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A CLASS OF INFINITELY DIVISIBLE MIXTURES

By F. W, SteUTEL
Technische Hogeschool Twente, Enschede

1. Introduction. In a previous paper [3] it was proved that mixtures of charac-
teristic functions (cf’s) of the form

(1) N (N — i) N>0)
are infinitely divisible (inf div). In this paper mixtures of cf’s of the more general
type

I N (N — h(t))

are considered. It will be shown that mixtures of cf’s of type I are inf div if
h(t) is such that A/(A — &(t)) is a cf for all A > 0. The class of functions A(¢)
satisfying this condition will be determined.

2. Preliminaries. In our proof we will make use of the Lévy-Khinchine
canonical representation: ¢(¢) is an inf div cf if and only if

(2) log ¢(t) = ait + [Z.{e" — 1 — dtx/(1 + 2*)}(1 + 2%)2 "% do(z),

where a is a real constant and (z) is bounded and non-decreasing (see e.g. [2],
p- 89). ‘
Further we shall need the well-known fact (cf. [2], p. 203) that a function of the

type
II NN+ 1 —g(2) (g(t)a cf; X > 0)

is an inf div cf. This is easily seen by writing V(A + 1 — g(¢)) ™" as a linear
combination of cf’s:

(8) NN+ 1 — g(¢)"

= (VO + DI UM (=1 = N7 = e G ig(0)),
where €. can be written as
4) P =nT A +n) o = 14+a)EDN A+ N (k2 1).

3. Two lemmas.
LemMa 1. If p; > 0, 2 i pi=1and 0 < M < N < -++ < Ao, then

2 0apA/ (N — b)) = [TT7an/Ov — WIS (e — ) /e

where \; < pjforj =1,2, .- ,n — 1.
Proor. See [3]. ,
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LemMma 2. If 6i(z) 4s the function 6(z) in the canonical representation (2) cor-
responding to the ¢f \/(A + 1 — g(8)) (of type II), then 6x(x) — 8u(x) ©s non-
decreasing for all x if N = p.

Proor. Following Lukacs [2], (p. 89), we have in all continuity points of

0 (z)
(5) () = litpaen [Zey’/(1 + ¥°) dF.(y),

where F,(y) is the distribution function corresponding to NP1 — g(e) "
By (3) we have

Faly) = 2iaCGP6™(y) = (VO + D}e(y) + 282 Gm6(),

where G** is the distribution function corresponding to ¢* and e(y) is the unit-
step function. As [Z,4*/(1 + ) de(y) = 0 it follows from (5) that

a(z) = limpwn [Zay/(1 + o) dF.(y),

where F.(y) = Xim C."G@*(y). By (4) for k = 1 we have lim,. nC ™ =
k(N 4+ 1)7*. Therefore (by uniform convergence)

(6) limenfu(y) = L(y) = 28k (M + 1)@ (y).
Hence, by Helly ’s second theorem ([2], p. 51),
(7) 6a(z) = [Zey’/(1 + y*) dL(y)
= 2k O+ D7 [Ty /(A + oY) 4G ().
From (7) it is clear that 6\(z) — 6,(x) is non-decreasing if A < u.
REmARK. It follows from (6) that [“, e’ dL(y) = —log {1 —g(t)/(A+1)} =

log (\ + 1A + log (N (N4 1 — g(t))}. Therefore we have the representation
log {\(M + 1 —g(t))} = 2o (e’ — 1) dL(x), as can also be proved directly.

" 4. Infinitely divisible mixtures. We are now in a position to prove the follow-
ing theorem:

TureoreM 1. If g(t) is an arbitrary characteristic function, then {\/(N + 1 —
g(1)); A > 0} 3s a family of inf div cf ’s with the property that an arbitrary mizture
of members of this family

o(t) = [Tn/(N+ 1 — g(£)) dF(N),

where F is a distribution function with F(+0) = 0, is inf div.
Proor. First we restrict ourselves to finite mixtures ) re pihe/ (M + 1 — g(2))
With0 < M < N < -+ < \,. Writingp = \/(A+ 1 — g) by Lemma 1

