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THE GEOMETRY OF AN r X ¢ CONTINGENCY TABLE!

By StepHEN E. FIENBERG

Harvard University

1. Introduction. Any contingency table can be normalized to have entries
which add to one, and then all possible » X ¢ two-way tables can be represented
by points within the (r¢ — 1)-dimensional simplex

(1-1) Src = {(xlly L1z, 3 X1cy " 5 Lipy = 7x78):xii _% 07 Zi,fx‘i]' = 1}

in re-space. A deeper understanding of the geometry associated with this simplex
might allow us to deal with the corresponding contingency tables in a more
enlightened manner.

In a previous paper, [2], ideas about 2 X 2 contingency tables were discussed
in terms of the geometry of the 3-dimensional simplex. Here we generalize these
ideas and in particular we derive the loci of (a) all points corresponding to tables
whose rows and columns are independent, (b) all points corresponding to tables
with a given interaction structure, and (¢) all points corresponding to a table
with a fixed set of marginals. Finally we conclude with a discussion of the
generalization of our results to multidimensional tables.

2. The simplex of reference. We examine the simplex S,. by means of r¢c-dimen-
sional barycentric co-ordinates, [1], and choose the simplex of reference (with
vertices Ay for< = 1,2, --- ,randj = 1,2, ---, ¢) so that

Au = (1,0,0,---,0,0,0),
Ay = (0,1,0,---,0,0,0),
(2.1)
Aveny = (0,0,0,---,0,1,0)
A, = (0,0,0,---,0,0,1)

correspond respectively to the r X ¢ tables

10 --- 00 o1 -.-.-0
o0 --- 00 00 --- 0
00 --- 00 0

o0 --- 00 OO0 --- 0 O,

,
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(2.2) through to

0 0 0 0
00 .-+ 0 0
00 0 00
0 1 0, 1
The general point
(2.3) P=(pu,pu, - P " 5P, ", Pre)

corresponds to the general » X ¢ table with cell entries pii(Diipi = 1).

Thus there is a 1-1 correspondence between points in the simplex and popu-
lation r X ¢ tables, although for sample r X ¢ tables the correspondence is with
all points which have rational co-ordinates.

3. The manifold of independence. Following Sommerville [5] we refer to a
linear space of n dimensions as an n-flat. Thus an n-flat is determined by n + 1
points and every m-flat (m < n) which is determined by m 4 1 of these points
lies entirely within the n-flat.

In the (r¢ — 1)-dimensional space containing S,. there exist ¢ (r — 1)-flats
such that each contains r distinet vertices of the simplex and all of the points
corresponding to tables with their probability concentrated in one specific

column. The vertices contained in the jth such (r — 1)-flat are Ay, Agj, - -+, Asj.
Now we fix a general point
(3.1) Ty = (t4,0,---,0;%,0,---;¢4,0,---,0)

in the first (r — 1)-flat, where D.j1¢; = 1 and ¢t; = 0 V <. We denote the
analogous points (whose corresponding tables have the same row margins) in the
remaining ¢ — 1(r — 1)flats by To, T5, ---, T, respectively (for example,
Ty =(0,4,0,---,0;+++;0,¢,0,---,0)). Thus the (¢ — 1)-flat containing

Ty, T, -+, T., consists of all points
(3.2) T = (181, 0180, =+, t1Sc 3 taSt, »++ 5 6:S1, brSay oo+, 1Se).

Its intersection with S, consists of all such points with D _i_; s, = lands; = 0V 7.
But these points correspond to tables which are said to be independent. Now by
allowing the ¢; to vary subject to the constraints Diati= landé; = 0V i, we
get a family of nonintersecting (¢ — 1)-flats, which contain all points correspond-
ing to independent tables. These (¢ — 1)-flats generate what we will call the
manifold of independence.

Alternatively, we might have set out by diseussing the existence of r (¢ — 1)-
flats such that each contains ¢ distinet vertices of S,. and all of the points cor-
responding to tables with their probability concentrated in one specific row. The
vertices joined by the ¢th such (¢ — 1)-flatare 4,4, Aa, -+ - , As . Continuing as
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before we find that the manifold of independence is also generated by a family of
nonintersecting (r — 1)-flats.

The tables corresponding to points on any one of the family of nonintersecting
(¢ — 1)-flats have the same row margins (totals) while the tables corresponding
to points on any one of the family of nonintersecting (r — 1)-flats have the same
column margins. Note that each (¢ — 1)-flat meets each (r — 1)-flat in a single
point, corresponding to the independent » X ¢ table with margins defined by the
(¢ — 1)-flat and the (r — 1)-flat.

A manifold in n-space is said to have co-dimension d iff there exists a 1-1 onto
mapping taking the manifold into an (n — d)-flat with nonzero (n — d) di-
mensional volume. Thus the manifold of ndependence has co-dimension
(r — 1)(¢c — 1). For 2 X 2 tables [2] the manifold of independence, which has co-
dimension 1, is a hyperbolic paraboloid, and the families of nonintersecting
(¢ — 1)Aflats and (r — 1)-flats are simply two families of straight lines or
“rulings”.

