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1. Introduction and summary. Let y1, ¥, - - - be a sequence of random vari-
ables with known joint distribution. We are allowed to observe the y’s sequen-
tially. We must terminate the observation process at some point, and if we stop
at time n, we receive a reward which is a known function of ¥, -+, ¥, . Our
decision to stop at time n is allowed to depend on the observations we have pre-
viously made but may not depend on the future, which is still unknown. We are
interested in finding stopping rules which maximize our expected terminal re-
ward.

More formally, let (. , Fn)1<a be a stochastic sequence on a probability space
(W, F, P), ie., let (F,) be an increasing sequence of sub-sigma-algebras of ¥
and for each n = 1 let z, be a random variable (rv) measurable 7, . In terms of
the intuitive background of the preceding paragraph, F, = B(y1, -+, y.); and
although it is convenient to keep this interpretation in mind, our general results
do not depend on it. A stopping rule or stopping variable (sv) is a rv ¢ with values
1,2,---, 4+, such that P({ < ) = land foreachn = 1 (¢t = n) e F, . x;is
(up to an equivalence) a rv, and if v = sup Ez,, where the supremum is taken
over all sv’s such that Fz, exists, we are interested in answering the following
questions:

(a) What is v?

(b) Is there an optimal sv, i.e., one for which Ex, exists and equals v?

(e) If there exists an optimal sv, what is it?

The problem stated above is not sufficiently well formulated, as the class of
sv’s ¢ such that Ez; exists may be vacuous. To avoid this and other uninteresting
complications we shall add the assumption that E |z.| < «,n = 1.

We recall that the essential supremum (e. sup) of a family of rv’s {q;, t & T}
is a rv Q such that (1) Q = ¢, as. te T, and (2) if @ is any rv such that
Q = qias., teT,then Q = Q a.s. It is known that the essential supremum of a
family of rv’s always exists and can be assumed to be the supremum of some
countable subfamily (e.g., [12], p. 44). '

Let C, be the class of all sv’s ¢ such that P(¢ = n) = 1 and Ex,” < . Let
fau = €. SUPsc, E(zs | Fr), va = supe, BEz; . It is known (Theorem 2 of [3]) that
if v < o and an optimal rule exists, then s = firstn = 1 such that z, = f, is an
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optimal rule. For this and various other reasons which will become apparent,
e.g., Theorem 1 below, it is desirable to have a constructive method for computing
the f, . The technique of backward induction and taking limits, originating with
[1] and deseribed in Theorem 2 below, achieves the desired result under certain
conditions (see Theorem 2 of [4] for a general statement of these conditions).
The central theorem of Section 2 provides completely general methods for com-
puting the f, . Although it seems unlikely that one would ever find it desirable to
carry out these computations, there are, nevertheless, several interesting ap-
plications of the results to the theory of optimal stopping rules, and it is these
applications which concern us throughout the remainder of this paper. In the
course of these investigations we find it convenient to introduce the notion of an
extended sv, i.e., we drop the requirement that ¢ be finite with probability one
while defining z., to be lim sup z, . We show that f, = £, , where, relative to the
class of extended sv’s, f, is defined analogously to f, . We utilize extended sv’s as a
technical device within the framework of the usual theory and give examples
which illustrate the inherent value of these sv’s.

In Section 3 we define the Markov case. We show that by paying proper at-
tention to the Markovian structure of many stopping rule problems we are able to
simplify somewhat the general theory and to give relatively simple descriptions
of optimal rules when they exist. We also define randomszed sv’s and show that
randomization does not increase v. We then apply this result to prove the mon-
otonocity and continuity of ¥ = v(p) in the case where z, is the proportion of
heads in n independent tosses of a coin having probability p of heads on each
toss.

2. A basic theorem and applications. The following basic results [3] will be
used frequently and are assumed to be known.
TrEOREM 1. For each n

(1) fo = max (@, E(farr| Fn)), as,
(2) Va = Ef.
TaeOREM 2. Define for N = 1,2, - - -
W o=ay, [ = max (2., E(fan|Fa)), (1=sn =N —1);

then if E(sup 2, ) < o, limyf," = fa a.s.

For the most part statements are assumed to hold up to an event of probability
0, and where no confusion can result we make no mention of this fact. Following
[3] we shall denote by A+ the hypothesis that E(sup z,7) < .

