without the need of two parallel and necessarily cumbersome notations.

2. Probabilities of large deviations in multivariate normal distributions. Let
21, %2, ++ -, Zy be independent, identically distributed & by 1 real vectors from
a k dimensional multivariate normal distribution with mean vector u and positive
definite (pd) variance-covariance matrix A. Define the space @, by

(2.1) Qo = {(u, A):uis a k by 1 real vector, A is a k by k real,
symmetrie, pd matrix}.
Define a function J from Qo X @, into the real line by

(2°2) J(pl ) pQ) = fEk lOg [fpl(x)/fpz(x)]fpl(x) dx

where p; , p2 € Qo , Ej is Euclidean k-space, and f,, is the density with respect to
Lebesgue measure of the £ dimensional multivariate normal probability measure
with parameter p;, ¢ = 1, 2. It follows that

(2.3) J(p1,p2) = 3tr AyAs ' — k — log | A4y 4+ (ws — w2) Ay (s — un)]

where for any k by k matrix A, |A| = determinant of 4, and tr A = trace of A.
Also Pi = (ui y A,), 1T = 1, 2.

If % and A are the maximum likelihood estimates of the mean vector u and the
variance-covariance matrix A respectively of a k-variate normal distribution,
then

% =N Z§=1 Zi, A=N"220 (2 — w) (e — w)
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and

(24) J(p,p) = 2(trdA™ — &k — log |AA™"| 4+ (v — u) A7 (0 — u)]

for p = (u, 4), p = (u, A). For any measurable set B C @, define J(B, p) by
(2.5) J(B, p) = inf {J(p, p):p e B).

We are now able to state the following theorem.
TaroreM 2.1. For any Lebesgue measurable set B C Qq and any p € Qo

(2.6) Py(B|p) = exp[—NJ(B, p) + (2k + 3)J(B, p) + O(log N)]
uniformly in B, p as N tends to infinity. In fact for N sufficiently large
(2.7) Px(B|p) £ CN**™"exp [-NJ(B, p) + (2k + 3)J(B, p)]

uniformly in B, p where C1 > 0 s a constant.
The proof of this theorem follows from the relation

(2.8) Px(B|p) = Px({p:J(p, p) Z J(B, p)}|p)
= Eplexp (¢(J(p, p) — J(B, p)))],

for ¢t = 0 by a series of relatively uninteresting calculations.
In order to obtain a corresponding lower bound for Py(B | p) we shall need the
density of p which is given by

(2.9) Cy |A[7*™"” exp [=NJ(p, p)], Cv = exp [O(log N)].
Thus
(2.10) Py(B|p) = [5|A7*™" Cx exp [-NJ(p, p)] dp,
where

Cy = o UL (N — 4)/2)] exp [(k/2)N(log (N/2) — 1)]

and Cy = exp [0(log N)] uniformly in p as N tends to infinity.

We shall need the following definition.

DreriniTION 2.1. The essential infimum of J(p, p) over a set B C @, will be
defined by

essg inf J(p, p) = sup {c:m({p:J (D, p) < ¢} nB) = 0}
where m is (k + k(k + 1)/2) = n dimensional Lebesgue measure.
We shall denote essp inf J(p, p) by cz(p). Since
m({p:J(p, p) < J(B,p)}nB) =0,

it follows that cs(p) = J(B, p). We may, by excluding a set of measure zero
from B, insure that cz(p) = J(B, p) and from now on we shall assume this has
been done and that cs(p) = J(B, p). Such an adjustment will be termed adjust-
ing for the ess inf. The proof of these remarks will be given in Section 4.

Let us attempt to find a lower bound for Px(B | p) of the same form as that of
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the upper bound in (2.7). Toward this end define the set Ds(p) by
(2.11) Dy(p) = {p:ea(p) + 8 < J(p, p) < ca(p) + 28}

for § = 0. Let {éy} be a sequence of positive terms with limit zero. Suppose for
each N there exists a set Bsy(p) such that

(2.12) Py(Bsy(p)|p) 2 CoN" exp [—(N + s)ca(p)]
for (Cy, r, s) independent of (N, p) and Cy > 0. Further suppose for each N
Biy(p) < Dsy(p) n B.

