The Annals of Mathematical Statistics
1968, Vol. 39, No. 5, 1731-1743

NONPARAMETRIC TESTS FOR SHIFT AT AN UNKNOWN
TIME POINT!

By G. K. BHATTACHARYYA AND RiIcHARD A. JOHNSON
The University of Wisconsin

1. Introduction and summary. This work is an investigation of a nonpara-
metric approach to the problem of testing for a shift in the level of a process
oceurring at an unknown time point when a fixed number of observations are
drawn consecutively in time. We observe successively the independent random
variables X;, Xz, ---, Xy which are distributed according to the continuous
edf F;,7=1,2,---, N. An upward shift in the level shall be interpreted to mean
that the random variables after the change are stochastically larger than those
before. Two versions of the testing problem are studied. The first deals with the
case when the initial process level is known and the second when it is unknown.
In the first case, we make the simplifying assumption that the distributions F'; are
symmetric before the shift and introduce the known initial level by saying that
the point of symmetry o is known. Without loss of generality, we set vo = 0.
Defining a class of cdf’s ¢ = {F: F continuous, F symmetric about origin}, the
problem of detecting an upward shift becomes that of testing the null hypothesis

Hy:Fo=F, = --- =Fy, some Fye,

against the alternative
H12F0=F1= =Fm>Fm+1= =FN, some Foé‘fﬁ)

where m(0 = m = N — 1) is unknown and the notation F,, > F,.11 indicates that
Xt is stochastically larger than X, .

For the second situation with unknown initial level, the problem becomes
that of testing the null hypothesis H,*: F; = -+ = Fy, against the alternatives
H*F = --.=F,>Fp1=-=Fy,wherem(l £m =N — 1) is un-
known. Here the distributions are not assumed to be symmetric.

The testing problem in the case of known initial level has been considered by
Page [11], Chernoff and Zacks [2] and Kander and Zacks [7]. Assuming that the
observations are initially from a symmetric distribution with known mean v, ,
Page proposes a test based on the variables sgn (X; — 7,). Chernoff and Zacks
assume that the F'; are normal cdf’s with constant known variance and they derive
a test for shift in the mean through a Bayesian argument. Their approach is ex-
tended to the one parameter exponential family of distributions by Kander and
Zacks. Except for the test based on signs, all the previous work lies within the
framework of parametric statistics. The second formulation of the testing prob-
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lem, the case of unknown initial level, has not been treated in detail. The only test
proposed thus far is the one derived by Chenoff and Zacks for normal distributions
with constant known variance. In both problems, our approach generally is to
find optimal invariant tests for certain local shift alternatives and then to examine
their properties. Our optimality criterion is the maximization of local average
power where the average is over the space of the nuisance parameter m with
respect to an arbitrary weighting {¢g:, ¢ = 1,2, -+ ,N:q: = 0, D 1= q: = 1}.
From the Bayesian viewpoint, ¢; may be interpreted as the prior probability that
X is the first shifted variate. Invariant tests with maximum local average power
are derived for the case of known initial level in Section 2 and for the case of
unknown initial level in Section 3. In both cases, the tests are distribution-
free and they are unbiased for general classes of shift alternatives. They
all depend upon the weight function {¢;}. With uniform weights, certain
tests in Section 3 reduce to the standard tests for trend while a degenerate weight
function leads to the usual two sample tests. In Section 4, we obtain the asymp-
totic distributions of the test statistics under local translation alternatives and
investigate their Pitman efficiencies. Some small sample powers for normal alter-
natives are given in Section 5.

2. Locally best invariant test (initial process level known). For testing H,
versus H; , we use invariance considerations to reduce the data and then develop
distribution-free tests which maximize local average power against specific trans-
lation alternatives. The problem remains invariant under the group of all trans-
formations z; = h(z:), s = 1,2, --- N where h is continuous, odd and strictly
increasing. A maximal invariant under the group is (R, A) where R =
(Ri, Ry, -+, Ry) is the vector of ranks of |Xi|,---,|Xy| and A =
(A4, Ag, -+, Ay) with 4, = 0 (1) if X; < 0 (>0). If & = k/2"N!, any in-
variant test of size a will reject H, for exactly k realizations of (R, A).