Lemma 1. Under A+, let (gn, Fo)i<n be a stochastic sequence satisfying for

n=12---.

(a) fo < gu < E(u|F,), for some integrable u,

(b) gn max (xn,E(gn+llFﬂ))1

(¢) limsup g, = limsup z, ;
then gn = faln = 1,2, ---).
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Proor. It suffices to show By, = Ef, .
If0 < e < Eg, — Ef,,lett = first k = nsuch that z; = gy — e.

Egn = ft=n gn + ft>n g1 = *°° = fngtgzv g: + ft>NgN .
From (a) we see that Fatou’s lemxma applies to I >mgw and thus from (c)
(3) —w < Eg, £ ft<w g: + ft=,w (lim sup ).

Letting 2, = lim sup #y , it follows that P(f = o, 2, = —o) = 0. But by
(¢) P(t = 0,20 > —) = 0. Hence t < « a.s. and it then follows from (3)
that

Efn+e<EgnéEgzéE'xt+e

contradicting Theorem 1. .

For the following we shall relax somewhat the definition of a stopping rule
by no longer requiring that our rule stop with probability one, and we agree that
if we go on forever, our reward is the upper limit of the rewards we might have
received by stopping at some finite time n. More formally, let £, = lim sup z, ,
and let C be the class of all rv’s ¢ assuming values in {1, - -+, 4} such that
(¢t = k) e Fr and BEx,” < «. Let f, = e.sups, E(x:|F.),1 £ n < », where
C, = {max (¢t,n):teC}, and let fo, = %o .

We shall use the following notation throughout the rest of this section. Let
—0 2a<0<b= +w,

z,(a,b) =b if x,>0b
=z, if b=2,=0a

a if z, <ay
Za(b) = @a(—,b);
za(a) = x4(a, + ).

Let fa(a, b)(f." (b), ete.) denote the f,’s (f,"’s, ete.) associated with the sequence
(xn(a, b); Fn)lgn((ivn(b), Fn)1§n§1v 5 etc.)

Lemma 2. Assume A-+, and let¢ N be a positive integer. Define fy" =
E(supkzx @x | Fx),

an=ma'X(xn:E(f~¢t’+1|Fn)), (I1=ns=N-1),
f~n = ﬁmN—»ooan-
Then (8) fo = Ju = fa, (b) limgs_w fu(a) = fa.

Proor. (a) It can be shown by induction that f,” = f,"* = - .- and hence that
the limit defining f, exists.
, Tt is almost obvious that f, = f, = fn ;forift e C,, ¢ = max (¢, n + 1) & Coy1,
and from
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E(x:|Fn) = Iucay@n + IasnyB(we | F,)
= I(t=n)xn + I(t>n)E(E(xt' IFn+l)l Fn)

= Ta=mn + Tsn)E(fosr | Fa)
< max (o, E(fasr | Fa))

it follows that

(4) ] fn =< max (xn;E(anan))

Obviously f. < f.", and by backwards induction, using (4) and the relations
defining f,", we have f, < f,", N = n, and hence f, < ..

We also see by the monotone convergence theorem for conditional expecta-
tions that f, = max (2., E(fays | Fr)); and since f, = " £ E(supiezm @ | Fa),
(m = n), we have lim sup,f» < supism 2w — lim sup, z, as m — « by a con-
vergence theorem for conditional expectations. Hence lim sup f, = lim sup z,,
and we complete the proof of (a) by appealing to Lemma 1. ,

(b) fu(a) is a decreasing function of a; let f,* = limgs—o fu(@). Then f,* = £,
Since fu(a) = max (2.(a), E(fru(a)|F.)), we have by the monotone con-
vergence theorem for conditional expectations f,* = max (., E(fass|Fa)).
By the proof of (a) we see that lim sup z,(a) = lim sup f.(a), all a. Hence
lim sup f,* < lim sup z.(a) = max (lim sup z,, @) | lim supz, asa@ | — .
Lemma 1 completes the proof.

The above lemma says, among other things, that if we relax the definition of a
stopping rule in the prescribed manner, then the f, are not increased provided
A+ is satisfied. That this result holds without such a restriction is the content
of the following:

LemMA 3. limy.e fo(b) = f., and consequently lims f,(b) = f,.

