LOCAL ASYMPTOTIC POWER AND EFFICIENCY OF TESTS
OF KOLMOGOROV-SMIRNOV TYPE

BY Jikf ANDEL
Charles University, Prague

0. Summary. This paper is devoted to some problems related to asymptotic
power and efficiency of tests of Kolmogorov-Smirnov type. The results are derived
by means of the theory of stochastic processes. The concepts of local asymptotic
power and local asymptotic efficiency of tests are introduced according to [7].
Section 4 contains the evaluation of the local asymptotic power of one-sided
tests of Kolmogorov-Smirnov type and of Rényi’s one-sided test. The asymptotic
power of these tests may be expressed by series expansion. Some theoretical
results related to terms of the series are given and used for approximations and
bounds of the asymptotic power.

The paper is an excerpt from the author’s dissertation written with the guid-
ance of Professor Jaroslav H4jek.

1. Introduction. Let X, - - - , X» be random variables. We shall consider the
general regression model

Xi=0t+ﬂci+yi (Z':l)""N))

where o and 8 are unknown parameters, ¢, -, ¢y are some known constants
and Yy, ---, Yy are independent random variables with a common (but un-
known) continuous distribution. In the special case when

¢;=0 for ¢=1,---,n,
=1 for ¢=n+1,---,N,

we have the classical two-sample problem.

The tests of Kolmogorov-Smirnov type may also be defined for regression
alternatives. (See [6], [7] and Section 2.) In this paper we shall investigate the
one-sided Kolmogorov-Smirnov test and the Rényi test only. The two-sided
versions of these tests as well as the Cramér-von Mises test will not be considered
here.

The local asymptotic efficiency is a new concept introduced first in [7]. If the
test statistic is asymptotically normal under both the hypothesis and the alterna-
tive and if we have a two-sample problem, it coincides with the Pitman asympto-
tic efficiency. The asymptotic power of tests of Kolmogorov-Smirnov type may be
expressed as the probabilities of events defined by a Brownian bridge process.
It is possible to evaluate these probabilities by means of the heat conduction
equation with rather complicated boundary conditions. We use a different method
and get an approximate solution with the help of the theory of stochastic proc-
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esses. Our considerations correspond to the small-parameter method for the
solution of the differential equation. The relation between both methods is not
analysed here.

2. Preliminaries. A real stochastic process 2(t, w), 0 < ¢ < 1, will be called a
Brownian bridge, if it is Gaussian with

(2.1) Ex(t) = 0, 0
(2.2) B(s,t) = Ez(s)2(t) = s(1 — 1), 0=s=t

and if all paths z(-) are continuous functions on [0, 1].

It may be proved from a well-known theorem of Kolmogorov (see [3], p. 576)
that a separable Gaussian process with parameters (2.1) and (2.2) is continuous
with probability 1. Then, of course, the process may be adjusted on w-subsets
having probability 0, so that all paths are continuous.

Let @ be the space of continuous functions v(¢), 0 < ¢ < 1, with v(0) =
v(1) = 0. Let @ be the o-field generated by the system of open sets of continuous
functions; the distance p is p(v1, 7v2) = maxo<:i<i [v1(t) — 72(¢)|. Obviously
2(t) may be realized on (Q, @, P), when we put z(¢, v(-)) = ~(¢).

We denote by L, the set of functions {¢} on [0, 1] such that f% lo(t)[fdt < o}
further we denote by L.’ the subset of L such that f% o(t) dt = 0.

We define the integral [$¢(t) dz(t), where ¢ & Ly and 2(t) is the Brownian
bridge. This can be done for step functions by the standard procedure (see [3],
Chapter IX). We may derive the relation

(2.3) Elfie(t) e = [ile(t) — o'dt = [ile(t)] dt

for any step function ¢(t); we have denoted @ = [§¢(t) dt. Using (2.3), the in-
tegral f(l, o(t) dz(t) may be defined for any ¢ ¢ L, as the limit in quadratic mean
(with respect to P) of integrals [§¢a(¢) d2(t), where {¢s} is a sequence of step
functions such that ¢, — ¢ in quadratic mean. It is obvious that this limit does
not depend on the choice of the particular sequence {¢,}. Note the validity of
(2.3) for any ¢ € L, . Moreover, it is easy to obtain the relation

(24) cov ([3u(t) de(t), [So(t) da(t))
= [(t) — Plle(t) — @l dt, o, ¥eLs.

IIA
I\

L
L

A

Put
Y() =1—s for 0=t = s,
= —s for s<t=1.
Then we get
(2.5) 2(s) = [y(t) de(t).

Suppose » = 0. Then (2.4) implies
(2.6) cov (2(s), [oo(t) da(t)) = [ie(t) dt.
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THEOREM 2.1. Let Pa, A ## 0, denote the distribution of the process v(t) =
2(t) + AY(t), where 2(t) is a Brownian bridge and ¢ is a given function on [0, 1].
P ut P = P 0.

Then P 4 ¢s absolutely continuous with respect to P, if and only if y(0) = ¢(1) =0
and ¥(t) is absolutely continuous with square integrable ¥'(t). In this case

dPA/dP = exp {At — LA’ var &},
where
E= [ @) de(t),  varg = W OFdt ="
The random variable £ is a sufficient statistic for the system {P,} and & has distribu-
tion N(O, o) under P,.

Proor. Consider the system {[§o(t) d2(¢)}, ¢ & Ly’. This system is closed
with respect to passage to the limit in mean for [P] and it is the minimal closed
linear manifold, which contains the random variables z(s) (cf. (2.5)). The
assertions of Theorem 2.1 follow then from (2.6) and [5]. Q.E.D.

