ANCILLARY STATISTICS AND ESTIMATION OF THE LOSS IN ESTIMATION PROBLEMS

BY ELSE SANDVED

University of Oslo

Consider a stochastic variable X with probability density $f(x; \theta, \mu, \nu)$ where θ is a scalar whose value we want to estimate, and where μ and ν are nuisance (if they are present). We assume that all parameters can take on values independently of each other. Let the estimator be denoted by $\hat{\theta}$, let the loss be $L(\theta, \hat{\theta})$, and let the risk be R = EL.

Suppose that we have chosen the estimator $\hat{\theta}(X)$ (according to one or another principle), and now want a measure of the accuracy of the estimate $\hat{\theta}(x)$. If the loss $L(\theta, \hat{\theta}(x))$ were known, it would have been a perfect measure of the accuracy of $\hat{\theta}(x)$. But $L(\theta, \hat{\theta}(x))$ is of course unknown (except in very trivial cases). On the other hand, one can estimate the unobservable stochastic variable $L(\theta, \hat{\theta}(X))$ by means of X.

Let us denote the estimator of $L(\theta, \hat{\theta}(X))$ by $\Lambda(X)$. If $\Lambda(X)$ is close to $L(\theta, \hat{\theta}(X))$ with high probability for all values of the parameters, then it seems reasonable to consider $\Lambda(x)$ as a measure of the accuracy of $\hat{\theta}(x)$, and to present it together with $\hat{\theta}(x)$ as such a measure.

In this paper, we shall consider best unbiased estimators of L, defined in the following way:

DEFINITION 1. $\Lambda_0(X)$ is a best unbiased estimator of L if it is an unbiased estimator of R, i.e.

(1)
$$E\Lambda_0(X) \equiv R \quad \text{or} \quad (E[\Lambda_0(X) - L(\theta, \hat{\theta}(X))] \equiv 0),$$

and if

(2)
$$E[\Lambda_0(X) - L(\theta, \hat{\theta}(X))]^2 \leq E[\Lambda(X) - L(\theta, \hat{\theta}(X))]^2$$

for all $\Lambda(X)$ such that (1) is satisfied.

THEOREM 1. Suppose that T is a complete sufficient statistic, and that L depends on X only through T. Then there is at most one estimator $\Lambda(T)$ of L such that $E\Lambda(T) \equiv R$. If there is one, then it is a best unbiased estimator of L.

Proof. Exactly as for the corresponding result for Markov-estimators of parameters.

EXAMPLE 1. X_1, \dots, X_n are independent and identically normally distributed, $EX_i = \theta$, $Var X_i = \sigma^2$ which is known. Let $\hat{\theta} = \bar{X} = n^{-1} \sum_{i=1}^n X_i$ and $L = (\hat{\theta} - \theta)^2$. $R = \sigma^2 n^{-1}$. $\Lambda \equiv R$ is of course an unbiased estimator of R, and because of completeness, R is the best unbiased estimator of $(\hat{\theta} - \theta)^2$.

EXAMPLE 2. Let the situation be as in Example 1, except that σ^2 is unknown. Let $\Lambda = (n-1)^{-1} \sum_i (X_i - \bar{X})^2$. Since $E\Lambda \equiv R$, Λ is a best unbiased estimator of $(\hat{\theta} - \theta)^2$, because of completeness.

Received 27 September 1967.

In Example 1, the best unbiased estimator of the loss equals $\operatorname{Var} \hat{\theta}$, in Example 2, the best unbiased estimator of the loss equals the Markov-estimator of $\operatorname{Var} \hat{\theta}$. It is customary to present an estimate $\hat{\theta}$ together with $\operatorname{Var} \hat{\theta}$ (or, in case it is unknown, with an estimate of $\operatorname{Var} \hat{\theta}$). This $\operatorname{Var} \hat{\theta}$ (the estimate of $\operatorname{Var} \hat{\theta}$) is then often considered as a measure of the accuracy of the estimate, and this seems reasonable in Examples 1 and 2, since in those examples, $\operatorname{Var} \hat{\theta}$ and the Markov-estimator of $\operatorname{Var} \hat{\theta}$, respectively, are equal to the best unbiased estimator of the loss.