Let F(z) denote the common edf under Hy. For the subfamily of translation
alternatives, Fou1(z) = F(x — A), A > 0, the power 8(A | m) depends not only
on F and the amount of translation A, but also on the nuisance parameter m. In
order to remove the parameter m, we turn our attention to the average power
B(A) = D% qB(A |4 — 1) where the weights satisfy ¢; = 0 and D 1= ¢; = 1.
The structure of the invariant test which maximizes 8(A) is exhibited in the
following theorem.

THEOREM 2.1. Let the cdf F € §, possess a density f(x) having the following
properties:

(A) f(z) > 0a.e. (Lebesgue) and f s absolutely continuous.

(B) For a sufficiently small € > 0, there exists a functton H(xz) with
[ H(z) dx < o and for almost all x

suppsi e | {f(z + 8) — f(2)}87| £ H(z).

Then the invariant test which maximizes the derivative of the average power at A = 0
has$ a rejection region of the form

(2.1) T = 2235 Qisgn (X)E[—f (V) (V)] > €
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where the Q; = Y 1 qm are the cumulative weightsand VO < V@ ... < V¥ 4
an ordered sample from a population having density 2f(z), x > 0. (2.1) also
mazximazes the average power wtself for all sufficiently small A > 0.

Proor. Letn = N — m where X,,,4 is the first shifted variate. With amount of
translation A, the probability of any specific realization A = a is given by

(2.2) Paa|m) = 2"F(—A)] [F(a)]"

where dg = D 1=ms1 ;. Due to the symmetry of 7, if X has cdf F(x — A), the
conditional density of |X| given X > 0is f(z — A)/F(A) and given X < 0, it is
f(z + A)/F(—A). Using this together with condition (A), we follow Lehmann
[8], p. 254, and express the conditional probability of any specific realization
rof R given A = a as

(2.3) Pa(r|a,m) = {N12V"[F(=a)]""[F(a)]"}™

B[ TS f(V2 4 (1 = 2a0)A) /f(VE)]
From (2.2) and (2.3), we obtain
(24)  Pa(r,a|m) = (N12") B[ ITf(V + buit) /F(VE)]

where by = 0 for ¢ £ m and by = (1 — 2a;) for ¢ > m. If Pa(r, a) =
> oy _1qnPa(r, a|m — 1), the average power of an invariant test for shift A is
obtained by summing Pa(r, a) over all (r, a) belonging to the critical region.
Letting S denote the space of the ordered N-tuples v® < »® < ... < o'¥, we
have Pa(r, a|m) = [s[J[ixf@"? + bnia) d'®]. For all [A] £ ¢ £ 1,
G(z) = H(z) + f(z) dominates both f(z + bniA) and [A7'[f(zx + bnid) — f(2)]|
almost everywhere. This yields

(25) A" + bad) — JTS ()] = N 15 G0"?)

and the right hand side is integrable. Applying the dominated convergence
theorem and Neyman-Pearson’s Lemma, it follows essentially from Lehmann [8],
p. 237, that the rejection region which maximizes the local average power is
given by (2.1). This completes the proof of the theorem.

For a few specific choices of the distribution F, the test statistics 7' of (2.1) are
given in Table 1. Large values of the test statistic are critical in each case. The
uniform weighting used in the third column allows for the possibility that a shift
might occur before the observations are taken. Chernoff and Zacks [2] and also
Kander and Zacks [7] have assumed that the known process level corresponds to
the distribution of X; and this has led them to the uniform prior ¢; = (N — 1),
2= 2,3,--+, N. Apart from this minor difference, our optimal invariant test
T 4y with uniform weighting coincides with Kander and Zacks’ test which is based
on the marginal likelihood ratio for a binomial sample. Some power comparisons
between this and Page’s test have been madein [2]. H4jek [5] and Adichie [1] have
studied the large sample properties of test statistics of the form (2.1) which arise
in connection with a linear regression model having the Q.’s as values of the inde-

pendent variable.
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When the point of possible shift m 4+ 1 is known, the weight function becomes
gm+1 = 1, g; = 0for ¢ £ m -+ 1. The three test statistics for this case are given in
the fourth column of Table 1. T'qy reduces to the sign test for location based on the
observations X,.41, + -, X» . The forms of T and T in this case are struc-
turally similar to the Wilcoxon signed rank and the one sample normal score
tests based on the above N — m observations. The intrinsic difference is that
for T and T, the ranking is considered over all N observations. It is interest-
ing to note that in a two sample shift problem where one sample is known to be
from a distribution symmetric about 0, the locally optimal invariant tests for
logistic and normal distributions are T and T3 and not the Wilcoxon and the
normal score tests. The reason is that a smaller invariance group is appropriate
here.