We call a function f(x) absolutely continuous, if it is finite and if for given

e > 0 such 6 > 0 exists, that for any finite system of disjoint open intervals
(a1, b1), +++, (Gn, bs), where D i (b — az) < 8, the relation

| Lk [f(0) — flan)]] < e

holds. (See [10].)
Let X be a random variable with distribution funetion F(z) and density f(z).
Suppose that f(z) is absolutely continuous and

I(f) = [Za|f'(2)/f(2)[f(z) dw < .
I(f) is called Fisher’s information for f(z). Define the o-function
o(u, f) = —f (F (W) /f(F(w)), 0<u<l,

where F' is the inverse of F. From the assumption I(f) < o it follows that
o(u, f) e Ly’ and I(f) = [26°(u, f) du.

Letx = (m1, -+, zx) be a real vector such that z; 5% x;forz = j (4,7 = 1,
-+, N). Denote by r:i(z) the number of components of x whose values are not
greater than z;. If X = (X, ---, Xx) is a random vector, the statistic
R; = ri(X) is called the rank of X;.

Introduce the scores ay(z, t) for 0 = ¢ = 1 and for N = 1 in this way:

ax(i, t) = 0 if <N,
=i{—tN iftN<i<IN+1,
=1 if (IN+1s5

Let ¢ = (¢, ---, cy) be a vector with real components. Put

To(t) = [Dote (s —&)7T 28wa(es — &)an(Ri, 1),
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where ¢ = N> Y ¢;. Let
(2.7) (e — &)/maxicicn (¢ — €)' — o for N — .

We have the hypothesis H, that the simultaneous density of X;, --., Xy is
Hﬁ';l f(x;). Then under H, T.(-) converges in distribution in the measurable
space of continuous functions to the Brownian bridge 2( - ) (see [6]).

Consider the statistic K," = maxo<:<i T%(t). In the special case when

(2.8) =0 (i=1,---,n), =1 (7:=n+1,"')N))

the statistic K,* coincides with the well-known one-sided Kolmogorov-Smirnov
statistic. It is proved (see [7]) that under Ho and (2.7)

PK,S 2z (—ilnhao)l} -« ae(0,1).
The statistic ’
Rf = MaXoca<i<it  To(t)

coincides in the special case (2.8) with the usual one-sided Rényi statistic. Let
®(x) denote the distribution function of N(0, 1) and ®(u.) = «. Then under
H, and (2.7)

P{RL, = (1 — a)/alusop} — a, ae(0,1).

Consider the family of alternatives that the simultaneous density of Xj,
e XN is
)

qa = ley=1fo($i - di),

where fo is a given absolutely continuous density with I(fy) < «. Put d =
N> Y. d;:. Suppose (2.7) and let

(29) [ (ei — &)(di — DNt (o5 — 6)* L (di — )T — o,

(2.10) max; <i<y (di — d)* — 0,
(2.11) I(fo) 2y (di — d)* — b, 0<b< w.

If @ is the probability corresponding to ¢, then
QK" 2 (=3 1n o))
— P{maxoziz {2(2) + boalI ()] Ho(Fo (1))} 2 (=3 In )Y},
Qu{ Rz 2 [(1 = a)/afurap}
— P{maxacici {2(t) + bl (fo) [ Ho(Fo ™ (8)) — (1 — a)/alusap} = 0}.

These probabilities are the asymptotic power of the one-sided test of Kolmogorov-
Smirnov type and of the one-sided test of Rényi type respectively.
Thus we are facing the evaluation of probabilities

P{maxogtél [Z(t) -+ blp(t) — a] = 0}, a > O,
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and
P{max0<a§t§1 [Z(t) ‘l" blp(t) — At] 2 0}, )\ > 0,

where ¥(t) is an absolutely continuous function such that ¢ ¢ L,".
Let B(e, fy, b) be the asymptotic power of a test. Let us assume

(212) B(Ol, fo, b) = « —l— bBl(a, fo) + 0<b)

Then Bi(a, fo) is called the local asymptotic power of the given test. The
evaluation of Bi(«, fo) is often relatively simpler than that of B(e, fy, b). The
local asymptotic power was introduced in [7].

The asymptotic power of the asymptotically most powerful one-sided test
on the level a is equal to 1 — ®(u;_o — b). Define b’ by

B(’x: f07 b) =1- q)(ul_a — b,)
The asymptotic efficiency of the given test is defined by
e(a, b) = (b'/b)".

But e(e, b) depends on both o and b. In accordance with [7] we introduce the
local asymptotic efficiency

8(0’.) = limb+0+ 6(0(, b).

In the case of one-sided tests of Kolmogorov-Smirnov type e(«) was first derived
in [7] by H4jek. We may obtain that

e(a) = limysot [(B(e, fo,b) — @)/(1 — d(ur o — b) — )]
= 27 exp (ui—a)Bi'(a, fo).
Approximately (see Table 4, columns Q(A) and ®(p, -+ p1A)) one has that
B(a, fo,b) ~ 1 — $(wa — le(a)]'D).

3. Series expansion for Pa(A4). We shall consider the events 4 ¢ @ only. In
order to calculate PA(A) we deduce a theoretical expansion in the form of sums
of absolutely convergent power series in A. The remainder term is calculated for
two special cases. Without loss of generality we assume A > 0, since AY(t) =
(—=2)(=¥(2)).