But $\operatorname{Var} \hat{\theta}$ (an estimate of $\operatorname{Var} \hat{\theta}$) is not in general usable as a measure of the accuracy of an unbiased estimate. One can often find much better estimators of $(\hat{\theta} - \theta)^2$ than $\operatorname{Var} \hat{\theta}$.

THEOREM 2. Suppose that $E[L(\theta, \hat{\theta}) | Y] \equiv \Lambda(Y)$ is a statistic. Then $\Lambda(Y)$ is uniformly at least as good an estimator of the loss, as the risk R is (if R is known), and $\Lambda(Y)$ is the best estimator (of the loss) based upon Y.

Proof.

$$\begin{split} E[L(\theta, \hat{\theta}) - R]^2 &\equiv E[L(\theta, \hat{\theta}) - \Lambda(Y)]^2 + E[\Lambda(Y) - R]^2 \\ &\equiv E[\varphi(Y) - L(\theta, \hat{\theta})]^2 - E[\Lambda(Y) - \varphi(Y)]^2 + E[\Lambda(Y) - R]^2 \end{split}$$

for any function $\varphi(Y)$. This is easy to show by multiplying out.

Consequently, if conditional expected loss, given a statistic, itself is a statistic, then it is a better estimator of the loss than the risk is.

EXAMPLE 3. X_1, \dots, X_n are independent and uniformly distributed $R(\theta - \frac{1}{2}, \theta + \frac{1}{2})$. Let $Y = \max X_i - \min X_i$, $Z = \hat{\theta} = \frac{1}{2}(\min X_i + \max X_i)$. Let $L = (\hat{\theta} - \theta)^2$. (Y, Z) is sufficient, and the density of Y equals

$$n(n-1)y^{n-2}(1-y) \qquad \text{for } 0 < y < 1$$

$$0 \qquad \qquad \text{otherwise.}$$

The conditional density of Z, given Y = y, equals $R(\theta - \frac{1}{2}(1 - y), \theta + \frac{1}{2}(1 - y))$. $E[(\hat{\theta} - \theta)^2 \mid Y] = \frac{1}{12}(1 - Y)^2 = \Lambda(Y)$ is according to Theorem 2 a better unbiased estimator of the loss than $R = \frac{1}{2}((n + 1)(n + 2))^{-1}$, $(E(R - L)^2 = \frac{3}{2}n!((n + 4)!)^{-1} - \frac{1}{4}(n + 1)^{-2}(n + 2)^{-2}$, $E(\Lambda - L)^2 = \frac{3}{2}n!((n + 4)!)^{-1} - 5n!(6(n + 4)!)^{-1}$ and $E(\Lambda - L)^2(E(R - L)^2)^{-1} = 8(n + 1)(n + 2)$. $(3n(5n + 11))^{-1}$.) The model is not complete, so we have not shown that it is a best unbiased estimator of $(\hat{\theta} - \theta)^2$. It is not known whether it is or not.

Intuitively it is reasonable that $\frac{1}{12}(1-y)^2$ is a good measure of the accuracy of $\hat{\theta}$. If for instance y=1, then we estimate the loss to be zero, and this is completely in accordance with the fact that we then know that we have hit the correct value of θ .

DEFINITION 2. Let (Y, Z, V) be sufficient, where Y and V may be vectors, let $Z = \hat{\theta}$, and let the joint density of (Y, Z, V) be $g(y; v)h(z, v \mid y, \theta, \mu)$, where g equals the density of Y. Then Y is ancillary for θ . (Here θ is thought of as the parameter of interest; Y is of course also ancillary for μ .) If ν is not present, that is, if the density of Y is completely specified, then Y is ancillary.

