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ANCILLARY STATISTICS AND ESTIMATION OF THE LOSS
IN ESTIMATION PROBLEMS

By Eise SANDVED
Unaversity of Oslo

Consider a stochastic variable X with probability density f(z; 6, u, ») where 0
is a scalar whose value we want to estimate, and where u and » are nuisance (if
they are present). We assume that all parameters can take on values independ-
ently of each other. Let the estimator be denoted by 6, let the loss be L(e, 0),
and let the risk be R = EL.

Suppose that we have chosen the estimator 6(X) (aceording to one or another
principle), and now want a measure of the accuracy of the estimate 0(z). If
the loss L(6, 8(z)) were known, it would have been a perfect measure of the
accuracy of 8(z). But L(6, §(z)) is of course unknown (except in very trivial
cases). On the other hand, one can estimate the unobservable stochastic variable
L6, (X)) by means of X.

Let us denote the estimator of L(6, (X)) by A(X). If A(X) is close to
L(6, 6(X)) with high probability for all values of the parameters, then it seems
reasonable to consider A(z) as a measure of the accuracy of 6(x), and to present
it together with 8(z) as such a measure.

In this paper, we shall consider best unbiased estimators of L, defined in the
following way:

Derinition 1. Ao(X) is a best unbiased estimator of L if it is an unbiased
estimator of R, i.e.

(1) EA(X) =R or (E[M(X) — L(6,6(X))] = 0),
and if
(2) E[A(X) — L(6, (X)) < E[A(X) — L(6, 6(X))]

for all A(X) such that (1) is satisfied.

THEOREM 1. Suppose that T is a complete sufficient statistic, and that L depends
on X onlythrough T. Then thereis at most one estimator A(T) of L such that EA (T)
= R. If there is one, then it is a best unbiased estimator of L.

Proor. Exactly as for the corresponding result for Markov-estimators of
parameters.

Exampie 1. X;, -+, X, are independent and identically normally distrib-
uted, EX; = 0, Var X; = o which is known. Let § = X = n*>_%, X; and
L= (0—6)>°R =d¢n". A= R is of course an unbiased estimator of R, and
because of completeness, R is the best unbiased estimator of (§ — 6)°.

ExampLE 2. Let the situation be as in Example 1, except that ¢° is unknown.
LetA = (n — 1)) (X; — X)2 Since EA = R, A is a best unbiased estimator
of (4 — 6)*, because of completeness.
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In Example 1, the best unbiased estimator of the loss equals Var 8, in Example
2, the best unbiased estimator of the loss equals the Markov-estimator of Var 4.
It is customary to present an estimate 8 together with Var § (or, in case it is
unknown, with an estimate of Var#). This Var§ (the estimate of Var4) is
then often considered as a measure of the accuracy of the estimate, and this
seems reasonable in Examples 1 and 2, since in those examples, Var § and the
Markov-estimator of Var 8, respectively, are equal to the best unbiased estimator
of the loss.

But Var 8 (an estimate of Var ) is not in general usable as a measure of the
accuracy of an unbiased estimate. One can often find much better estimators of
(6 — 6)° than Varé.

TuEOREM 2. Suppose that E[L(6, 8) | Y] = A(Y) is a statistic. Then A(Y)
is uniformly at least as good an estimator of the loss, as the risk R is (if R is knoun),
and A(Y) is the best estimator (of the loss) based upon Y.

Proor.

E[L(8, §) — R’ = E[L(6,6) — A(Y)I’ + E[A(Y) — R
= Elp(Y) — L(6, )" — EA(Y) — (Y + E[A(Y) — R’

for any function ¢(Y). This is easy to show by multiplying out.

Consequently, if conditional expected loss, given a statistic, itself is a statistic,
then it is a better estimator of the loss than the risk is.

Exampre 3. X;, -+, X, are independent and uniformly distributed B(6 — %,
6+ 1). Let Y = maxX; — minX;, Z = § = 3(min X; + max X;). Let
L = (6 — 0)%. (Y, Z) is sufficient, and the density of ¥ equals

nin — Dy (1 —y) for0<y<1
0 otherwise.