Then Py(B|p) = Px(Bsy(p) | p) and we would have a lower bound for Ps(B | p)
of the desired form.

In order to investigate the hypothesized sets Bsy(p) further we shall attempt
to find a lower bound for the diameter of the set Ds(p), > 0. For p = (u, 4)
define

(2.13) 19 = D% () + 2igiier ()1

where @' = (£, ---, &) and 4 = (4;3),4,§7 = 1, --+ , k. Thus we wish to find a
lower bound for ||py — pe|| if J (1, p) = ¢1, J(P2,p) = c2,and e > &1 = 0.

Let p = (u, A) and S be the lower triangular matrix with positive diagonal
terms such that 8S" = A. Then to facilitate matters we make the transformation
7p from @ into itself defined by

(2.14) (p) = (S7(u —u), STAST) = (v, V) = ¢,
say, and note
(2.15) J(p,p) = 3tr V — &k — log [V| 4+ v"s] = J(g, (0, I)).
Define J° on Q, by
(2.16) J(q) = J(g, (0, 1)).
Now if M(A) £ -+ =M(A4) are the ordered eigenvalues of 4, if
b = 25 (AT + 2ia (\(4)7T
b’ = [Zia M) + 2ian(4),
and if q; = 7,(9:), ¢ = 1, 2; then
(217) bl — Bl 2 llar — @I’y B2 — #ell” = 0’ o — ol”

Since J(p, p) = J(1o(p)) = J°(q) we thus seek a lower bound for ||¢; — gl
subject to J'(q) = ¢, JA@) = &, > ¢ = 0. If ¢ = (v, V) and
o= (Y-, ), V = (vi5), 45 =1, , k; then let VJ°(g) denote the
gradient of J° with respect to the n dimensional vector

N 1 2
(2.18) (V' - 0, 0, 0, , Uik, Ve, Vas, c Uk, 0, Vkk).
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Since J° is convex (see Section 4),

0>a—o=J@)=JI(e) 2 (a— )V (e 2 —la— ¢l IV )]
and thus
(2.19) e—as{a— el VI (e)].
If welet b = sup {[|[VJ()||:/(q) = ¢}, we have, assuming b > 0,
(2.20) lg — @ll = (2 — e1)/b.
If a* is the cofactor of vy; , then the components of VJ°(q) are given by
(221) aJ%(q)/a" =o',  3J(q)/dy = —a"/|V|, i,
=31 —=adYIV]), =i
It follows that :
V(DI = oI* + 3(1 = &/[VD)* + (@®/|V])* + -+ + (1 — o*/[V])?
where |Jo|* = 2 %o (v ) Now to find an upper bound for b note that
V(@I = (1 = a"/[V])* + 2(a”/|V])?
(2.22) + o (= d*VD

= I = V7" + [l

= 2 ()T = 1) + [ol?
where for any real k by k matrix D = (dy), [|D|> = D2t D=1 (di;)®. We know
from (2.16) that if J°(¢) = ¢, then g satisfies
(2.23) EL (V) =1 = logh(V)) + |lo]I* = 2.

Now if N is any real number in the interval (0, 1) and ¢’ > 0, then using the fact
that log (1 4+ X) < X it is readily seen that A — 1 — log\ = c implies that
exp (¢ + 1) — 1)< A L1kew1se if N is greater than 1 and ¢’ > 0 then it
follows from logh = 2logA! < 2()\’ — 1) that \ — 1 — log\ < ¢ implies
A < (() 4 1)% So that (2.23) implies that

(2.24) (exp(d +1) = 1) <A(V) < () +1)% ¢ = 26 — ||o|>

Notice that we have made use of the fact that A — 1 — log\ = 0 for allX > 0,
and that V is positive definite. By using (2.22) and by performmg some ele-
mentary calculations, we are able to establish that

(2.25) V(D" < 9k exp (4 + 2).