Proor. Clearly f,(b) is increasing as a function of b; let f,* = lim f,(b).
Thenf,* £ f.. IfteC,, 2. (b) =z, and Bz, < o imply that E(z,(b)| F,) =<
f2(b) = f.*. But by the monotone convergence theorem for conditional expecta-
tions,

E(zy(b) | Fa) T E(wi| Fa).

Hence
E(xtan) é fn*

and the lemma follows, as ¢ is arbitrary.

THEOREM 3. (8) fo = Jo = liMpe limy.wfy' (D),

(D) fo = liMpa ligs—o iMyaw fo (@, b).

Proor. (a) Lemmas 2(a) and 3;

(b) Theorem 2, Lemmas 2(b) and 3.

COROLLARY. (a) v, = lim, limy E7,Y(D),
:(b) v, = lim, lim, limy Ef,"(a, b).

A different proof of part (b) of the above theorem was given by the author
in [3].
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We shall spend the remainder of this section and the next exploring applica-
tions of the above methods and results to various problems in the theory of
optimal stopping rules. We shall defer what seems to be the most important
single application, i.e., the Markov case, until Section 3.

Since the computations involvéd in the above theorem appear prohibitive, it
it is of some interest to know under what conditions various limits involved can
be interchanged, thus simplifying the problem. With the possible exception of
the limits on @ and b in part (b) it is easily seen that in general we cannot inter-
change limits. That this is also true in the case of a and b is seen by the following

ExamriLe 1. Let a1, a2, +-+, b1, by, --- be increasing sequences of non-
negative real numbers and W the space of sequences

wj = (a1, +*+, a;, —bjy1, —bjya, =+ +).
Let F be all subsets of W and P(w;) = 1/§ — 1/j + 1. For each n = 2 let z,(w;)
be the nth coordinate of w; and F,, = B(x., - -+, &,). It is easily seen that

P(z, = as) = 1/n =1 — P(z, = —by),
E(@n1 |20 = @n) = Gapn/(n + 1) — ban(1 — n/(n + 1)),
Ex, = an/n — bu(1 — 1/n).
Let ¢ = first & = 2 such that z; = —b; and ¢, = min (¢, n). It is easily seen that
the rules ¢, are the only ones which need be considered in searching for optimal

rules or in computing the value of the sequence (2., Fr)s<a. Elementary cal-
culations give
Bxi, = an/n,  Bay, = 2 jabi/i(j — 1).

Nowputa; = j(j — 1) = bj;thenE’x}",, =n—1-— 4. Thusv(a) = o,
alla > —w.But Ex,, = n — 1 — > %s1 = 0,0 = 0, and it is not true that
lim »(a) = v.

Various special cases of the above parameterized stochastic sequence are
quite useful in constructing counterexamples, and we shall have reason to refer
to it again on several occasions. I am indebted to H. E. Robbins for introducing
me to the above class of examples via his original construction of the particular
case which constitutes Example 3 later in this section.

DeriniTioN. Let

s = firstn = 1, suchthat z, = f,

(= o if 2z, <f, forall n).

Levma 4. Under A+ if t is any extended sv such thatt =< s, then E(f; | Fr) = fa
on (t = n) (a deeper analysis shows that equality holds, but we shall use only the

above inequality).
Proor. First observe that because of the hypothesis A+ there is no question

» about the existence of Ef;. In fact
Efr < 3% [ien B(sup @7 | Fa) + [1—wsup 2,7 = E(sup 2;7) < w.
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Then for 4 ¢ F,,

fA(tgn)fn = fA(t='n)fn + fA(t>n)fn+1 = = fA(ngth)ft + fA(t>N)fN-

By the proof of Lemma 2 we see that lim sup f, = lim sup #, = f... Thus letting
N — «, we have by Fatou’s lemma, -

fA(tgn)fn = fA(n§t<oo)ft + fA(t=oo) foo = fA(t;_n)ft-

TuEOREM 4. Under A+ s is optimal in C.

Proor. Since z, = f,, Lemma 4 implies that Ex, = v. Since Theorem 3(a)
shows that Er, < v, t ¢ C, the theorem follows.

CoroLrLARY. If A+ and limz, = — «, then s is optimal in C.

Proor. By the theorem s is optimal in C. Clearly then s cannot assume the
value + o (and hence collect a reward of — ) with positive probability.