LEmmA 3.1. Forany A € @

Jae* dP = X5, (A%5) [JEdP

holds, where the series on the right side is absolutely convergend.
Proor. Using a well-known theorem (see [9], p. 134) we have

250 (A0 4 8 dP| £ 350 (A7/51) o [E]1dP = [qe'* aP
= (2r) 7" [2, exp {|Az] — 2%/26%) dz < .
Put fu(w) = D J=0 (A7/j1)E (w). We see that fu(w) — ¢**“’ everywhere. Further,
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e “*! is an integrable majorant for {x.(w)-fa(®)}, hence by the Lebesgue
theorem

JafadP = 22500 (A/j1) [4€dP — [, e**dP

forn — « (x4 is the characteristic function of the set A).
TraEOREM 3.1. For any A ¢ @ the expansion

Py(A) =+ ad + oA” 4 -
holds, where the series is a product of the Taylor series for
exp { 34"} and of 25 (A%/51) [4 £ dP.
Proor. According to Theorem 2.1 and the Radon-Nikodym theorem we have
Pu(A) = [4(dPa/dP)dP = exp {—3A%" [, exp {AE} dP.

Using Lemma 3.. we obtain the product of two absolutely convergent series and
therefore again an absolutely convergent series.
For fixed A ¢ @ we shall denote

a = [a&dP, k=012,
THEOREM 3.2. One can write
Py(A) = ay+ mA + Zy
where
|21 = |(exp {—3A%"} — 1)(a0 + mA)|
+ 14%" exp { —34%"} + 3A%7(1 + A%*)®(A0)
+ Ao(2m) ! exp {347,
Proor.
Pa(A) = exp {—3A%"} [4exp (A8} dP
= (14 exp { —3A%"} — 1)(ao + wmA + 3A® [4 £ exp {9AL} dP
for some ¢ ¢ (0, 1). Hence (¢ = da)
Pa(4) = a0+ @A + (exp {—3A%" — 1)(a0 + mA)
+ 1A% exp { —34%%) [4 £ exp {9AE} dP.
But we have
|f4 € exp {9AE} dP| < (27) %" f Lo 2’ exp { —2%/20%) dz
+ (2m) 7% [T 2 exp {—2%/26° + Az} dx
= 3" + o'exp (3A%H}[(1 + A%")3(A0)
+ Ac(27) Fexp { —3A%Y].
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TuaEorEM 3.3. Denoting
D = exp {—1A%"}) — 1 4 1A%,
R = A*(2m) (4 + A%°) + Ac* exp {14%°}(3 + A%6%)B(Ac),
we have a
Py(A) = ay + @A + 3(a: — ad’)A* + Zs,
where
1Z,] < 3A°R[1 — 34%" + D| + [D(a0 + @A + 3aA’) — $ac’s’ — taw’A.
The proof is analogous to that of the Theorem 3.2.

4. The computation of the coefficient q; . .

TuaeoreEM 4.1. Let G(t) = f,, 2(t) dP be absolutely continuous on [0, 1] with
dertvative G'(¢) = g(t) € Ly . Then for any ¢ € Ly’
(4.1) Jalfse(t) da()] dP = [so(t)g(t) dt.

Proor. The relation (4.1) obviously holds when ¢(t) is a step function. Let
{¢a(t)} be a sequence of step functions such that [§¢.(¢) dt = 0 (n = 1,2, --+)
and ¢, — ¢ € Ly in the quadratic mean. Then

1[4 1[5 (1) de()]dP — [4[[s0(8) de()]dP| < E|[alen(t) — o(8)]de(t)] — 0
taking into account that
E|[3lea(t) — o] de()]’ £ [3lon(t) — o(t)[ dt — 0.
Furthermore we have
sen(Dg(t) dt — [so(t)g(2) dit

(convergence in quadratic mean implies weak convergence in L.). Q.E.D.
Consider the events

Ay = {supo<:<1 [2(¢) — a — bt] < 0}, a>0 a+0b>0,
A, = {supo<:<i [2(2) — a] < 0}, a >0,
As = {sups<e<1 [2(8) — N < 0}, a e (0,1), N>0.

From [2] we easily get the following result, given here without proof.

LemmMa 4.1. Let w(s) be a real separable Gaussian process on [0, t], t & (0, 1) with
Ew(s) = 0, Bw(s)w(s') = s(1 —s'/t)for0 <s<s <t.Fory>0,y+ & >0
the probability of exceeding the straight line v + 8s is

exp { —2v°/t — 2v6}.

First we shall consider the event A,. The conditional process 2(s) with con-
, dition 2(¢) = y has
Elz(s)|2(t) = yl = (s/t)y
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and the correlation function s(1 — s'/¢) for 0 < s £ s’ £ t. The probability of
exceeding the barrier of @ 4+ bs on [0, ] equals the probability that w(s) considered
in Lemma 4.1 exceeds the barrier a + (b — y/t)s on [0, £, i.e.

exp { —(2a/t)(a + bt — y)}

for y < a 4 bt. Analogously the probability of exceeding the barrier @ + bs on
[t, 1] by our conditional process is

exp {—[2(a + b)/(1 — Ol(a + bt — y)}.