Thus the right hand side of (2.25) is an upper bound for b* and when substituted
in (2.20) yields

(2.26) g — qell > (e — e1)/(3k* exp (2¢2 + 1)).
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If we restrict our attention to those p’s in Q. which is defined by

(2.27) Q. = {p:M(4A) = ¢ where € > 0;

then (2.17) together with (2.26) implies that

(2.28) lpr — Bell 2 [€/3K](c2 = 1) exp (—2c — 1), € = /(1 + )},

for J(p1, p) = a, J(P:, P) = 2, peQ.. Moreover if ¢; = cs(p) + 8,
c2 = cs(p) + 29, then (2.28) implies

(2.29) 51 — pall = 8(€'/3kt) exp (—2cs(p) — 48 — 1).

For 0 < ¢; < ¢; we have the following lemma.
Lemma 2.1. If ps satisfies J(ps, p) = (a1 + ¢)/2 and p € Q. , then Sx(p;) de-
Jined by

Sa(ps) = {p:]|p — B3]l < ((2 — 1) /6k%)€ exp (—2c; — 1)}

satisfies So(Ps) C {prer < J(P, p) < ca}.
For the case c; = ¢5(p) + 8, c2 = cs(p) + 28 we have then that every point in
{p:J (D, p) = ca(p) + ($)8} is the center of a hypersphere of radius &’ where

(2.30) & = 8('/6k) exp (—2cs(p) — 46 — 1), € = ¢/(1 + ¢)?,

and each such hypersphere is contained in D;(p) for p & Q. . Suppose Ds(p) n B
contains one such sphere, say Sy, then

Py(B|p) Z Pu(So|p) = [s |A[T**" Cy exp [-NJ(p, p)] dp.

To conveniently handle this integral we could make the transformation 7, , but
a simpler approach will be to write |[A| = |V||A| and then

[0 lAT*™% Cx exp [=NJ (p, p)] dp

2 (maxs, |[V]))"*P2|A|7%*2 0y exp [~ Nes(p) — N28m(So).
Now

maxs, [V] £ maxp,p [V] = maxos [Tia M(V) < [(ea(p) + 28)" + 1/2'*2*
since J%(g) = J(p, p) and in view of the inequality (2.24). Thus
(2.31) Pn(B|p) z [(cs(p) + 20)" + 1/27EP |4 7%,
2THEDE exp [N (es(p) + 28)Im(So).
Now m(S,) is given by
(2.32) m(Se) = co(8')", n = k + k(k + 1)/2, co a constant.
Suppose p £ Q" where
(2.33) Q" = {p:\(A) £ M}, M a real positive constant.
Then |A| < M"* and Px(B|p) is bounded below by

(2.34) Cu(e, M, k)8" exp [=(N + k(k + 2) + 2n)(ca(p) + 20)]
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where

(2.35) Cx(e, M, k) = Cyco(4M)*ED2( ¢ /o6]1)™.

If 6 = (My/N) log N, then the lOWGI: bound for Py(B |p) in (2.34) becomes
(2.36) exp [=Ncs(p) — (k(k + 2) + 2n)cs(p) + O(log N)]

In order to summarize the preceding discussion let us define By(p) as the class
of sets B in E, such that

(i) B is Lebesgue measurable,

(ii) there is a Ao > 0 such that for 0 < § < Ay, Ds(p) n B contains a hyper-
sphere of radius &’ as given in (2.30).
Then we have proved the following lemma.