Note. Y is ancillary in Example 3.

To consider an ancillary statistic as given in a statistical inference problem was first recommended by R. A. Fisher. He gave various descriptions of "ancillary statistics", for instance ([2], p. 48) "... ancillary statistics, which themselves tell us nothing about the value of the parameter, but, instead, tell us how good an estimate we have made of it." Basu [1] gives several examples of conditioning on ancillary statistics. Definition 2 above of ancillary statistics (when ν is not present) agrees with the definition of Basu. Lindley [3], p. 58, has a definition of ancillary statistics when there are nuisance parameters. If in Definition 2 above μ is not present, then, in his definition, Y is sufficient for ν and, given ν , Y is ancillary for θ . Definition 2 also agrees with the definitions in [4] and [5] of "an ancillary statistic with respect to a parameter θ ."

THEOREM 3. Let the situation be as in Definition 2. If Y is ancillary for θ and complete for the family $g(\cdot; \nu)$, then

- (a) $E\hat{\theta} \equiv \theta \Rightarrow E(\hat{\theta} \mid Y = y) \equiv \theta \text{ for all } y \in A_{\theta,\mu}, \text{ where } \int_{A_{\theta,\mu}} g(y;\nu) dy \equiv_{\nu} 1.$
- (b) If $\hat{\theta}$ is a conditional Markov-estimator of θ , given Y = y, for every y, then $\hat{\theta}$ is a Markov-estimator of θ .
- (c) $E\Lambda(Y, Z, V) \equiv EL(\theta, \hat{\theta}) \Rightarrow E[\Lambda(Y, Z, V) \mid Y = y] \equiv E[L(\theta, \hat{\theta}) \mid Y = y]$ for all $y \in A_{\theta,\mu}$, where $\int_{A_{\theta,\mu}} g(y; \nu) dy \equiv_{\nu} 1$.
- (d) If $\Lambda(Y, Z, V)$ is a conditional best unbiased estimator of $L(\theta, \hat{\theta})$, given Y = y for every y, then $\Lambda(Y, Z, V)$ is a best unbiased estimator of $L(\theta, \hat{\theta})$. The proof is straightforward.

Example 4. Let Z_1, \dots, Z_y , given Y = y, be identically, independently normally distributed, with $EZ_i = \theta$, $Var Z_i = \mu$, and let Y be complete in its distribution. (For instance, the distribution of Y may be completely unknown, under the condition that Y is an integer greater than unity.) Let $Z = \hat{\theta} = Y^{-1} \sum_{i=1}^{r} Z_i$. Then, for given $Y = y, y^{-1} \sum_{i=1}^{y} Z_i$ is the conditional Markov-estimator of θ , and $y^{-1}(y-1)^{-1} \sum_{i=1}^{y} (Z_i-Z)^2$ is the conditional best unbiased estimator of θ , and that $A = V = Y^{-1}(Y-1)^{-1} \sum_{i=1}^{r} (Z_i-Z)^2$ is a best unbiased estimator of $(\hat{\theta} - \theta)^2$.

Note. In this example, Λ equals the Markov-estimator of the conditional variance of $\hat{\theta}$, given a statistic which is ancillary for θ .

REFERENCES

- [1] Basu, D. (1964). Recovery of ancillary information. Sankhyā 26 3-16.
- [2] FISHER, R. A. (1935). The logic of inductive inference. J. Roy. Statist. Soc. 48 39-54.
- [3] LINDLEY, D. V. (1965). Introduction to Probability and Statistics. Cambridge Univ. Press.
- [4] Sandved, E. (1965). A principle for conditioning on an ancillary statistic. Skand. Aktuarietidskr. 49 39-47.
- [5] Sandved, E. (1967). Ancillary statistics in models without and with nuisance parameters. Statistical Research Report No. 5 1967, Inst. of Math., Univ. of Oslo.