The existence of an optimal rule under the conditions of the corollary was
first demonstrated by Snell [13], who extended an earlier result of Arrow, Black-
well, and Girshick [1]. Snell’s approach to the optimal stopping problem uses the
“minimal regular generalized supermartingale” where the f, sequence is used
above. The introduction of the f, sequence and its identification with Snell’s
process is due to Haggstrom [10] and Chow and Robbins [3].

Note that by making a straightforward generalization of Lemma 1 of [5]
we might prove the more general result that if Ex, exists and for n = 1,
E(z,|F,) > z,0n (s > n), then Ex, = v. We could then show much in the fashion
of Theorem 4 that under A+ s has the required property.

Contrasted to the above discussion in which the class ¢ plays the role of a
technical device for use in the usual optimal stopping theory, there do exist
quite natural examples of problems where one is concerned with deciding whether
or not he should continue sampling indefinitely. The following example resembles
a problem of Bellman [2], for which a similar result holds.

ExampLE 2. Suppose that conditional on p, #1, ¥z, -+, are iid such that
Pliyp=1)=p=1—P(y = —1),thatz, = D orad™y;, forsome0 < d < 1,
and that an @ prior: distribution of p is known. The above theorem then states
that s is an optimal rule. Suppose for simplicity that the a prior: distribution is a
member of the beta family with equal parameters r. Then using well known
properties of the beta family relating a prior: and a posteriors distributions in
the above problem, denoting by v(r, ¢) the value of the reward sequence as a
function of the parameters r, g, it is plausible as a result of heuristic invariance
arguments made precise by Theorem 6 that if S, = w* + -+ + ya', then
s = firstn = 1such that o(r + S,, 7 +n — 8x) = 0. Now Epzy = 2p — 1
and hence (7, ¢) = (r — ¢)/(r + @), where the inequality follows from con-
sidering the rule £ = 1 and the fact that the expectations of a B(r, ¢) rv is
r/(r 4+ ¢). Thus for s to be infinite, it suffices that S, > n/2,n = 1, which occurs
with positive probability when p > 3.

‘The following examples show that the condition A+ cannot be removed from
Theorem 4 or its Corollary 1.
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ExampLE 3. With the model of Example 1 put @, = n + 1, b, = 0; we have
E’(x,H.llx,. = an) > a,

and z, is eventually 0. Hence s = first n = 2 such that z, = 0. s belongs to C;
and P(z, = 0) = 1. Clearly s is not optlmal

ExampLe 4. This time let @, = n° — 1, b, = n(n — 1). Then z, — — and
in fact Er, — — «, but Ex;,, = 1 — 1/n and no optimal rule exists.

For our next example we introduce some additional notation. The optimal
stopping problem associated with ( —z, , F,) has an obvious interpretation as a
problem in which z, represents the ‘“loss’” we incur if we stop at time n, and we
are trying to choose a sv t so as to minimize our expected loss. Hence we define
c,*, v.* = infe,s Ex,, fa¥ = e. infyc E(x, | F,), ete. analogously to the usual
Cny Un, fu. Suppose now that (#n, Fn)izn is a sub-martingale such that
sup Elz,| < «. It is known [8] that &, — Zw, ElZ.| < «, and Elz,| < « for
every sv ¢. It seems reasonable that we should also have v, = Ez., 0¥ = Ez,.
A precise statement, motivated by a result of Chow’s [7] (note that our methods
also suffice to prove Chow’s result), is

ExampLE 5. Let (., Fa)i1<. be a sub-martingale such that sup Elz,| < .
The following are equivalent:

(i) (2,") is uniformly integrable.

(ii) v.* = Ez,.

(iii) v, = Exw.

Proor.

(i) = (ii): See Doob [8], pg. 302.

(ii) = (iii): (ii) = fo* = 2, = (from Theorem 3) z, = E(zx|F.) =
Ex, £ Ex,,allt = v, = Ezo.

(iii) = (i): From Theorem 3 f» = E(%x | F,). Thus z, = E(%-|F,) and it
follows that (z,") is uniformly integrable.

3. Markov case. In a large class of optimal stopping rule problems we can in
our search for optimal and near optimal rules confine our attention to a sub-
class of C and in so doing we can frequently give a relatively simple description
of optimal rules when they exist. In particular we are interested in finding con-
ditions under which the rule s, which is certainly a candidate for optimality,
has a relatively simple structure. Consequently we shall in this section define
the Markov case and show that as suggested by intuition, which says that the
future behavior of a Markov process depends on the past only through the pres-
ent, we can in the Markov case restrict consideration to rules “without memory.”