(8) 20 Pitr; = 11 &, ) § (e ‘
where \; < piforj = 1,2, -+ ,n — 1. From (8) it follows that the function 0(x)
in (2) is in this case given by ,

8(z) = 21 0h,(2) — 2217 Bu(),

which is non-decreasing by Lemma 2. Therefore > pfdni has the required
representation and is inf div.
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Every distribution function ¥ with #(0+4) = 0is the weak limit of a sequence
of distribution functions F,(\) of the form

Fa(N) = D taprme(N — M),

where () is the unit-step function, px., > 0, 27 Pk = 1 and M» > 0. There-
fore by Helly’s second theorem

6(t) = [ENN+1 = g)dF = limpay, [§ N/ (N + 1 — g) dF,
= limn—»oo Zl?=l pk,n)\k,n/()\k,n + 1 - g)-

It follows, that ¢(¢), as a limit of a sequence of inf div cf’s, is inf div itself.

In [3] we started from cf’s of the form N/(A — 4t), which are not of type II
(1 + <t is not a cf). Before considering a more general class of inf div mixtures
however it will be shown how Theorem 1 can be used to prove that PiNi/
(\; — ) is inf div. If one writes

(9) M —it) = [/ — i) afa+1—p/(p—1)}7,

where p > Nand @ = N/(p — X) > 0, then A/(A — 4t) is a product of two
inf div cf’s, the latter of which is of type II. Now taking x > max )\; it follows
that

(10) 2T pNi/ON — i) = [w/(p — )] 2 piasle; + 1 — w/(u — i)} ™.

The first factor in the right-hand side of (10) is inf div. To the second factor
Theorem 1 applies.

6. Generalization. We use a decomposition as in (9) to prove

Lemma 3. If the function ¢ (t) = N/ (A — h(t)) is a cf for all N > O then 1t s
infinitely divisible.

Proor. Taking u = 2),i.e. = 1 (see (9)) one has

o= on/(2 —¢n) = -+ = ¢ ]]T (2 — dom) 7
As limy,, ¢om(t) = 1 for all ¢ it follows that
O = limy,e $0/dovy = limy,e HIY (2 — ¢2k)‘)_1,

where (2 — ¢o0) " is inf. div (of type II). Therefore ¢y as the limit of a sequence
of inf div ef’s is inf div. '

From a decomposition like (9) we deduce in the same way.

CoRrRoOLLARY 1.1. If A\/(N — h) 7s a cf for N\ = X, then it is a cf for all N\ with
0 <X = No. Ifdtisinf div for N = Ao, then it is inf div for 0 < X £ No.

As a special case we have - ‘

CoroLLARY 1.2. If ¢ s a cf, then for 0 < XN =< 1 the function ¢ =
NN+ ¢t — 1) isacf. If ¢ 4s inf div, then ¢, 4s inf div for 0 < \ < 1.

A characterization of the inf div ef’s of type I is given by

LemmA 4. A function of the form N/ (N — h(t)) s a cf for all X > 0 #f and only
if exp h(t) 7s an inf div cf.

Proor. If ¢ = N/(A — k) is a cf for all A\ > 0, then by Lemma 3 it is inf div.
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Therefore ¢, = {n/(n — h)}" is an inf div cf for all n > 0. By the continuity
theorem lim.. ¢, = exp h(t) is a cf, which by the closure property is inf div
as well.

If. conversely, exp A(t) is an inf div cf, then

NN = h(t)) = Jo e exp [(s/MNh(1)] ds,

as a mixture of ¢f’s of the form exp wh(t),is a cf for all A > 0. More constructively,
Lemma 4 can be expressed as follows:

Lemma 4", N/ (N — h(t)) s a of for all X > 0 if and only if h(t) has the form
h(t) = log f(t), where f(t) 7s an inf div cf.

ReMark. For distributions on [0, « ) a necessary and sufficient condition is
that — (d/dr)h(4r) is completely monotone (cf. [1], p. 425).