We now investigate the unbiasedness of the class of tests (2.1) and more
generally, of any tests of the form

(2.6) T(X) = 2.1-1Qisgn (X)U(R:)

where 0 = @1 < @, -+ £ @y < 1isagiven set of constants and U(-) is a func-
tion of the ranks of the |[X,7 = 1,2, ---,N.

TrEOREM 2.2. If U(-) is a nondecreasing function, any test which rejects Hy for
large values of T'(X) <s unbiased for testing H, against H; .

Proor. Let m(0 = m < N — 1) be arbitrary but fixed. Define a class of
mappings C: (1, s, -+, &y) — (2, 2, -+, a2y ) by & = z;for ¢ £ m and
x{ = h(z;) for i > m where h is continuous, nondecreasing and k(z) = z for all
z. For any cdf [[¥-i F: under H;, there exists an Fy e %, and an % such that if
(X1, Xs, -+, Xy) is distributed as [[1=1 Fo, (X1, X3, -+ -, X') will be dis-
tributed as []i=i F:. It is then sufficient to show that for each map of €,
T(x') = T(x) a.e. (Lebesgue), ([8], p. 256).

Consider first a point x where the map is sign preserving in addition to having
the above properties. Let r and t’ denote the vectors of ranks of the absolute
values forx and x’ respectively. Introduce the index sets

27) I, ={i:2:> 0,7 = m}; I, ={i:2;> 0,7 > m}; I =1ul;
Ji={7:2:< 0,7 = m}; Jo={1:2:< 0,7 > m}; J = Jiu Js.
Consider a new vector of ranks r* obtained in the following way: allocate to
{2/ :7 e I} the same set of ranks {r; : 7 & I} but permuted according to the ordering
of {|z/|: seI}. Follow the same procedure for {z;: jeJ}. Setting T* =
> ¥ Qisgn (x)U(r®), we have
(28) T* = T(x) = 2z QIU(r") — U(r)] — 2w QU(r*) — U(r)].
Clearly r.* < (2)rs if e Ii(Iy). Also X wr [U(r*) — U(r)] = 0 because
{r*:ieI} = {r;:ieI}. This, together with the fact that Q; is nondecreasing
in ¢, implies that i Q{U(r*) — U(r:)] = 0. The same type of reasoning shows
, that the second sum in (2.8) is not positive and hence we have T* = T(x). Itis
then sufficient to show that T'(x’) = T™.
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Take any a ¢ I and suppose that 2, is the tth smallest of {z;: ¢ & I}. If z; is the
tth smallest of {x; : 7 ¢ I}, then r,* = 7, by definition. Therearer; — (¢ — 1) — 1
negative z with |z| £ x; and since the map moves points only to the right, at
least 7; — ¢ negative 2’ would satisfy the inequality |&| < z,. It follows that
rd = r,*. Similarly for any jeJ, we have r;/ < r;* and consequently
T(x') — T* = 0.

Finally, if the map is not sign preserving, some z;, 2 > m could be mapped
across zero. Introduce the notation J, = {7:2; < 0, z;/ > 0}. In this case, » may
be expressed as hso hgo by where h; e @, 72 = 1, 2, 3. The h; are partially specified
below and their definition can be completed by making A; linear between con-
secutive points. A3 maps z;, ¢ ¢ Jo into the interval (—a, 0) and the other z; into
z; where @ = min {min;ci<. |x:, mini<;<n |2]}. Next, h, takes the points
ha(zs), 4 e Jo, into (0, a) and leaves the other points unchanged. Finally, A, takes
hyo hy(x:), 5 € Jo, into h(x:") leaving other components unchanged. The maps A
and hg are of the type considered above and %, makes the negative terms cor-
responding to ¢ ¢ Jo positive. This completes the proof.