But the subprocesses {z(s), 0 < s < t} and {2(s),t < s < 1} are conditionally
independent given 2(¢) = y. Consequently

P(Ao|2(t) = y) = [1 — exp {—(2a/t)(a + bt — y)}]-
(1 —exp {—[2(a 4+ b)/(1 — )l(a + bt — y)}]

fory < a-+btand 0fory > a + bt.
In view of Lemma 4.1 (for ¢ = 1) we have

P* = P(4y) =1 — exp {—2a(a + b)}.
The probability density of y = 2(¢) is
ho(y) = [2nt(1 — )] exp {—y"/20(1 — 1)}.
The conditional density of y = 2(¢) given A4, is
h(y) = (P*)71 — exp {—(2a/t)(a + bt — y)}]
‘1 —exp{—2[(a + b)/(1 — t)l(a + bt — y)}]h(y)
fory < a + btand 0 fory > a + bt. Let h(y) = P*ny(y). Then
Go(t) = [a,2(t) dP = [*2* yh(y) dy.
After somewhat lengthy computations we get
Go(t) = 2(a + b)®(—(a + bt)/[K(1 — O)]')
(4.2) — 2a(1l — t) exp {—2a(a + b)}®(({(2a + b) — a)/[t(1 — )"
— 2(a 4 b)texp{—2a(a + b}(—((2a + b) — a)/l(1 — B)I').
Furthermore we have the kernel
go(t) = Gv'(t) = 2b®(—(a + bt) /(1 — O)I")
(4.3) + 2a exp {—2a(a + b)}2((#(2a + b) — a)/[K(1 — O)])
— 2(a 4 b) exp {—2a(a + b)}(—(U(2a + b) — a)/U1 — OI).
For the event A; we put b = 0 and hence obtain the kernel
(4.4) g1(t) = 2a exp { —2a”}[28((2at — a)/[i(1 — O)}) — 1].

Now we shall derive the kernel g.(¢) for the event A, . Consider the conditional
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Brownian bridge 2(s) given z(a) = y. Such a process does not exceed the barrier
As, s e (a, 1), with probability
(4.5) Sy =1—exp{—2\Aa — %)/(1 — a)}
for y < Aa. The probability derisitéy ofy = z2(a) is
f(y) = [2ra(1 — @) exp {—y"/2a(1 — a)}.
The unconditional probability S that z(s) does not exceed As on [a, 1] is

(4.6) 8 = [%8(y) dy = 28(Na/(1 — a)I') — 1.

Moreover, the conditional density h.(y) of ¥ = 2(a) with the condition A4, is
ha(y) = (Su/S)f(y), . y < Aa.

Hence

[an2(a) dP = 8 [M yha(y) dy = —2aAB( —Na/(1 — a)}).

Assume ¢ ¢ (0, a). Consider the conditional process z(s) given z(¢) =
[¢, 1] this is a Gaussian process with expectation [x/(1 — ¢)](1 — s),t <
and correlation function (1 — s')(s — ¢)/(1 —t)for0 < t < s < s = 1.
this condition y = 2(a) has the density

k(y) = 2x(1 — a)(@a — t)/(0 — I
_ -1 _ _ —1\2
,exp{_(y+ax(1 0~ —a(l— 1) )}
20 —a)a — /A =1
When y = 2(a) is fixed, owing to the independence of the subprocesses on [0, a]
and [a, 1] our process does not exceed the barrier As with probability S, . The

probability that the Brownian bridge with z(¢) = x does not exceed As on [a, 1]
is

s =1,
Under

% 8,0(y) dy

d((a\ — at\ + ax — z)/[(1 — )(1 — a)(a — D)

— exp {2\(z — N)/(1 — t)}

B((—aN — ai\ + az — z + 20)/[(1 — t)(1 — a)(a — OF).
The conditional density of £ = x(t) with condition A, is

h*(z) = [2nt(1 — ) exp {—2/26(1 — t)}-Sa,e/S

Sx,t

and

Il

S [Z,xh*(z) da

—2)\t(27r)_% f°—°w exp { —1y°}

B([—aN(1 — ) 4+ (1 — a)dyl/ [(1 — a)(a — OF) dy
= —2M®(—Na/(1 — a)}), for  te(0,a).

[4s2(t) AP
(4.7)

I
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Assume t ¢ (@, 1). Let 2(t) = z be fixed. Then 2(s) on [0, ¢] is Gaussian with

x
expectation (z/t)s, 0 < s =< ¢ and correlation function s(1 — s'/¢),
0<sss =t

Consider z(s) with condition z(a) = y, 2(¢) = . This process does not exceed
the barrier As on [t, 1] with probability

1 —exp{—2\(M — 2)/(1 — 1)}, x < M,
and on [a, {] with probability
1—exp{—20a—y)(M —2)/(t —a)}, y <N, z<N.

Thus the probability that z(s) with condition 2(¢) = x only does not exceed As
on [a, t] is

See = [M[1 — exp{—2(\a — y)(\t — 2)/(t — a)}]
‘2ra(1 — a/t)] Fexp{—(y — ax/t)’/2a(1 — a/t)} dy

=1 — 28((z — M)[a/t(t — a)]}).
The process z(s) conditioned by 2(¢) = z does not exceed the barrier As on [a, 1]
with probability

8oy = Sl — exp {—2AM — z)/(1 — )}].
The conditional density of x = 2z(¢) under the condition A, is then
K(z) = [2at(1 — )] P exp {—a*/24(1 — )} Sz.4/8, T <M,
=0, T = M.
We have, forte (a, 1)
[a,2(t) dP = 8 [Ye 2b(z) da
2(1 — 8)(2m) Ha/(1 — )] exp { —aN*/2(1 — a)}
(4.8) — 4(1 — 8)(2m) Ha/(1 — a)l? exp { —aN’/2(1 — a)}
BNt — @)/(1 — (1 — a)])
— ani(2r) 7 [L exp { — 117}
@([y[t — a)]' — Ma'l/[at(1 — )]F) dy.
These relations may be easily obtained:
(4.9) limsa- [ 4,2(t) dP = limgpar [4,2(8) AP = [4,2(a) dP,
limg.ot [4,2(t) AP = limga- [4,2(¢) dP = 0.
The derivative is
g:(t) = — 22@(— Na/(1 — a)}h), 0<t<a,

ga(t) = — an(2m)? f_w exp (— 11D (y[t(Fa;f)—]z t;]}m,) ,
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+ 42m) a/(1 — @) exp {— a-N2/2(1 — a)}
- @(\(t — a)/(1 = 1)1 = o))
—22r)H a/(1 — q)]{exp {— aN/2(1 — a)}, a<t<l
We see that
limeo+ go(t) = —208( —Na/(1 — a)]}),
limyag- go(2) = 2(27) Ha/(1 — a)]t exp { —aN?/2(1 — a)}.