Lemma 2.2. If B e By(p) and if p € Q. n Q¥ then

(2.37) Py(B|p) z exp [-Nes(p) — (k(k + 2) + 2n)cs(p) + O(log N)]

and the O(log N ) term is the same for all p € Qe n Q" = {pie < M(A), M(4) £ M}.
It follows that for N sufficiently large there exist constants Co > 0, r, s,
such that if p ¢ Q. n @” and B e By(p), then

(2.37) Py(B|p) = CoN" exp [—(N + s)ca(p)]

uniformly in B and p. Thus we have the following theorem.
TaEOREM 2.2. If peQ. n Q¥ and B & By(p), then for sufficiently large N

(2.38) CoN" exp [—(N + s)cs(p)]
< Py(B|p) = ON*“" exp [—(N — s)ea(p)]
for some constants Co > 0, Cy > 0, r, and s uniformly in B and p.

3. The role of the likelihood ratio test. We would now like to apply the results
of Theorem 2.2 to the problem of comparing tests of the hypothesis p ¢ Hy C Q.
We wish to compare a sequence of arbitrary, non-randomized tests whose
acceptance and rejection regions are in By(p) for the pertinent p, with a certain
sequence of likelihood ratio tests (LRT).

Using the density of p, it is readily verified that in the multivariate normal
case the LRT for testing p ¢ Ho versus p £ Ho based on observing the maximum
likelihood estimate p of p with sample size N rejects the hypothesis when J(p, Hy)
exceeds a constant. Here J(p, Hy) is given by

(3.1) J(p, Ho) = inf {J(p, p):p e Ho}.
Let
(3.2) By = {p:J(p, Ho) Z cn}

for ¢y > 0 and suppose By and By’, the rejection and acceptance regions of a
LRT respectively, are in Bo(p). Then for p ¢ Q¢ n Q¥

(3.3) Py(By|p) = exp [=N(1 + O(N"))eay(p) + O(log N)]
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and if the size of the test defined by By is a(By), then
(34) a(By) = sup {Px(By|p):p € Ho}

= exp[=N(1 + O(N))ex + O(log N))]
where infg, infzy J(p, p) = infpy infg, J(p, p) = cw.

Let a sequence of arbitrary tests of the hypothesis p ¢ H, be represented by
the respective rejection regions which we shall call Ay. Suppose Ay and Ay’
are in By(p) for N sufficiently large and for pertinent p. Then if the size of the
test Ay is given by a(Ay),

(3.5) a(Ay) = sup {Py(Ax|p):p e Ho}

= exp [—N(1 + O(N‘l))‘J(AN, Hy) + O(log N)]
where
(3.6) J(Ay, Hy) = infay infa, J(p, p) = infg, infay, J(D, p).

If we choose ¢y = J(Aw, Hy), then By D Ay and the LRT By is at least as
powerful as Ay . Since By D Ay, a(By) = a(Ay). However, if we assume
(3.7) Ncw/logN — © ag N — «,

then a(Ay) will tend to zero faster than any power of N and (log N)/log a(Ax)
will tend to zero as N — . Thus if ¢y = O(log N),

log a(By) = log a(Ax) + O(log N)
which implies that
(3.8) log a(By)/log a(Ax) =1 + o(1)
so that in this sense the size of By is approximately that of Ay .

It is of interest to note that By not only contains Ay, but is actually equal
to the union of all critical regions Ax™ such that J(Ax*, Hy) = ¢y . Furthermore
if we consider Hy = {p,} then By is the union of critical regions of most powerful
tests of the simple hypothesis p = p, against simple alternatives. Similarly for
general H, , By is the intersection over H, of the union of critical regions of most
powerful tests of the simple hypothesis p = po against simple alternatives. These
facts may be used to explain the asymptotically optimal character of LRT.