The Q; represent cumulative weights and hence are nondecreasing. Therefore
any test of the form (2.1) is unbiased for every weight function {q;} provided
that E[—f"(V?)/f(V?)] is nondecreasing in 7. In particular, the tests in Table 1
are all unbiased. _

Except for T4y, any statistic of the form (2.1) will generally have a sample
space consisting of 2"N'! points so that the setting of the exact critical region
might be very difficult even for moderate sample sizes. To obtain a large sample
approximation to the null distribution, consider the sequence of test statistics

v = D i Quisgn (Xyo)E[—g (V) /g(VE¥))] where g is a known density
having cdf GedF, and satisfying the conditions of Theorem 2.1. Let
Zy < Zyy < +++ < Zyy be an ordered sample from a uniform distribution on
(0, 1) and define a function ¢ (u) on 0 < 4 < 1 by

(29) Y(u) = —¢' (' G(u + 1)))/g9(G7 3(u + 1))).
In terms of ¢ the test statistic T’y can be written as
Ty = Zg;l QNi sgn (XN'L)Ell/(ZN'L)

Under H,, the distribution of Ty depends only on the choice of g and the weight
function {¢gy:} and not on the particular population cdf. We may therefore assume
that the common edf of X; under H, is G. Define a class of cdf’s by

(2.10) § = {F: [Z, (f'(2)/f(2))’f(2) dx < oo,
(A) and (B) of Theorem 2.1 hold}.

The following theorem is a direct consequence of Theorem 7.1 of Héjek [5].
THEOREM 2.3. If G ¢ F is symmetric and if the sequence of weights {qn:} satisfies
limyaw D ie @uvi/N = 1,0 < b* < w, then under H, ,

(2.11) Tw/IN' (3 ¥*(u) dul’] —¢ 9(0, 1).
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The limiting distribution can be employed to obtain approximate size « tests
for large N. For instance, the statistic 7' uses ¢(u) = w and with uniform
weights b = 1, so that 3N YT 4w is asymptotically N (0, 1) under H, .

We conclude this section with a remark about the assumption of symmetry. If
instead of symmetry, we only assume that some percentile of the initial distribu-
tion is known, it is still possible to obtain tests having maximum local average
power. Without loss of generality we set the known percentile equal to zero. The
new problem is invariant under any transformation z; = h(z;), all ¢, where & is
continuous and strictly increasing with #(0) = 0 The main difference in the
derivation would occur in the expressions for average power and its derivative.
They would not simplify nearly to the extent they do when symmetry is assumed.

3. Locally best invariant test (initial process level unknown). Here we employ
procedures similar to those of Section 2 to develop optimal invariant tests for
H,* vs. Hy*. When the initial level is unknown, we test whether a jump occurs at
some time after the first observation and accordingly any system of weights {q;}
on the nuisance parameter m should have ¢; = 0. The problem remains invariant
under the group of all transformations z;" = A(x:),% = 1,2, --+ , N where & is
continuous and strictly increasing. A maximal invariant is the vector of ranks
S= (8, 8, -,8y)of X1, Xs, -+, Xn.

The following theorem gives the structure of the test having maximum
local average power against the translation alternatives F;(x) = F(x) for
1=1,2 ---,m Fy(z) =F(x —A)fortc =m+1,---, N where A > 0 andm
is unknown.

TuaroreM 3.1. Let X, have density f which satisfies conditions (A) and (B) of
Theorem 2.1. Then the invariant test which maximizes the average power for all
sufficiently small A > 0 has a rejection region of the form

(3.1) T = 235 QE-f (V) [f(VEN] > ¢

where Qi = D mea qmand VO < V® < oo < VY 45 an ordered sample from F.
The proof is similar to that of Theorem 2.1 and hence is omitted.

The simplified forms of the test statistic (3.1) for logistic, normal and double
exponential distributions are T7® = > 74 QS:, T® = > 14 Q:Es(V?) and

7® = > ¥ Q:E[sgn W] respectively, where Es(V9) are the normal scores
and W(l) <W® < ... < W™ isan ordered sample from the double exponential
distribution.

Chernoff and Zacks [2] obtained the test D i~ (¢ — 1)(X: — X) > C from the
marginal likelihood ratio for normal observations with known variance. For the
special case of uniform weights the test statistics (3.1) have the same structure
except that functions of ranks are involved instead of the actual observations.
Note also that T becomes Y i1~ (¢ — 1)8; and the test is equivalent to Spear-
man’s rank correlation test for trend. Because of this correspondence it is expected
$hat our tests would perform well even when more than one jump ocecurs in the
same direction. With the weight function g1 = 1,¢: = 0,7 %= m 4 1, T and
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T® reduce to the standard two sample Wilcoxon and normal score tests re-
spectively.

Turorem 3.2. If U(-) is a nondecreasing function, any test which rejects Ho™* for
Zarge values of M(X) = X 1= Q:U(S:) is unbiased for testing Ho" vs. Hy*.