Let « be fixed, a € (0, ). If we require P(4;) = 1 — «, then it follows from
(4.6)

TABLE 1 .
Table of the kernel g2(t) for & = 0.05,a = 0.1

¢ &)

0.10 —0.294
1 - .109
13 - .023
15 .010
17 .025

.20 .034

.30 .039

40

60

80

00

.039
.039
.039

1. .039

(4.10) = [(1 — a)/a)fusta .

For o = 0.05 and @ = 0.1 we get A = 5.88. Table 1 con tains the values of g»(t)
for several fixed ¢ £ [0.1; 1].
ExampLE. Put

A
A

IIA
L L

¢(t) =1, 0 t
= -1, 1<t

-

Such a ¢-function corresponds to a double exponential distribution. Then
A [so(t)ga(t) dt = AlGa(3) — Go(0) — Go(1) + Ga(3)]
2AGy(3) = 2A [4,2(3) dP.

This expression depends of course on a. Defining H(a) = [, 2(%) dP we shall
study this function of a. Let us look for such a value a £ (0, 1) so that H(a)
should be minimal. Then with regard to Theorem 3.2 and Theorem 4.1

Pp(Ay) ~ ap + ;1A = ao + 2AH(a)
is (for sufficiently small A) minimal, i.e. the probability of exceeding the barrier
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As on [a, 1] is maximal. For § < ¢ < 1 according to (4.7) and (4.10) we obtain
H(a) = —Bl(1 — a)/a]' ®(—B), B = Wi,

i.e. H(a) is increasing on (3, 1).
For a € (0, %) we have from (4.8)

H(a) = —28(2r)7'[(1 — a)/a]* [ exp {— 37}
(411)  -(ly(1 = 20)' = B(1 ~ a)'la) dy
— (2m) P exp {—36%}a/(1 — a)I'[28(B[(1 — 2a)/al’) — 1].
We see that
limg.j+ H(a) = lim,.3- H(a) = —B3(—B).

TABLE 2
Table of the function H (a)
a H(a)
0.00 0.00000
.10 — .01948
.20 — .02922
.30 — .03813
.40 — .04622
.45 — .04904
.49 — .04950
.50 — .04900

By somewhat lengthy considerations it may be shown that
limg.o+ H(a) = 0.

For a = 0.05, H(a), 0 £ a = %, is tabulated (see Table 2). Let us find the
minimum of H(a). By quadratic interpolation and from (4.11) we find the
minimum —0.04965 in the point @ = 0.475.

5. Higher order coefficients. We derive the expression of [4& dP for a set of
functions {¢(¢)} with bounded variation.

Suppose that ¢ & Ly is a function with bounded variation. Then there exists a
sequence {¢,(t)} of step functions such that ¢, £ Ly’, ¢.(t) — ¢(t) everywhere;
and such that all ¢,(¢) are uniformly bounded and have uniformly bounded vari-
ations. From Lebesgue’s theorem we obtain that [ [p.(t) — o(t)]* dt — 0, ie.
@n — ¢ in quadratic mean.

Lemma 5.1. For any given natural numbersk = 1,r = 0,

Ele(t) « - 2(te)|" S Kin

holds, where z(t) is the Brounian bridge and Ky, is a constant not depending on the

choice of points ty, -+ - , & €[0, 1].
Proor. By immediate mathematical induction.
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For a fixed A ¢ @ let us define
Gltr, - te) = [az(t) -+ 2(t) dP.
Lemma 5.2. The function G(t , “e e, b) 1S continuous on
¢ = X0, 1],
Proor. Let t;,, 10, 1], t;,, —t;,1=1,2,---,k We drop the sub-index n. We
have
(G(ty, -+, 1) — G(t1’7 cen, tk/)l
< Ele(t) -+ 2(te) — 2(t') -+ 2(t)]
= B X iae(t’) - atia)le(ts) — 2(t)e(tinn) -+ 2(t)]
< DELB[e(t) — 2t Kial! =0

(the process z(t) is continuous in the mean).

We denote by x4(t) the characteristic function of a set A < [0, 1].

Lemma 5.3. Let [a:, bs] < [0, 1], put ¢i(t) = Xpa(t), 2 =1,2,--- &k — s.
Letdy, -+ ,dse[0, 1]. Then

(-1 fck_s G(ty, -+ s, diy oy ds) dea(E) « + don—s(tr—s)
= [a2(dr) -+ 2(d)le(by) — 2(an)] -+ [e(bems) — 2(ars)] dP.

Proor. For s = k the assertion holds. The rest follows by induction from s to
s — 1.

THuEOREM 5.1. Let ¢ ¢ Ly’ be a function with bounded variation. Then for A ¢ @
the following relation holds:

(5.1) [alfse(®)de(®) dP = (=1 [o,G(tr, -, @) de(t) -+ de(t).

Proor. When ¢(¢) is a step function, the theorem obviously holds. In the
general case we take a uniformly bounded sequence {¢.(¢)} of step functions such
that ¢, € L’ and ¢,(f) — o(t) everywhere. Denote

£ = [ooa(t) de(t), &= [s0(t) da(t),
o’ = [§lea(t)] di, o = [ole(t)] dt.