DeriNiTION. In an optimal stopping rule problem as defined in Section 1,
if ,, can be expressed as a Baire function, say u, , of 2, , where 2, is an F',-measur-
able rv taking values in Z (assumed for convenience to be a complete separable
metric space) such that for any Borel set B

P(2s1 € B|Fo) = P(2ap16 B | 2a),
then we say that we are in the Markov case. If in addition the conditional prob-
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ability on the right is invariant under changes in the subscript n, we say that we
are in the stationary Markov case. We say we are in the independent case if the
2, are independent.

Lemma 5. In the Markov case f, is z,-measurable (i.e., s measurable with respect
to the a-algebra generated by z,). :

(See [3], Corollary 2 to Theorem 9.)

Proor. By Theorem 3

fu = limy lim, limy £," (@, ).

It is easy to see using the Markov property and backwards induction that
f."(a, b) is z,-measurable and the lemma follows.

DeriniTioN. In the Markov case we shall designate by D, that subset of C,
having the property that if t e D,, k = n, there exists a subset B(k, t) of Z
such that (t = k) = (t = k, zx ¢ B). .

TuaeoreM 5. In the Markov case

fn = e. supsn, B(x:|2.), v, = Supp, Bz .

Proor. Suppose initially that the z, are truncated above at b > 0. We are
still in the Markov case. If ¢ > 0, let &, = first k = n such that z,(b) = fu(b) — e
By the argument of Lemmas 1 and 2, & & C,, and E(z(b) | Fa) = fu(b) — e
Lemma 5, moreover, shows that & is in fact in D, and thus E(z¢, | 2.) = fu(b) — e
Thus letting b T « and applying Lemma 3

e. SUpi.p, B(x¢|2s) Z sups E(ze, |2,) = limsfu(b) — € = fo — ¢,
supp, BE(x:) = supy E(zy,) = limy Efy(b) — € = vp — e

As e is arbitrary, the theorem follows.

Observe that in the case of independence, the fundamental recursion relation
(1) becomes f, = max (&, , ¥41), Or taking expectations v, = E(max (Zn , Vay1)).
Hence in this case s = first » = 1 such that z, = vp4a.

For the following theorem we are interested in the stationary case. By the
above result there is no loss in generality in assuming that the basic “observed”
sequence is in fact the z,, n = 1. We can and do assume that there exists a
transition probability which together with an initial distribution determines the
probability structure of the process. Conditional expectations are to be regarded
as integrals with respect to appropriate transition probabilities and to avoid con-
fusion we shall distinguish carefully between relations holding everywhere and
those holding almost everywhere.

To be specific then, we may assume (by means of an obvious transformation if
necessary) that W = Z X Z X -+ ,Fo = B(z1, +-- ,2,), F = B(z1,22, -+ *+),
where the z,’s are the coordinate variables. Denote by P, the measure on F
governing the behavior of the Markov sequence 2z, 23, --- starting from g,
and forn = 0, 1, 2, --- let V,(z) be the value of the stochastic sequence
(Unt(2k), Fi)izi on (W, F, P.).

TaEOREM 6. In the stationary Markov case, there is a version of (f.) such that
Va(2) = E(fanl2n = 2),2¢Z,n = 1.



OPTIMAL STOPPING RULES 1635

Proor. The version of (f,) in which we are interested is the triple limit of
Theorem 3. We shall write f,(2) (f,"(2), etc.) to denote the value at z of that
function on Z which equals f,(w) (f,¥(w), ete.) when z,(w) = z. Then

(5) fa(2) = limg lim, limy £,"(a, b)(2), zelZ,
where for each z ¢ Z |
(6) fu'(2) = un(2),

fa"(2) = max (un(2), E(fasi(zan) |20 = 2)), n=N-—-1,--,1,

and as usual f," (a, b)( -) is defined analogously with respect to the u,’s truncated
above at b and below at a. Then if V,,"(2) is defined analogously to V,(z) rela-
tive to the class of rules which take at most N — n observations, it suffices by
Theorem 3 and its corollary to show forn = 1, 2, «--

(7 Va'(2) = E(fin(znn) |2a = 2),

N=n+4+1,n+2, ---.Itis easy to see, however, by backward induction using
(6), that for N = 2,3, -+, (7) holdsforn = N — 1, ---, 1.