Proor. Let m (1 £ m < N) be arbitrary but fixed. Consider the same class of
transformations € introduced in the proof of Theorem 2.2. It is sufficient again to
show that M (x') = M (x) a.e. Lets” = (s, s, --- , sy') be the vector of ranks
of the ;. Clearly ¢« > m (=m) = s/ = (£)si= U(s/) = (2)U(s:). Hence

T(x') — T(x)
(3‘2) = Z;'Ll Q@[U('S'L,) - U(sz Zz=m+1 U(Sz) - U(Sz)]
Z Qn [U(sz) — U(si)] + Quu z—m+1 [U('S%) — U(s)]

= (Q@nn = Qu) 2¥enna [U(s) — U(s)] 2 0. QED.
We now consider the asymptotic distribution of the statistics
(3.3) Ty = 220 Quil[—g (V) [g(VE¥ )],
Defining a function ¢ by
(34) Y(u) = —¢' (67 () /9(G7(u)), 0<u<l,
and letting Zym < -+ Zyw be an ordered sample from the uniform distribution

on (0, 1), the test statistic Ty can be expressed as Ty = D1~ Qu:E[W(Zy:)]. The
next theorem follows directly from H4jek [4], Section 6.

TuroreM 3.3. Let Qy = D i1~1 Qui/N. If G & F where & is defined by (2.10) and if
the sequence of weights {qu:} satisfies

(A1) limyae N7 D it (Qui — Qn)® = ¢, 0< < o,

then under Ho",
[Ty — B(Tw)]/IN*[[s ¥*(u) dul] —¢ (0, 1).

4. Asymptotic distribution under local alternatives and Pitman ARE. Al-
though desirable, an exact power comparison of our tests with those of [11] and
[2] for various parent distributions would involve tremendous computational
difficulties even for moderate sample sizes. Consequently, we devote this section
to the derivation of the Pitman asymptotic relative efficiency (ARE). The use-
fulness of this measure in our time series situation is somewhat questionable
because the assumption of a single shift in the process level may make little sense
when the sample size can be increased only by taking observations over an
extended period of time. However, this objection could be ruled out in many
cases where it is possible to increase the size by sampling more frequently in a
fixéd time period. We will treat in detail the class of tests (3.3). The development
of the corresponding results for the tests of Section 2 is similar.
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Define a sequence of local translation alternatives {Ky} by
Ky:F(z) = F(x), 1=1,2,.---,m,
(4.1) =F(x—06N?Y, i=m+1,---,N, Fes,
limy,o (M/N) =\, 0< A<,

where & is defined by (2.10). Let yx(3/(N + 1)) = E[—¢ (V) /g(V],
where V™ < V™ < ... < 7" i5 an ordered sample from G ¢ . Noting
that D1 ¥ (Sw;/ (N + 1)) is constant for every N, we express the test statistic
(3.3) as

(4.2) = N7 225 (Qui — @w)en(Svi/ (N + 1)).

Set dy’ = [3 1//2(u) duand dy’ = [§ ¢’(u) du, where ¢ (u) is defined by (3.4), and

¢(u) is the same function with ¢ replaced by f and G by F.
TrEOREM 4.1. Let G ¢ § where § s defined by (2.10). If the sequence of weights

{qns} satisfies

(Az) limy.e Zjiv=-m+1 (@wi — Qn)/N =0 < ®
in addition to (A1) of Theorem 3.3, then lim £(Sy" | Ky) = 9U(, c’dy’), where
(4.3) u = ba ftl) o(u)y(u) du.

Proor. The proof uses the principle of contiguity and is methodically based on
Héjek [5]. The important difference is that the coefficients (Qv: — Qx) occurring
in the test statistic (4.2) do not appear in the alternatives { Ky} while in [5] they
do. We will sketch the main steps leaving out the details. Introduce

s(z) = fi(z),
Uv = =N 2 [f (X2)/£(X5)],
Wy =22 :rki(X) — 1] and
Ly = Z,=.1 log rx:,

where ryi(z) = f(z — 0N} /f(z) for i = m + 1, , N and ry;(z) = 1 for
i = 1,---, m. We have E(Uy|H,*) = 0 and th_,wVar (Ux | Hy*)/
{(1 —\)d,} = 1. Approximating Wy in mean square as in Section 5 of Hajek
[5], we obtain

(44) Wy + 2(1 — N6dy + Uy —» 0 under Hy*.