Theorem 1 can now be generalized as follows:

TaEOREM 2. If h(t) is the logarithm of an arbitrary inf div characteristic func-
tion, then {\/(N — h(t)); X > 0} is a family of inf div cf’s with the property that
an arbitrary mixture of members of this famaly

¢(t) = [T N (N = k(1)) dF(N),

with F(40) = 0, ¢s inf div.
Proor. As in the proof of Theorem 1 we start with a finite mixture. Taking
w > max \; and using a decomposition as in (10) we have

(11) prfbx,- = ¢ piei/(a; + 1 — ¢,),

where ¢, is inf div by Lemma 3 and > pje;/(aj + 1 — ¢,) by Theorem 1. The
generalization to arbitrary mixtures parallels that in the proof of Theorem 1.

We find in the same way

CoroLLARY 2.1. If ¢ (t) of type I is inf div for X < No, then miztures of func-
tions ¢ with X £ N\ are inf div.

ReMARK. Theorem 2 (and therefore Theorem 1) can be slightly generalized
such as to include mixtures with a component ¢.,(t) = 1. These mixtures can
then be rewritten in the form

J§ {1 = 2h(D)} " dF (2),

where F(z) may have an atom in z = 0 (cf. [3], p. 1305).

For Laplace transforms of distributions on [0, ) Theorem 2 and the first
assertion of Lemma 4’ follow from the infinite divisibility of the Laplace trans-
form Y_ pi\;/(\; + 7) as proved in [3]. More generally, if v1() and v2(7) are inf
div Laplace transforms, then y(r) = vi1(—log v2(7)) is an inf div Laplace
transform. This can be proved as follows: v;(7) = exp (—¢.(r)), where v (1)
is completely monotone (see e.g. [1], p. 425). Now it follows that v(r) =
exp (—y¢(7)), with ¢(7) = ¢1(¢2(7)). Using criteria 1 and 2 of [1], (p. 417),
it is easily seen that ¢'(7) is completely monotone. Characteristic functions do
not in general have this property.! For instance, taking ¢1(f) = ¢2(¢) = exp (— )
we get ¢1(log ¢o(2)) = exp (—t*), which is not a cf.

1 See however [1] p. 538.
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6. Examples.
(A) Mixtures of the following cf’s are inf div:

(a) MN(N —1t) (exponential)

() MV(N+ D) (Laplace)

(¢) NM(N+1— exp1t) (geometric; type II)
(d) N\ +sin®t) (type II)

(e) NN+ log (1 —dt))

() NM{N —dt + [(1 — i)® — 1)} (cf. Remark following Lemma 4").
The cf given in (f), has density function Az ¢ D1 (1 — \)""nl,(z), where I,
denotes the modified Bessel function of the first kind. For A = 1 we find the cf
1 — 4t — [(1 — 4t)® — 1]* with density function & e *I(x) as discussed in [1].

(B) Examples of inf div mixtures are

(a) Jofl — zh(t)} " de = —{h(t)} " log (1 — h(t)),
(b) 6x°271/(n’ + ) = 6 "2 T/ (n' + )
= 6(nt) " {(exp 2n) ™ + § — (2nt) ")

(see e.g. [4], p. 113). The density function corresponding to the mixture of
Laplace-type ef’s in (b) is (as can be seen by inverting term by term)
—37 %log {1 — exp (—lz|)}.

(C) An example of a function of type I, which is a ef for 0 < A < 1 but not
for any X > 1 (as then |¢n| > 1) is provided by ¢w(t) = N/ (N + exp it — 1),
which is of the form N/ (A 4 ¢ — 1). As ¢ is inf div for 0 < A < 1 it follows
that Lemma 3 can not be reversed. A class of functions of the form
M (N 4 ¢7' — 1), which are cf’s for all A > 0 is obtained by taking ¢ = {u/
(v — 7t)}* for 0 < a < 1:1t is easily verified that (1 4+ 7/u) has a completely
monotone derivative for 0 < a = 1. The density function corresponding to

MM+ (L+7/w) — 1} is
Na(pe) e D08 (1 — N)"(uz)™"/T(an + n).
Another example of this kind is the function (f) given in (A).
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