CoroLLARY 1. Under the assumptions of Theorem 6, suppose u, = u — n
and B = {z:u(z) = Vo(2)}. Then

(s=mn) = (B, ,2.12B,2.¢B).

Proor. Obviously V,(z) = Vi(z) — n.

CoROLLARY 2. A Bayes solution to the problem of testing a simple hypothesis
against a stmple alternative with constant cost and independent, identically distrib-
uted observations s a Wald sequential probability ratio test.

Proor. The reduction of the problem of this corollary to a stopping rule prob-
lem having properties described in the assumptions of Corollary 1 is known
(see, e.g., [4]). Corollary 1 of Theorem 4 assures us that s is optimal and Corollary
1 above tells us that s = first n = 0 such that z, ¢ B, where 2, is the a posterior:
probability of Hy, say. The well known convexity of Vo(-) (concavity when the
problem in stated in terms of ‘“loss’) then gives us the explicit representation of
B as [0, 2™ u [2", 1] for numbers 2,*, 2" ¢ [0, 1] (in this regard see [11]).

We shall now apply the above theorem to extend some known results (see
[4] or [5] and the references given there).

CoRrOLLARY 3. Let y, Y1, ¥, - - - be iid such that Ely| < o, and for somer = 1
let Fo=B(th, " y¥n)y Tn =max (Y1, -+, ¥Yn) — 0,0 =1,2---  Ifo < o,
then s s defined by

s = firstn suchthat max (Y1, **,Yn) = Cu,
where ¢, 18 the unique solution of
(8) Ely—c)' = (n+1)" -,

7 and s is optimal.
Proor. For convenience taker = 1;letz, = max (y1, --- , %), n =1,2,---.
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We are in the stationary Markov case and Vo(2) = Va(2) + n, (n = 1). Ob-
viously Vo(-) is convex. Moreover,

Vo(z) —2Z E(yy —2)" —1—> o as z— —w;
and if z = V,(z2), then for every ¢ eCand? = 2
0= Elmax (0,51 — 2, -**,ys — 2) — {]
> Elmax (0,4 — 2, -+, 9. —2') — ],

ie., 2 =UVy(2). It follows that there exists a constant ¢ < <« such that
{z:2 = Vo(2)} = [¢, ©), and from Corollary 1

s = first n such that 2z, = ¢
= o ifnosuch n exists.’
If P{y = ¢} > 0, it is easy to see that P{s < =} =1, Bzt < « and
v=Efi = [szn®s + [ion Va(2a)
[ognms + Vo'(c)P{s > n} — Ex, as n— .
Suppose then that P{y < ¢} = 1. From Lemma 8 of [3] and Theorem 6
Pz, = Vo(2z,) — 1,10} =1

and arguing as a,bovef-‘there exists a constant b such that P{y = b} > 0 and
{z:2 = Vo(z) — 1} = [b, ©).Since P{s = o} =1

v = Efn+l = f{zn<b} VO(Zn) + flVo(zn)<zn+l} VO(Z") - n
Vor(d) + Bzat +1 —n— — as n— o,

since as is easily verified Ez," = o(n). Hence v = — =, a contradiction. Thus s

is optimal and it is now easy to see that c satisifies (8).
The following example gives rigorous foundation to a result of Elfving [9].

ExamprE 6. Suppose that v1, y2, --- are iid non-negative rv’s with finite
expectation, and that N = N(o) is a Poisson process independent of the y»

with the time between events]denoted by

Ti = Ti-ly 7:=1,2,"',(TOEO).

IA

I\

Let r(-) be a real-valued non-increasing function defined on the non-negative
real numbers such that 7(0) = 1, 7(¢) = 0,0 > 0; and let

Fo =By, =, Yn@, T, *** 5 T8@)s oz 0.

We are interested in finding an optimal extended sv for (#., Fr,)1<» Where
Tn = Yu(tn),m = 1,2, -+, T = 0.