We know that £, has N(0, o,°) and £ has N(0, ¢°). For any odd number n let
nll = n(n — 2) --- 3.1. Let us note that ¢, < R, where R is a constant. We ob-

tain
[[a&ldP — [4¢ dP|
< B’ — ¢
=B X iat T — )
© = DRLIE |5 — & By
< halfile(t) — en()f defl(45 — 5)1(4k — 40 — DUR P — 0
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for n — o, i.e.
(5.2) Ja U5 ou(t) de(0)F dP — [4[[30(2) da(t)]" dP.
The relation .
[eoGltr, -+, &) den(ty) + -+ dea(ts) = [ Gltr, -+ -, &) do(tr) -+ - de(ti)

is well-known (in the one-dimensional case it is Helly’s second theorem). The proof
is complete.

From Theorem 5.1 there follows

TuroreM 5.1, Let ¢ ¢ Ly be absolutely continuous. Then

[alfbo(t) de(®)F dP = (=1)F [o, G(t, -+, t)@'(t) -+ @ (t) dtr -+ dbi.
ReMark 5.1. Heuristically, the idea of proof of Theorem 5.1 is as follows:
Integrating by parts, we get
(5 (t) de(t)] = [— [G2(t) do(D)]"
= (=1)* far2(t) -« 2(t) de(tr) - -+ de(te).
Now integration over A with respect to P and the interchange of both integrals
on the right side gives (5.1).
ReMARK 5.2. In the proof of Theorem 5.1 we have proved this more general

assertion: Let {¢n(t)}, ¢n € L', be a sequence of functions such that {¢,} con-
verges in quadratic mean to the function ¢ ¢ L. Denote

£ = [ooa(t) de(t), &= [s0(t) da(t).
Then for any A & @ and any natural number & the relation
(5.3) [185dP — [, & dP

holds. Actually, the proof of (5.2) holds for (5.3), too.

Lemma 5.4. Let ¢ £ Ly’ be monotone on the intervals (0, €], [L — ¢, 1) for some
ee (0, 1). Let [a,, bo], n = 1,2, -+ -, be intervals in (0, 1) such that an — 0",
b, — 1. Let

<Pn* (t) = ‘P(an); te [07 (l"),
= o(t), telan, bal,
= ‘P(bn); te(bru 1]

and oa(t) = 0.*(t) — [s0a"(t) dt. Then oy € Ly and ¢, — ¢ in quadratic mean.

Proor. The reader may prove for himself that @n* — ¢ in quadratic mean. As
| Son (8) dt — ﬁ o(t) dt = 0, Lemma 5.4 obviously holds.

TraEoREM 5.2. Let ¢ € Ly” be monotone on (0, €] and [L — ¢, 1), ee (0, 1). Let
o(t) have bounded variation on every interval [a, b] < (0, 1). As in Lemma 5.4 we

define the sequence {@n(t)} with b, = 1 — a,. Then for A ¢ @ and k natural the
* limat
liMnsw (—1)* [0, Gty , -+« , ) dea(tr) - -+ den(tr)
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exists and is equal to [ 4 [[5 o(t) dz(¢)]* dP. This limit can be written as
(=1 [ Gty -+ 5 ) de(ta) +++ de(tr).

Proor. The existence of the limit and its equality to [ [f% o(t) de(t)]* dP
follows from Theorem 5.1 and Remark 5.2.

TaroreM 5.2". Suppose that ¢(t) is absolutely continuous on every interval [a, b],
0 < a < b < 1. Then under the assumptions of Theorem 5.2

(54) [alfs0(t) de(t)] aP
= (=)} [, G(tr, =+, &) (8) -+ ¢ (t) dby - dity
where the integral on the right side is taken in the sense
limegr 570 [S0G(t, oo, )6/ (0) + o () diy -+ dlt
Proor. We see that
(1) fe, G(tr, +++ 5 1) dea(tr) + -+ deon(th)
= (=DF [ [P G, e ) (8) e () dly e d

For n — o the left side converges to [ 4 [[3 ¢(t) dz(¢)]° dP, the right side to the
integral '

(=1)F fbeee [5G, o+, 1)@ (8) -+ & () dby -+ dti .

ReMARK 5.3. It may be proved that the integral on the right side of (54)
exists. But the proof does no contain any new ideas.

For example we compute G(s, t) for Aq. The probability P(y, z) that the
Brownian bridge does not exceed the barrier a + br on [0, 1] under the conditions
2(s) =y, 2(t) =2,0<s<t<1is

P(y,2) = [l — exp {—(2a/s)(a + bs — y)}]
1 — exp {—(2(a 4+ b)/(1 — §))(a + bt — 2)}]
‘1 — exp{—(2/(t — 8))(a + bs — y)(a + bt — 2)}]

fory < @ + bs, 2z < a + bt and P(y, 2) = 0 otherwise. The density of y = 2(s)
and z = 2(¢) is

f(y,2) = {2als(1 — )t — &)}
cexp { —3[(1 — ¢) — 2yes(1 — t) + 2"s(1 — 8)]/s(1 — £)(t — 8)}.
We have, for s < ¢,
G(s, t) = [T [5 yeP(y, 2)f(y, 2) dy de.
The symmetry gives G(s, t) = G(t, s). For s = ¢ we find as in Section 4
. G4, t) = [Z"y"(y) dy,

where h(y) is defined in Section 4.
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6. One special case of ¢(¢). We shall choose a special case of the function ¢(t)
to compare our approximations with the true value of the probability of exceeding
a given barrier.