As we have mentioned a(Ay) =< a(By). However, we would like to find a
LRT of p ¢ Hy whose size is less than or equal to that of Ay and whose power is
still better in some sense. Thus consider

(3.9) By" = {p:J(p, Ho) 2 cv + Ax}

and require a(By") = a(Ay). If we use the result of Theorem 2.2, this re-
quirement becomes

(3,10) log a(By") £ —N(cex + Ax) + s(ew + Ay) + Ky log N
< —Ncy — scy + Ky log N =< log a(Ax)
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where

Ky =7+ (logCo)/logN, Ky=k(k+1)/2+ (logCi)/logN.
We see at once that (3.10) is implied by
(3.11) Ay = (Ky — Ky)(log N)/(N — s) + 2scw/(N — s);

for cy = O(log N), NAx = O(log N) as N — . Also from Theorem 2.2 it
follows that Ay = 0 and (3.11) implies Ay — 0 as N — « for ¢y = O(log N).
Thus for Ay as defined in (3.11) we have

(3.12) exp [—N(1 + O(N"))ey — O(log N)]
= a(By") £ a(Ay) = exp [-N(1 + O(N"))ew + O(log N)].

Now if we apply the result of Theorem 2.2 to B ~+ and Ay’, we have for the prob-
abilities of falsely accepting the hypothesis that p & Ho, i.e., p 2 Ho,

(3.13) Py(By"|p) = exp [=N(1 4+ O(N"))csy+'(p) + O(log N)],
(3.14) Py(Ay |p) = exp [-N(1 + O(N 1) )cay(p) + O(log N)],

for the tests By and Ay respectively. If both of these probabilities are positive
we have

(3.15) Py(By" |p)/Px(Ax"|p)
< exp [—N(dx(p) — ex(p) — fn(p)/N) + O(log N)]
where
dy(p) = J(By',p) — J(4¥,p) Z 0,
(3.16) ex(p) = J(Bx,p) — J(Bx",p) 2
| fx(p) = J(A¥, p) + J(By", p).

If we require Ay’ D H,, then fy(p) £ 2J(H,, p), and all the differences in
(3.16) are defined. If as N tends to infinity

(3.17) Ndy(p)/log N — «

for p & Hy, then test By is considerably more powerful than test Ay in the sense
that Py(By' | p)/Px(Ay |p) tends to zero faster than any power of N. If as N
tends to infinity

(3.18) ‘ ex(p)/du(p) — 0

then the ratio of the probabilities of the error of the second kind, (3.15), tends
to zero faster than any power of N for the tests Bx", Ax even though test By"is
not necessarily more powerful than test Ay for fixed N. We summarize these
“results in the following theorem.

TaroreM 3.1. Let Ay be a sequence of non-empty, non-randomized tests for testing
the hypothesis p e Hy C Qo which satisfy the following conditions:
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(1) For N sufficiently large the sets Ay , Ay are in By(p) for pertinent p;

(ii) ¢y = O(log N), Ncy/log N — © as N — o

(iii) For N sufficiently large Ay’ D Hy;
then the size of test Ay for testing p & Hy is given by (3.5) and the error probability
at peHy n Q by (8.14). The test By as defined in (3.9) and (8.11) satisfies,
for sufficiently large N, a(By") £ a(Ax) where a(Ay) tends to zero faster than
any power of N'; and for those p ¢ Hy n Qo for which (3.17) and (3.18) hold
and for which Py(Ax' | p) > 0, the ratio of the error probabilite as given in (3.15)
tends to zero faster than any power of N, as N tends to infinity.

Thus for a class of tests we have established sufficient conditions for the exist-
ence of a LRT which performs much better in the sense of Theorem 3.1 than a
given test.

4. On the implementation of Theorem 3.1. In order to be able to make use of
Theorem 3.1 it is necessary to investigate the function J and to explore the
membership of the class Bo(p) for relevant p. We shall not go into the details
of the results of either of these lines of research here. However, several results of
basic interest are given in this section. Some proofs, which follow by long but
rather straightforward mathematical analyses, are omitted.

Even a cursory glance at Theorem 3.1 cannot fail to reveal the dominant role
played by the function J and its infima. The following lemma summarizes some
of the more basic properties of J.