The above problem is in an obvious formal sense a problem with a discrete
time parameter; the usual theory applies, and as usual the backward induction
and passage to the limit are difficult to carry out explicitly. Under the general
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assumption
[or(e)do < o,

Elfving [9], by making use of the continuous time aspects of the problem, has
been able to derive a differential equation for the boundary of an optimal stopping
region. Using completely analytic techniques, he then proves an appropriate
existence and uniqueness theorem and calculates exact solutions in a number of
particular cases. Elfving’s derivation relies, however, on several additional
assumptions which it seems desirable to remove. To be precise he assumes:

(a) There is an optimal rule in the class of rules ¢ defined by piece-wise con-
tinuous functions y( - ), where a sv ¢ is said to be defined by a function y(-) if

t = firstn =1 suchthat y, = y(7.).

(b) If t* denotes the rule assumed to exist in (a), then E(zx | F,) = y(o)r(s)
on {rs+ > a}.

Retaining the assumption f8° r(¢) do < » we shall prove as an application of
our main theorems that s is optimal in € and is defined by a piece-wise continuous
funetion y(-). A proof of (b) will be included for completeness.

For ease of exposition we assume that r(¢) > 0 all ¢ > 0. If this is not the case
the same remarks apply to the problem restricted to the interval [0, T'), where
T = inf{o: r(c) = 0}.

We first observe that E(sup z,) < « and z, — 0 (and hence our convention
about z. agrees with Elfving’s). In fact an easy calculation shows that

B2 yr(1a)) = By [ 1(0) do,

which we have assumed to be finite. Theorem 4 implies that s is optimal in C.
Putting 2z, = (ya, 7») wWe see that we are in the stationary Markov case. More-
over, V.(2) = V,.((y, ¢)) = sup; E(ysr(ec + 7)) is a function of ¢ only, say
U(s), and thus by Theorem 6,

s = firstn = 1 such that y.r(7.) = U(7).

Let y(o) = U(s)/r(), (¢ 2 0).

To show that y(-) is piecewise continuous, it suffices to show that U(-) is
continuous. The continuity of U(-) follows from a generalization of Theorem
3(b).

TureoreMm 3. Let (2.(p), Fu)1 <n be a family of stochastic sequences depending
on an extended real parameter p assuming values in some closed (perhaps infinite)
interval [a, b]. Let po € [a, b] and assume that .(p) | Zu(po) as p 1 po,n =
1,2, ---.

(a) If there exists a p™ > po such that E(sup z, (p*)) < « and if

lim sup 2.(p) | lim sup z.(p0) as p | po,
Jthenfn(p) i fn<p0) as p l Po, N = 1: 2, Tt
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(b) If there exists @ px < po such that
fa(p) = e. supuec,wn B(xi| Fa), Px =P = Do,

then fu(p) T fa(po) asp T po.
Proor. The proof may be inferfed from that of Theorem 3(b). Note that an

analogous statement holds if #,(p) is monotonically decreasing in p. Similarly if
Do = a or py = b, the statement of the theorem must be modified accordingly.

In the problem under consideration, the parametric family of stochastic se-
quences is

(wn(0), Fr,.)lsn = (Yar(o + 7)), an)lgn ’ oz 0,

where z.(c) 1| @a(00) as ¢ 1| oo for any fixed oo > 0, since P{oo + 7. € set of
discontinuities of r(-)} = 0. The conditions of the above theorem are easily
checked, and it follows that U(s) = Efi(s) is continuous.

It remains to show that

E(ysr(r,) | Fs) = U(s) on {r, > o}.

From well-known properties of the exponentiai distribution it is easy to see that
the conditional joint distribution given F, of (Yww)+1, ™v@+1), (YN@+2) » TH@+2)s
- - - is the same as the unconditional joint distribution of (y1,0 4+ 71), (¥2,0 + 72),
-+ - . Letting

s(c) = first » = 1 such that y.,r(c + ) = U(c + ) (s(0) = s),

and observing that on {r, > o},
s = ﬁI’St k g 1 SUCh that yN+kT(TN+k) g U(TN+k),

we see that on {r, > ¢} the conditional distribution given F, of y,r(r;) is the
same as the unconditional distribution of ysr(e + 75 ). Remark (b) now fol-
lows from the fact that E(y.wr(c + 7s0))) = U(s).