Consider the Brownian bridge with the mean value

(6.1) AY(E) = At for 0Lt
=A(l—1t) for £ ¢

fIA
.

)

1.

IIA

('This corresponds to a double exponential distribution.) We are looking for the
probability of the event that this process does not exceed the constant barrier
a > 0 on [0, 1]. It is equal to the probability that the Brownian bridge with
vanishing mean value does not exceed on [0, 1] the barrier a — Ay¥(%).

Consider the conditional Brownian bridge with z(%) = y. This conditional
process does not exceed, on [0, 1], the barrier of @ — At with probability

P*(A;y) =1 —exp{—4a(a — 2A — )}, if y < a — 1A,

|

=0, if y=za-— 34

and on [%, 1] the barrier of ¢ — A + At with probability
Py*(A;y) = 1 —exp{—4a(a — 3A —y)}, if y < a — 34
= 0, if y=a—3A

The density of y = 2(%) is
Wy) = 2(2r) 7t ™",

Hence, the process z(t) does not exceed the barrier ¢ — Ay(t) on [0, 1] with
probability

R(A) = [23% Py*(8; 9)P"(4; y)A(y) dy.
Evaluating this integral we get
(6.2) R(A) = ®(2a — A) — 2exp {2a(A — a)}®(—A)

+ exp {4aA}P(—2a — A).
Clearly, 2(t) exceeds the barrier a — Ay(t) with probability
(6.3) Q(A) = 1 — R(A).
Let us return to the general case of ¢(¢). Consider the probability Q(A) that
2(t) exceeds the barrier a — AY(¢); put R(A) = 1 — Q(A).
According to Theorem 3.1 we have

(6.4) R(A) = Xioc,  Q(A) = 2iodA’,
where

do=1—c¢, di= —¢c; for 1=1,2,.-..
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The series in (6.4) are absolutely convergent. This implies
Q(O) = do, Q(k)(O) = k!dk , k = 1, 2, cee

Let the values dy and d; be known. Choose coefficients po and p; in such a way
that the functions ®(po + p1A) dnd Q(A) have the same values at the point
A = 0 and the same values of their first derivatives at A = 0. This leads to the
following equations:

®(po) = do, p(2m) R = g,

For the event A, do is equal to the probability that the Brownian bridge with
vanishing mean value exceeds the barrier a > 0. We know that this probability
is equal to ¢ **", For ¢(t) given in (6.1) we get

d = —[Te()q(t) dt = —2Gi(}).
Formula (4:2) gives
dy = 2al[dy — 2®( —2a)].

Table 3 contains for dy = 0.05, do = 0.01 and do = 0.001 the values of a, dy , po
and p; .
Q(A) and &(po + p1A) are compared in Table 4. If we know do , dy, dz, we may

TABLE 3
do 0.05 0.01 0.001
d; 0.08723 0.02305 0.00297
2d; 0.12741 0.04781 0.00824
po —1.645 —2.326 —3.090
o1 0.84594 0.86407 0.88084
P2 0.02924 0.02788 0.02419
a 1.223873 1.517427 1.858461
TABLE 4
a = 0.05 a = 0,01 a = 0.001

oW TR TP 0@ aGet e TRTEL 0w s+ e Pptal

0.050 0.050 0.050 0.010 0.010 0.010 0.001 0.001 0.001
0.112  0.111 0.112 0.030 0.029 0.030 0.005 0.004 0.004
0.220 0.212 0.221 0.075 0.072 0.076 0.015 0.014 0.014
0.373 0.353 0.378 0.163 0.152 0.167 0.046 0.038 0.043
0.554 0.519 0.565 0.302 0.275 0.313 0.105 0.092 0.109
0.726  0.681  0.743 0.481 0.434 0.503 0.217 0.187 0.231
0.858 0.814 0.876 0.664 0.605 0.698 0.380 0.327 0.409
0.938 0.906 0.953 0.817 0.758 0.851 0.569 0.497 0.614
0.978 0.959 0.986 0.916 0.871 0.943 0.744 0.668 0.794
0.995 0.985 0.997 0.969 0.941 0.983 0.872 0.809 0.914
0.999 0.995 1.000 0.991 0.977 0.996 0.949  0.905 0.973

CCTOUCTO IO LTO Lt ©
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choose the coefficients po, p1, p2 such that the functions @Q(A) and
®(po + pA + poA”) have the same values at A = 0 and the first two derivatives
at A = 0 are equal. Thus we obtain the following equations:

o) =doy, p(2m) Rt =dy, . 2p9(2m) R — popt(2m) HeTIN = 24,
First of all we shall compute (as in Section 4)
a = [4,£dP = [4 [[s0(2) de(O)] dP = 4 [4, [2(3)] dP

=1— ¢ — 4d’™ + 16a°®(—2a).
We know (see Section 3) that ¢o = @, 61 = a1, ¢z = %(az — ae0”). In our case
o® = 1. Then

2y = =20 =00’ —@z=co—a=1—dy— a.
Numerical results are in Table 3 and Table 4.

7. Approximations based on the generalized Neyman-Pearson lemma.
Lemma 7.1 (Generalized Neyman-Pearson lemma.) Let fy, «« + , fmt be real-
valued functions defined on a Euclidean space and integrable with respect to u, and

suppose that for given constants r1, -+ , T there exists a critical function ¢ satis-
fying
(7.1) [ efidu = ri, i=1,---,m.

Let @ be the class of critical functions ¢ for which (7.1) holds.
I. Among all members of @ there exists one that maximizes

f Cfmir dpa.
II. A sufficient condition for a member of C to maximize
S efmia du
18 the existence of constants ky, « -+ , kn such that

c(x) =1 when fpu(z) > Zﬁqkifi(x),
c(x) =0 when fua(z) < 2Takifi(z).