The conditional density of Z, given ¥ = y, equals R(6 — (1 — y),0 + 3(1 — y)).
E[(6 — 0)’| Y] = &(1 — ¥)?® = A(Y) is according to Theorem 2 a better un-
biased estimator of the loss than R = 3((n + 1)(n + 2))7, (E(R — L)® =
snl((n + D = t(n + 1)(n 4+ 2)7%L E(A — L) = 3nl((n + 4))™ —
5n1(6(n + 4))™" and BE(A — L)*(B(R — L))™ = 8(n + 1)(n + 2).
(3n(5n 4+ 11))7".) The model is not complete, so we have not shown that it is
a best unbiased estimator of (§ — )% It is not known whether it is or not.

Intuitively it is reasonable that (1 — ) is a good measure of the accuracy
of . If for instance y = 1, then we estimate the loss to be zero, and this is com-
pletely in accordance with the fact that we then know that we have hit the
correct value of 6.

DerinttioN 2. Let (Y, Z, V) be sufficient, where ¥ and V may be vectors,
let Z = 6, and let the joint density of (Y, Z, V) be g(y; »)h(z, v |y, 6, ), where
g equals the density of Y. Then Y is ancillary for 8. (Here 0 is thought of as the

,barameter of interest; Y is of course also ancillary for u.) If » is not present, that
is, if the density of Y is completely specified, then Y is ancillary.

NotEe. Y is ancillary in Example 3.
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To consider an ancillary statistic as given in a statistical inference problem
was first recommended by R. A. Fisher. He gave various descriptions of “an-
cillary statistics”, for instance ([2], p. 48) ... ancillary statistics, which them-
selves tell us nothing about the value of the parameter, but, instead, tell us how
good an estimate we have made of it.”” Basu [1] gives several examples of condi-
tioning on ancillary statistics. Definition 2 above of ancillary statistics (when »
is not present) agrees with the definition of Basu. Lindley [3], p. 58, has a defini-
tion of ancillary statistics when there are nuisance parameters. If in Definition
2 above u is not present, then, in his definition, ¥ is sufficient for » and, given »,
Y is ancillary for 6. Definition 2 also agrees with the definitions in [4] and [5]
of “an ancillary statistic with respect to a parameter 6.”

TuEOREM 3. Let the situation be as ¢n Definition 2. If Y s ancillary for 0 and
complete for the family g(-; v), then

(a) Bb=0=EW0|Y = y) =0forallyeA,,, where Ja0,9(y;v) dy =, 1.

(b) If § is a conditional Markov-estimator of 6, given ¥ = v, for every y, then
b is a Markov-estimator of 6.

(¢) EA(Y,Z,V) = EL(6,0) = E[AN(Y,Z,V)|Y = y] = E[L(6,0) | Y = y]
for all y &€ Ag ., where fAMg(y; v)dy =, 1

(d) If A(Y, Z, V) is a conditional best unbiased estimator of L(8, 8), given
Y =y for every y, then A(Y, Z, V') is a best unbiased estimator of L(6, 6).

The proof is straightforward.

Examrie 4. Let Z,, -+, Z,, given Y = y, be identically, independently
normally distributed, with EZ; = 6, Var Z; = y, and let ¥ be complete in its
distribution. (For instance, the distribution of ¥ may be completely unknown,
under the condition that Y is an 1nteger greater than unity.) Let Z = § =
Y2 7.Z;. Then, for given ¥ = y, y Y- Z; is the conditional Markov-
estimator of 6, and y '(y — 1) DY~ (Z; — Z)* is the conditional best un-
biased estimator of L = (§ — 6)° It then follows from Theorem 3 that @ is a
Markov-estimator of 6, and that A = V = Y (VY — 1) >°1, (Z: — Z)%is a
best unbiased estimator of (6§ — 6)°.

Note. In this example, A equals the Markov-estimator of the conditional
variance of 8, given a statistic which is ancillary for 6.
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