Levmma 4.1. For fixed p € Qo

(i) J(p, p) = 0 with equality if and only if p = p;

(ii) J s a convex function of p;

(iii) For any non-empty set B C Qo there exists a p, in B n Qo such that J (P, p)
= J(B, p). If p € B, the closure of B, p, = p; if not, pp s a boundary point of B.
For fixed p € Qo

(iv) For any non-empty set Hy C Qo there exists a point py & Hyn Qo such that
J(p, ps) = J(B, Ho). If De Hy, ps = P; if not, ps is a boundary point of H,.
Finally

(v) J s a continuous function on Qo X Q.

Because of the role of the LRT the infimum of J(p, p) subject to J(p, Ho) < ¢
is needed for the approximation of the type II error probability in an application
of Theorem 3.1. Although results exist for this case, they are not nearly as ex-
plicit as Hoeffding’s [5] for the multinomial case. For example in the simple
case Hy = {po} we are guaranteed a point Py in the closure of {p : J(p, Ho)
< ¢} intersected with Qo such that

J(po, p) = inf3 {J(B, p):J(p, Ho) < c}
by Lemma 4.1 (iii). Use of the Lagrange multiplier tgchnjque for finding extrema
yields for po = (w0, 4o), p = (u, 4), Do = (%o, Ao)
(4.1) do =1 + AAAT 4+ (1 — NATT A — w),
Ao= DA™ 4+ (1 = N)4o T,
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for a unique 0 < A, < 1 determined by J(po, po) = c. However, finding A,
seems to be a numerical problem.

To investigate the power of Ay as compared to that of By" we have concen-
trated on the error probabilities. The number dy(p) is a measure of the similarity
between the two tests Ay and By . Clearly if Ay = By, then dy(p) = 0 for all p.
For Ay # By we wish to investigate how different the two tests should be for
N dy(p)/log N —  with N. Or to put it another way, for what alternatives are
the tests sufficiently different as measured by N dy(p)/log N — «. For dx(p)
> d > 0, say, the condition (3.17) obtains and it seems likely that continuity
will imply ex(p) — 0 as N — « so condition (3.18) will hold. We now consider
the set of alternatives p, such that dy(p) = 0. For convenience we drop the
subseript N.

Lemma 4.2. If p 2 B', then

(i) d(p) = 0 4f and only if {p:J(p, p) < J(B,p)} < 4
and

(ii) d(p) = O implies there is P, & Qo common to the boundary of A and the
boundary of B such that J(p,, p) = J(B', p).

Proor. Only the proof of (i) will be given.

(i) If d(p) = 0, J(4', p) = J(B, p) and

{p:J(p, p) < J(B, p)} = (B:J(B, ) < J(4, p)} € 4,

since p ¢ A’ implies J(p, p) = J(A’, p). If on the other hand {p:J(p, p) <
J(B,p)} C A, then {p:J(p, p) Z J(B',p)} D A’ sothat J(4',p) Z J(B',p).
However, B © A’ so the reverse inequality holds, which means the equality
holds and d(p) = 0.

The content of Lemma 4.2 is simply that, in order for d(p) = 0, 4 and B
must have common boundary points and that the behavior of A near such bound-
ary points is restricted by part (i) of the lemma.

It is generally not an easy matter to establish whether or not a subset of @,
is a member of By(p). However, certain results can be stated which will help.
First a result will be stated which in effect allows one to strip away extraneous
parts of a subset of Qo and consider only that part of the subset pertinent to the
probability estimate (2.38). This result also supplies the justification for the
remarks following Definition 2.1.

Lemma 4.3. Let
(42)  Blep) = (p:J(B,p) Z ¢}, B'(¢;p) = {p:J(Bp) <
and define
(4.3) esszinf J(p, p) = sup {c:m(B'(¢; p) n B) = 0}

for any measurable set B C Qo where m is n dimensional Lebesgue measure. Denote
the essginf J(p, p) by cs(p). Then for a measurable set B in Qo and point p & Qo

(1) es(p) = J(B, p);



ASYMPTOTICALLY OPTIMAL TESTS 1841

(i) ea@m(p) = J(B(c;p), p);
(iii) If B® = B(cs(p); p) n B, then B’ c B, m(B®) = m(B), and

(4.4) J(B', p) = cao(p) = ca(p).