CoMMENTS ON RaNDOoMIZATION. Theorem 5 while intuitively trivial, is proved
in the present development by relying on the rather complicated Theorem 3.
The most direct and presumably most obvious approach to Theorem 5 is via
randomized rules. For any possibly randomized rule which does not stop before

time n and which depends on 21, 22, - -+, we may define an “equivalent’ ran-
domizizd rule dgpending only on z, , Zs41, * + - by constructing a quasiz, « -+ , 2z,
say 21, * - ,2n-, using the known conditional joint distribution of 21, « -+, 2o
given z,, and then apply the original rule to &, o, 21, %, 21, o0 . TO

complete the discussion along these lines it is desirable to “recover” the original
non-randomized rules, which means proving that randomization does not in-
crease the value of the f, or what is sufficient that any randomized rule of the
above form is equivalent to a randomization on the space of non-randomized
stopping rules prior to experimentation.

 The fact that randomization does not increase v can also be inferred as a
corollary to Theorem 3. For our discussion of this result we restrict ourselves to
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the case where there exists a sequence of random variables 41, %2, - - - with known
joint distribution and F,, = B(y1, - - - , ¥a). We observe that although we always
work with a fixed underlying probability space (W, F, P), the particular space
is irrelevant provided that it is consistent with the specified joint distribution of
Y1, Y2, -+ . I G, Gy, --- is an increasing sequence of sub-sigma-algebras of F
such that

(a) Fn C G, and

(b) P(A|G,) = P(A|F,), Ae B(UiLF),
then we call any sv relative to the sequence (G.) a randomized rule relative to
(F,); and the class of randomized sv’s for the original stochastic sequence is
precisely the class of sv’s which can be obtained by considering such sequences
(G,), choosing when necessary a different underlying probability space (W, F, P)
to accommodate this additional structure. Observe that the intuitive method of
randomization whereby at stage n one performs an auxiliary random experiment
depending (measurably) on %1, - -, ¥» in order to decide whether to stop fits
easily into the above scheme. In fact in this case we would have Gn =
B(y1, -+ , Y and all auxiliary experiments preceding (and including) time n).

CoROLLARY (to Theorem 3). If ¢ is any randomized rule such that Ex. exusts,
then E.’I)z é .

Proor. Let (G,) be an increasing sequence of sigma-algebras satisfying (a)
and (b) such that ¢ is a sv relative to (G,). We denote by an asterisk (*) the
fa’s, va’s, ete., associated with (2 , Ga)1<a - It suffices to show »* = v; and hence
by Theorem 3 to show f." (@, b) = 12" (a, b). But this result follows easily from
backward induction and condition (b). !

Another reason for considering the introduction of randomized rules into the
theory involves the value «. If v = sup; Ex;; = <, where we can assume
Ez,, = 2°, then by using rule ¢; with probability 27,7 = 1,2, - - - , we presumably
have a randomized rule the expected return of which is infinite. In other words
we would like to prove the following theorem: If » = «, there exists a possibly
randomized optimal rule. That such a theorem is not true in general is shown by
the following

ExampLE 7. In the set up of Example 1, let

an = n’(n + 2), b, = 2n°(n — 1)
Then
E'xg”=n-|-2 T —|-oo

Butl = (n + 2)/(n’ +n — 2) = Ex,/Ex,, — 0.
Hence any mixture of the ¢, which formally gives D 2 PnBr, = © must in
fact define a rule the expected return of which does not exist.

The following is an application of the results and methods of the preceding
sections.
. ExampLE 8. Let 41, 42, -+~ beiid, Py = 1) = p =1 =Py =0), 2 =
(1 + -+ =+ Ya)/n. We shall show that v = v(p) is increasing and continuous in
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p. The essential step is to rephrase the problem so that instead of a fixed se-
quence of rv’s on a measurable space on which is defined a family of measures,
we have a family of sequences of rv’s on a fixed probability space. Let Y, Y2,

-+ be independent and uniform on (0, 1), G, = B(Y1, ---, Y,), z.(p) =
proportion of terms among Yy, ---, Y, which are <p.

It is easily seen that the increasing sequence Gy, Ga, --- of o-algebras has
propertles (a) and (b) relative to the sequence generated by the events (Y; = p),
1 =1, , N, which is the sequence involved in the problem as it was originally
formulated. It follows from the above corollary that v(p) is unchanged. Since
2,(-) is increasing in p, it follows that v( - ) is increasing. The continuity of v( - )
then follows from Theorem 3*.
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