4. The manifold of constant interaction. Our method of constructing the
manifold of independence is equivalent to saying that a general point P lies on the
manifold iff all of the (r — 1)(¢ — 1) crossproducts

(4.1) @iy = PP/ ParniPiGeny  for ¢ = 1,2, .-+, r — 1;
J=12,-,¢c—1;

are equal to 1. When the a;; are not all equal 1, we say that the corresponding
table expresses interaction or nonindependence. Such a use of the a;; has been
examined by, among others, Goodman [3] and Lindley [4]. Note that
o = [£%7] = OVZ,]

We can now construct manifolds of constant interaction by a procedure similar
to that used in Section 3 to define the manifold of independence. First we fix a set
of af; such that af; # 1V ¢,j and no aj; = 0 or «. Then we look at the ¢ (r — 1)-
flats, AyjAs; - -+ Ay, forj = 1,2, -+, c. Again we fix the general point 7, (3.1)
in the first (» — 1)-flat, but this time we choose the analogous points (denoted by
T for j = 2, 3,---, ¢) in the remaining ¢ — 1 (r — 1)-flats, so that the
[(¢ — 1)c 4+ j]th co-ordinate of T;*is

(4.2) Vit (11526 T2 o) for i =1,2,---,r

where f;, = 1V [, and

(4.3) Vi=2ia tz(Hlt;(ly o).

Then the (¢ — 1)-flat containing T, , To*, T:*, - - - , T.*, has an intersection with

the simplex, S, , consisting of points which correspond to tables with the fixed
crossproduct values ag; . By letting the ¢; vary subject to the constraints D ;= 1
and ¢t; > 0 Y 4, we get a family of nonintersécting (¢ — 1)-flats which contain all
points corresponding to tables with the fixed value of ;. We call the manifold
generated by this family of (¢ — 1)-flats, the manifold of constant interaction

(5.



THE GEOMETRY OF AN 7 X ¢ CONTINGENCY TABLE 1189

Alternatively, we might begin with the » (¢ — 1)-flats, AuAw, - -, A, for
i=1,2,---,r Then we find that the manifold of constant interaction (a3;) is
also generated by a family of nonintersecting (r — 1)-flats.

The tables corresponding to points on any one of the family of (¢ — 1)-flats
or on any one of the family of (r — 1)-flats do not have a common set of row or
column margins, as is the case for the generating flats on the manifold of inde-
pendence. Again we note that each of the (¢ — 1)-flats meets each of the (r — 1)-
flats in exactly one point.

The manifold of constant interaction (a3;) also has co-dimension (r — (c—1).
For the 2 X 2 table the co-dimension is thus 1, and we can show that the manifold
is a hyperboloid of one sheet, and the generating flats are simply two families of
straight lines [2]. When » > 2 or ¢ > 2 the manifold is simply the intersection of
(r — 1)(¢ — 1) quadric manifolds corresponding to the (r — 1)(¢ — 1) cross-
products af; .

When some of the ai; are equal to 0 or to « the manifold of constant interaction
(a};) becomes degenerate. For 2 X 2 tables there is only one crossproduct, oy ,
and thus there are only two degenerate manifolds. Each turns out to be a pair of
faces of the tetrahedron of reference which meet in an edge of the tetrahedron not
on the surface of independence. For » > 2 or ¢ > 2 the degeneracies are more in-
volved, and we will not discuss them in any detail.

6. Tables with fixed margins. Now let us take a general point P (2.3) and a
point I (3.2) on the manifold of independence (both within the simplex). The
direction numbers of the line PI are given by

(5.1) (pr1 — t81, P12 — hSe, =+ + , Pre — UrSe).

It is a simple exercise to show that requiring PI to be orthogonal to the (r — 1)
flat and the (¢ — 1)-flat on the manifold of independence which pass through the
point with all its co-ordinates equal to 1/rc, is equivalent to the » 4 ¢ linear
constraints

(56.2) Z§=1 Pij = 8 for 7=1,2,---,¢,
and
(5.3) Z;c'=1 pij = b for ¢=1,2,---,r.

These reduce to r + ¢ — 2 constraints since we already know that X ps = 1,
> ;si=1,and Y_;t; = 1. Thus the locus of all points corresponding to tables
with fixed margins (s;forj = 1,2, --- ,¢,and {;forz = 1, 2, - - - , r) is the inter-
section of the simplex with the (r — 1)(¢ — 1)-flat orthogonal to the (r —1)-
flat and the (¢ — 1)-flat on the manifold of independence which pass through the
point with equal co-ordinates. This (r — 1) (¢ — 1)-flat intersects each manifold
of constant interaction (provided no a;; = 0 or =) in exactly one point, and, as we
have already seen in Section 3, it intersects the manifold of independence in
exactly one point.

By first choosing two sets of margins (row and column) and fixing a point in the



1190 STEPHEN E. FIENBERG

corresponding (r — 1)(¢ — 1)-flat we see geometrically that an r X ¢ table is
uniquely determined by its margins and the (r — 1) (¢ — 1) crossproducts (4.1).

6. Multidimensional tables. We can easily extend some of our geometrical
ideas to multidimensional tables. Here we will briefly look at three-way » X ¢ X d
contingency tables which can be represented by points within the (red — 1)-
dimensional simplex with red vertices.

We can easily show, by extending the arguments of Section 3, that the locus
of all points corresponding to independent tables (i.e. those tables with no second
or third order interaction) is a manifold generated by three families of noninter-
secting flats, of dimensions » — 1, ¢ — 1, and d — 1. This manifold has a co-di-
mension [(r — D(c—1)d—-1) + (r—1)(d —-1) + (r — 1)(c — 1) +
(¢ — 1)(d — 1)]. Also, the tables with constant margins correspond to points on
aflat of dimension [(r — 1)(¢c—1)(d—-1)+ (r—1)(d—1) + (r —1)(c — 1)
+ (¢ — 1)(d — 1)] which is orthogonal to the generating flats on this manifold of
independence which pass through the point with co-ordinates all equal to 1/rcd.
Each flat of constant margins meets the manifold of independence in exactly one
point.

We conjecture the existence of a manifold of co-dimension (r — 1)(¢ — 1)-
(d — 1), which contains all points corresponding to tables with no third order
interaction, and which contains the manifold of independence as a submanifold.
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