Proor. Only the proof of (iii) will be given here.

(iii) That B’ C B is immediate. To show that m(B°) = m(B) it will be suf-
ficient to show that B'(cs(p); p) n B = B' has m measure zero. Let {c;} be a
non-decreasing sequence of non-negative numbers such that ¢; — cz(p). By
definition of cz(p)

(4.5) m(B'(¢ci;p) nB) =0, i=1,2 .

Clearly B(c; ; p) increases to B'(cs(p); p) as i — . Thus B'(ci;p) n B in-
creases to B'(cs(p); p) n B and (4.5) yields

(4.6) 0 = lim m(B'(ci;p) n B) = m(B'(cs(p); p) n B)

so that m(B') = 0.

Now czo(p) = sup {¢:m(B’(¢; p) n B®) = 0} and B'(¢; p) n B’ is the empty
set for ¢ < ca(p) 50 cpo(p) = ca(p). If ¢ > ca(p), m(B'(¢; p) n B%) =
m((B'(¢;p) nB%) u (B'(¢; p) n BY)) = m(B(c; p) n B) > 0 by definition of
cs(p) and the fact that m(B") = 0. Thus cpo(p) = cs(p) and it follows that

eso(p) = cs(p).
Suppose J(B’, p) < czo(p); then there is a number ¢, such that

(4.7) J(B’, p) < ¢ < cpo(p)

and {pJ (P, p) = co} n B is empty by definition of B°. Thus

(4.8) inf {J(p, p)ipe B} = inf (J(p, p):pe{p:J(Bp) > a} n B}

and thus J(B®, p) = ¢, which is a contradiction. Thus we have J(B’, p) =

cao(p), since by (i) J(B°, p) = cso(p). This concludes the proof.

Because of the possible statistical applications of the probability estimate
(2.38), e.g. Theorem 3.1, it is of particular interest to be able to decide whether
or not sets of the form {p:F(p) = 0} for suitably restricted F belong to Bo(p).
The following result provides sufficient conditions for deciding this question in
the affirmative.

LemMa 4.4. Let w be a positive constant and define s(w) by

s(w) = inf {[|p1 — pol|:F(p1) = 0, F(p2) = w}
and B, by
B, = {p:F(p) = w}.

Suppose F is continuous in Qo and {p:F(p) = 0} C Q. If for peQecn
{p:F(p) < 0} there exists a w > 0 such that
(i) s(w) > &, for & as defined in (2.30),
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(i) ¢s,(p) = cs(p) + 36, for B = {p:F(p) = 0}
where & is sufficiently small so that

(5:7(5, p) = ea(p) + $3) 0 (p:F() = 0} # &,
then {p:F(p) = 0} & Bo(p). '

6. An example for k¥ = 2. In this example we wish to test the composite
hypothesis p = (u, 4,) for fixed 4o, where (u, 4o) & Q, for all u. By a simple
change of variables we can, without loss of generality, consider the case 4 = I,
the &k by k identity matrix. Thus we wish to test the hypothesis p ¢ H,

(5~1) HO = {p:p = (u) A)) A= I}

versus p £ Hy.

For this hypothesis we compare a test developed by S. N. Roy, [6], Section
6.4, with the LRT for this hypothesis. Our aim will be to show that the ratio of
the error probability of LRT to that of Roy’s test tends to zero faster than any
power of N as N — o for most alternatives, provided the size of the tests tend to
zero sufficiently fast. The LRT for this hypothesis as given by (3.2) rejects
when J(p, H,) exceeds a constant. For the set H, under consideration

(5.2) J(p, Ho) = 4ltr A — k — log AL

Roy’s test for p € H, vessus p ¢ H, is developed under his heuristic union-inter-
section principle and rejects for p € R where

(5.3) R = {pia < M(4), M(4) < &

for positive constants 0 < ¢; < c¢;. Here the \((4),7 = 1, - -+ , k, are again the
ordered eigenvalue of A. The constants ¢, and ¢, are determined by the required
size of the test and the requirement of local unbiasedness, i.e., the power function
should have a local minimum at each point of the boundary of R’. We shall not
be concerned with the choice of ¢; and ¢, here and shall only require that
¢ < 1 < ¢ so that Hy © R’. We shall assume ¢; and ¢, are independent of N.