The central limit Theorem applied to {Uy} gives limy.. £(Wy|Ho*) =
N(—(1 — N)6d, /4, (1 — \)6°d,”). The conditions of Lemma 4.2 of [5] are then
satisfied and consequently
(4.5) Wy — Ly —p 2(1 — \)d,? under H,¥

limyaew £(Ly | Ho*) = (= (1 — N)6%d,%/2, (1 — N\)6%dy),

* and the probability measures are contiguous.
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Under H,*, Sx° can be approximated in mean square (c.f. [4]) by
Sy* = N7 20 (Qui — Quv(F(X)).
From (4.5), we have
(4.6) limyoeo £(Sy, Ly | Ho™) = limyaw £(Sy™, —0Ux — (1 — \)6°d,” | Ho™).

An application of bivariate central limit theorem (Cramér [3], p. 114) to
(Sx*, Uy) shows that under Hy*, (Sy°, Ly) is asymptotically bivariate normal
with correlation

(4.7) p = al(c(l — NH™ [5d(u)y(u) du/(dsdy).

This completes the proof.

In the special case of uniform weights, we have @y = % and it is easy to see that
the conditions of Theorem 4.1 are satisfied with @ = M(1 — \)/2 and ¢’ = .
Under {Ky} the limiting distribution of Sy’ is therefore (3N (1 — \) ﬂ) o(u)-
¥(u) du, dy*/12). In order to arrive at the usual expressions for the ARE we shall
assume that the conditions of Lemma 3 of [6] are also satisfied. Under these
additional conditions, the application of Theorem 4.1 to

Ty = (N — 1) 20 (5 — 1)S: and
Ty® = (N =120 (6= 1)Ee(VH)
yields
limyaw ECN TV (N + 1)7 — (N/4)]| Ky)
= UONL — ) [20 f(2) dz, %)
limyaw £(2Ty "N} | Ky)
= (N1 — N) [2a f(z) do/6[37(F(2))], }).

When the initial process level is unknown Chernoff-Zacks’ test statistic has
the form Zy = 2 i~ (4 — 1)(X; — X). Application of this test to normal popu-
lations requires the knowledge of the standard deviation ¢. With ¢ unknown, a
Studentized form Zy* = (N — 2)*Zy/(DxS.), with Dy* = N(N* — 1)/12 and
82 = D0 (X: — X)? — Zy'/Dy’, may be used. Under normality, the null dis-
tribution of Zy™ is student’s ¢ with (N — 2) d.f. The asymptotic distribution of
Zy and Zy™ under the sequence {Ky} is given in the following theorem.

TraEOREM 4.2. If for some § > 0, F has (2 -+ &)th absolute moment then

limN_,w £(ZN(DNU)‘1 | KN)
= limyow £(Zy* | Ky) = 9063\ (1 — N)o %, 1).

(4.8)

(4.9)

Proor. Apply Liapounov’s central limit theorem to the sequence of
random variables Yy: = (¢ — 3(N + 1))(X: — »),¢ = 1,2, -+, m; Yy; =
(3— 3N +1)(Xi—v— 6N, =m+1,---, N wherey = [Z, zdF (),
and note that 8.*/(N — 2) —p¢" under Ky .
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It follows that for uniform weights the ARE of the test Ty of (3.3) relative to
Chernoff-Zacks’ test is given by

(4.10) eriz =0 d¢_2(jé é(u)y(u) du)z-
For the particular tests Tx® and Tx™ this reduces to
erviz = 126°([20 f(2) d2)’,  ereniz = o'( [0 S (2) dz/9[87 (F (2))]},

and these are precisely the ARE of the two sample Wilcoxon and the normal score
tests relative to the ¢-test.

The selection of a test Ty of the form (3.3) or equivalently of an Sy’ involves
the choice of a function y defined through a density g as well as a weight function
{q:}. If two such tests, Tx and Ty* defined through ¢ and ¢*, are based on
identical or asymptotically equivalent weight functions (i.e. @ and ¢ of (A;) and
(A;) are equal), Theorem 4.1 shows that their ARE is given by

(4.11) errs = [dy* dy™ [ d(w)¥(w) dulfs o (u)¥™ (u) dul T

which is independent of the particular weights used. Therefore, the ARE equals
that of the standard two sample rank order tests for shift.