Proor. See [8].
Let £ be the random variables introduced in Theorem 2.1. Consider sup.q [ 4 dPa

under conditions

(7.2) [4£dP = r;, i=0,1,---, k.
Denote by D the class of critical functions such that for any ¢ ¢ D

(7.3) [t dP = r,, i=0,1,--,k
holds.

“Obviously under (7.2)
SUPace [4dPs < supeep [ ¢dPs,  infaee [4dPa 2 infeq [ ¢dPa.
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But (7.3) is equivalent to
(7.4) (2m)ie)™ [2, c*(x)a’ exp {—27/26°} dz =1, ©=0,---,k,

where ¢*(z) = Elc(w) | & = ], as £ is a sufficient statistic (see Theorem 2.1).
Let us look for a critical function ¢*(x) such that

(7.5) ((2m)¥0) ™ [2, c*(x) exp { —3(x/c — A0)*} dz

is maximal under (7.4).
(A) k = 0. Using Lemma 7.1 we get that

) =1 if 2> e,
=0 if z<e,
where ¢, is a constant. Formula (7.4) gives ¢y = ous—, . Hence
Pa(A) £ ((20)0)™ [ourro exp { —3(z/0 — Ac)?} dx
= ®(Ac — U1—r,) = Q).

If we are looking for a critical function ¢ such that [ &fmi1 du is minimal under
(7.1), it suffices to substitute —fmi1 for fmyr in Lemma 7.1, i.e. to choose a ¢
which maximizes —f &fmi1 du. Hence, the lower bound Q(A) may be found in the

same manner as @(A) and we obtain
Q(A) = ®(ur, — Ao).
(B) k=1.
c*(z) =1, if zeB,
B, = {z:exp {—3A%" + Az} > ko + Fu},
ko, k1 are unknown constants.
As we suppose A > 0, we see that B, has the form of
By = (—w,b)u(by, ®), —o =b=b = ».
Our conditions (7.4) give the following equations:
(7.6) ®(b’/s) — ®(by/o) = 1 — 10,
exp { —bs'/20"} — exp {—b’/26"} = (ry/o)(2m).
If A = {supe<i<a[2(¢) —a] > 0},a > 0,ie. 4 = Ay, then
ro= [4dP =1 — [4dP = do,
rn=[16dP = [otdP — [4,£dP = —a1 = dy.
Further
) = [48dP = [ofdP — [, £dP = o’ — as.

In the example given in Section 6 we have o = 1 and if dy = 0.05, then d; =
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0.087226. From (7.6) we get by = —2.707, b, = 1.679. We shall denote the upper
bound (7.5) as Q'(A). (See Table 5.)
As for the lower bound QI(A) we obtain ¢(z) = 1 on (B, B2), where 8, and

B» are solutions of equations: i
(7.7) ¥(Bs/o) — B(Br/o) = 1o,
—exp {—B5/20")} + exp {—B1'/20"} = (n/o)(2m).
Thus we have
Qu(a) = ((2m)%0)™ [ exp (—}(a/o — A0)*} da.

In our example 8; = 1.494, 8; = 2.107.
(C) k = 2. Asin the previous cases c*(z) = 1,ifx e By,

B, = {x: exp { —3A%" + Az} > Ko + k. + k),
ie. By = (b, b)) u (bs, ©), b < by = bs.
Our conditions (7.4) lead to
1 — ®(bs/o) + ®(bo/o) — ®(bi/o) = 10,
exp { —bi’/20°} — exp {—b.2/26" + exp {—bs"/20"} = (r/o)(2m)},
1 — ®(befo) + B(bo/7) — &(by/o) + ((2m)')™
-[by exp { —b1*/20"} — baexp { —b5%/26% + by exp { —bs/20°}] = 12/,

In our example do = 0.05, r2 = 0.17741, b, = 0.868, by = 0.939, by = 1.864.
Denote this upper bound as @°(A). As for the lower bound Qz (A) we have

&x) = 1on (—, 1) U (B, Bs), B = B2 = Bs. The system of equations for
By, Bz, Bs is as follows:

®(B1/c) — ®(Be/c) + B(Bs/0) = 10,
—exp {—Bi/20%) + exp {—B:/20"} — exp {—B'/20%} = (ni/o)(2r),
8(Byfo) — B(Bo/o) + ®(Bs/a) — ((2m)'0)™
[8s exp { —Bi/26"} — Ba exp {—B:/20°} + Bs exp {—Bi'/20"}] = ro/o’.

TABLE 5
A Q) Q(a) Q@) Q) Q'@ Q)
0.050 0.050 0.050 0.050 0.050 0.050
0.112 0.126 0.120 0.112 0.106 0.109
0.220 0.259 0.249 0.222 0.177 0.196
0.373 0.442 0.429 0.382 0.230 0.262
0.554 0.639 0.626 0.570 0.236 0.284

0.726 0.804 0.794 0.746 decreasing decreasing
0.858 0.912 0.907 0.875
0.938 0.968 0.966 0.950
0.978 0.991 0.990 0.984
0.995 0.998 0.998 0.996
0.999 1.000 1.000 0.999

N

QUIOUTO TTO Lt © -t ©
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I_n our case By = —3.135, B, = 1.551, B3 = 2.280. In Table 5 we see that the
Q’(A) may serve as an approximation to Q(A) as well as ®(py + pA + paA?).
In addition we know that Q*(A) is an upper bound for Q(A).

8. Acknowledgment. The author is grateful to Professor Jaroslav Héjek for
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