In order to be able to apply Theorem 3.1 to this example we must verify that
certain probability estimates hold. Thus we should like to know that for
peR nQ., ReBy(p); and for pe RnQ., R e By(p). It is relatively simple
to show the former holds. This result follows from the following lemma.

Lemma 5.1. As defined in (5.3), R’ satisfies (i) R’ < Qo (ii) R’ is convex.

We omit the proof.

Because of the difficulty involved in showing R’ ¢ Bo(p) for p £ R n Q. we are
forced to consider the case & = 2. In this case a long, tedious, elementary argu-
ment employing Lemma, 4.4 establishes the following theorem.

TrrorEM 5.1. For pe Rn Q. , R € By(p).

We now consider those alternatives to the hypothesis H, for which d(p) = 0

»in the case k = 2, i.e.,

(54) {p:d(p) = J(B',p) — J(R, p) = 0}
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where R’ is given by (5.3) for k = 2 and
(5.5) B = {p:J(p, Ho) < J(R,Ho) = min {¢; — 1 —logey, s — 1 — logea}}.

In view of (5.2), we shall focus our attention on the space of eigenvalues of 4,
ie. :

(5.6) {()\1, )\2):0 <M= }\2}.

A straight forward analysm establishes the followmg theorem.
TueorEM 5.2. If R and B are as defined in (5. 3) and (5.5) respectively, then

{p:d(p) = 0} = {p:M(4) < 1, M(4) = 1}
(5.7) ufp:in(4) =1, 0(4) > e}, L
= {p:\(4) <, M(4) =1}, IL
= {p:M(A) =1, M(4) > ¢}, IIL
and in any case
{p:d(p) = 0} C {p:M(4) < o, M(4) = Lu{pM(4) = 1, M(4) > ).

Here 1, 11, 111 stand for the conditions that ¢, — 1 — log ¢ is equal to, less than, or
greater than c; — 1 — log ¢, respectively.

CoroLLARY 5.1. If the hypotheses of Theorem 5.2 are satisfied and p € R is such
that M(A) # 1 and N(A) 5~ 1, then d(p) > 0.

We now wish to consider

(5.8) ex(p) = J(B',p) — J(Bx", p)
for
(5.9) By = (p:J(p, Ho) < J(R, Hy) + Ax}

where Ay — 0 as N — . Now if B, = {p:J(p, H,) < ¢}, then to find J(B., D)
we consider the problem of minimizing J(p, p) subJect to J(p, Hy) = ¢, and note
that we are guaranteed a point p, in boundary of B, for p & B, so that J(p, ,p) =
J(B/, p). By the LaGrange multiplier criterion and the regularity of J (p,H,) in
this case, p. must satisfy

(5.10) V(J(p, p) — wJ (B, Ho)) = 0, J(p, Ho) = c.

The implicit function theorem guarantees that for the H, under consideration
here, p. is a continuous function of ¢. Thus J(B,, p) = J(p., p) is a continuous
function of ¢ and it follows that ex(p) — 0 as N — .

Thus Theorem 3.1 applies for those p ¢ R n Q. for which M (4) # 1 and
N2(A) # 1 and thus for these p we have that the ratio of the type II error prob-
ability of a LRT for testing p &€ Ho vs. p £ Hy to that of Roy’s test for the same
hypothesis tends to zero faster than any power of N as N — « in the case k = 2.
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