It is also of interest to study the sensitivity of the ARE in relation to the
choice of the weight function. Suppose T and T” are two tests defined through the
same y-function but involve two different weight functions {¢;} and {g:'} which
satisfy the conditions (A;) and (A;) with the limits (a, ¢’) and (da’, ¢*) re-
spectively. From Theorem 4.1, we obtain e7.o» = (ac’/a’c)® which is independent
of ¥. Suppose that T” has the degenerate weight q:,,+1 =1,¢/ =0,i% m-+ land
that T has uniform weights. If m/N — X as N — «, the ARE is er.pr =
3\(1 — \) = 2. This indicates that the loss of efficiency incurred in using a uni-
form weight instead of the correct degenerate weight is at least 25% and could
be much higher if the point of shift is near the beginning or the end of the observa-
tion period. Some small sample power comparisons for different choices of weight
function are given in the next section.

For the sake of completeness, we state the asymptotic distribution of the test
statistic Ty = 211 Qu:sgn (Xw:) EY(Zys) of Section 2 under the sequence of
alternatives {Kx} with the additional assumption that F is symmetric. In this
case ¢ is defined by (2.9).

TuEOREM 4.3. Let F and G be symmetric and members of § where F is defined by
(2.10). If the sequence of weights {qx:} satisfies

limyow D 01 Qyi/N = b < o and lily.e 3 iem1 Qvi/N = £ < ©
then
(4.12) limyow £(Ty | Ky) = 9U(6% [0 d(u)y(u) du, bdy?).
The proof is similar to that of Theorem 4.1.

5. Small sample power. The power of the test T = >Y, Q.S for testing
Ho* vs. H,* is calculated in the special case of translations in the distribution
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TABLE 2
Power of the test i1 iS: for normal translation alternatives
a = .05
A
N m
0.2 0.8 1.5 3.0
4 1 .060 .095 .135 .181
4 2 .064 .116 .182 .268
5 1 .060 .094 132 174
5 2 .067 .136 .232 .365
6 1 .059 .092 127 .166
6 2 .068 141 .244 .384
6 3 .072 170 .327 572
TABLE 3

Effect of the weight function on power of Y i1 QiS:
N=5m=2a=.10

A
Weight function
0.2 0.8 15 3.0
0,0,1,0,0) .137 .296 .540 .921
©, &, &, &, 1) .135 .283 .498 .813
0, 3, %, %, 9 .135 .278 .484 Ry
0,1 % 5% .131 .251 .407 .602

Fi(z) = &(z) where & is the standard normal edf. Consider the statistic Y i— S;
resulting from a choice of uniform weights. Fixing the point of shift m + 1,
we proceed by coding the critical rank vectors Z = (Z., Z,, + -+, Zy) according
totherule Z; = 0if 7 ¢ {S1, 8z, - -+, S»} and Z; = 1 otherwise. The probabilities
of the Z vectors under various normal translation alternatives are tabulated by
Milton [9] to nine decimal places. Power is computed by using Table A of [9]
and the fact that m!(N — m)! different rank orders yield the same Z. Table 2
gives the power for m < N/2. The powers for m > N/2 follow by symmetry.

Since T™ is designed for the situation where the process level is unknown, a
comparison of the power with Page’s test [11] would not be relevant. The per-
formances of 21— ¢S; and the Studentized form Zy* of Chernoff and Zacks’
test are being studied.

For the situation where the initial process level is known, some power com-
parisons between the test T'qy = > ¥ iisgn (X:) and Page’s test were made by
Chernoff-Zacks [2] for normal alternatives. Ty was found to have slightly
more power unless the point of shift is near either end in which case Page’s test
performs better. A table of rank order probabilities for the absolute values of
gbservations from a normal population is required before these tests can be
compared with Ty and T, of Table 1.



NONPARAMETRIC TESTS FOR SHIFT 1743

To illustrate the effect of the selection of weights {¢;} on the power, we con-
sider the test 7® with sample size N = 5 and four systems of weights. Powers
of each test for normal translation alternatives are calculated as above and are
presented in Table 3. The power is maximum for the choice of the correct
degenerate weighting and it falls off with the approach towards the uniform
weighting. Similarly the entries in Table 2 may be compared to the powers of
the corresponding Wilcoxon tests which are available in Milton [10].

The study of the small sample power of the tests derived in this paper is
being continued and the results will be communicated later.
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