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ON INVARIANCE AND ALMOST INVARIANCE

By RosertT H. BERK! AND P. J. BIckEL?

Unaversity of Michigan and University of California, Berkeley

1. Introduction. The requirement that almost-invariant test statistics should
be equivalent to invariant test statistics plays a central role in the theory of
invariant and unbiased tests [5], sufficiency and invariance [4], etc. A classical
condition for this equivalence to hold, due to Stein, may be found in [5], p. 225.

More recently, Bell [1] has given an approach which yields the desired result
in nonparametric situations. The purpose of this note is primarily to show that
the latter approach applies in most parametric cases as well. In addition, we
give a decision-theoretic version of Stein’s result.

2. The result. Let (X, ®) be the measurable (sample) space of the random
variable X and @, a family of distributions for X. We suppose @® is generated by
G, a group of bimeasurable transformations of & to itself, i.e., ® = {Pg™ : g £ G}
for any P in ®. We refer the reader to [5] for the definitions of terms used from
this point on.

Let I be a measurable maximally invariant statistic inducing the invariant
o-field 3 © ® and 8, another measurable statistic with the induced o-field § C @,
so that the correspondence X < (I, S) is 1-1 bimeasurable. We suppose also
that G acting on X induces a group of transformations, Gs, acting on S. That
is, if X < (I, 8), gX <> (I, gs8S). For conditions under which this structure is
present, see [3].

(1) TurorEM. If S is sufficient and boundedly complete, then any ®-almost-
tnwariant test function is ®-equivalent to an invariant one.

The proof is preceded by two lemmas. In the sequel, ¢ will denote the test
function ¢(X). (¢ is also called a critical function.) We note that if ¢ is almost-
invariant, its distribution is independent of P ¢ ®. Hence we shall refer to the
®@-distribution or expectation of almost invariant statistics. Similarly, we may
refer to the conditional ®-expectation given the sufficient o-field $ and Eg(¢ | 8)
will denote an element of the ®-equivalence class containing {Er(¢ | 8) : P ¢ ®}.

(2) LemMA. If ¢ is almost-invariant, Ep(¢ | 3) is independent of of P ¢ @®.

REemARK. The lemma is actually a special case of the more general fact (which
we prove): if 5% is the almost invariant o-field and € C 5* is a o-field, then
Eg¢(¢ | @) is meaningful.

Proor. Choose P, Q ¢ ® and let P = Qg~". Then

Er(¢| @) = Eo(dg g @)y = Eo(¢| C)g™ = Eo(s]| €) [Ql.
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The first almost-sure equality is generally true; the second follows because ¢ is
almost-invariant and g€ = € [®]; the third, because any 3*-measurable sta-
tistic is almost-invariant. []

(3) LeMMA. 3% and $ are independent under every P in ®.

Proor. Since every P in ® induces the same measure on 3%, this follows from
Basu’s theorem [5], p. 162, Theorem 2. []

Proor or TarorEM. We show that if ¢ is almost-invariant, ¢ = Ee(e | 3) [@]
by establishing that for every B in ® and P in ®, Ezpls = Ep(Ee(¢| 3)1s).
(13 denotes the indicator function of B.) Since 8 = 3 V §, it is sufficient to
show this for sets of the form B = Cn D, C¢e3,D ¢S8.

Since ¢1¢ is almost-invariant, by Lemma 2, Ep(¢lc|8) = Epplc[®]. Hence
Epplely, = Ep(lpEp(ple|8)) = EplpEeple. On the other hand,
Er(Ep(¢|3)1clp) = Ep(Eg(¢lc|3)1p) = EgplcErlp, again by Lemma 2. []

3. Applications.

1. Parametric. X = R", ® = Borel sets, the coordinates of X are independent
with common distribution P & ®. Theorem 1 applies directly to establish, e.g.,
that translation invariance and almost-invariance are equivalent under @, the
family of normal distributions with wunit variance. (¢: (z1, -, ) —
(x1+g7"'7x'ﬂ+g)7G = R,take[ = (Xl - X"";Xn —X)’S = X)
We obtain a more general result by noting that if ®* is a set of distributions
dominated by @ (¢* < @ if when B e ® is ®-null, it is also ®*-null), then the
®-equivalence of two statistics implies their ®*-equivalence. An obvious criterion
that ®* <« @ is given by

(4) LeMmMA. If for every P* & @ there is a P € ® so that P* < P, then * L o.

The family of normal distributions with unit variance is equivalent to Le-
besgue measure. Hence if ®* is the set of all absolutely continuous distributions
on R" (the coordinates of X need not be either independent or identically dis-
tributed), translation invariance and almost-invariance are @*-equivalent.
Similarly, by taking ® = exponential distributions with arbitrary scale,
g: (2, - s %) = (g1, -+ :gmn);G ER—{O}HS: ZXi,I = (XI/S: )
X./8); we obtain the corresponding result for the scale transformation. Other
parametric applications, univariate and multivariate, are easy to provide.

II. Non-parametric. (Cf. Bell [1] and Bell and Doksum [2].) Let & be the sub-
set of R™ having distinct coordinates and ® be all strictly increasing continuous
distributions on R. (21, ++ , @x) — (g21, +-- , g%.), ¢ strictly increasing 1-1
onto R.S = (Xa, -+, Xw) , the order statistic, I = (R, --- , B,), where R;
is the rank of X; among { Xy, - - - , X,}. Taking ®* to be all continuous distribu-
tions on R, Lemma 4 applies and ¢* < @.

ReMARK. This result establishes the generality of Loynes theorem [6] dealing
with equivariantly distributed estimates of quantiles (see [3] for the terminology).
The continuity restriction imposed there on pi( X) (¢(X) in our notation) is
seen to be unnecessary. (Cf. [6], 500-501.)

We may take ®* to be the family of all distributions giving the coordinates of
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X independent continuous distributions. For if F; x --- x F, ¢ % letting
F=F+--+F)nFy x- xF, KF % --- x F, hence ®* < ®.
The independence assumption may also be relaxed; the distribution of X need
only be dominated by a product measure (with continuous marginals). A similar
result applies to the two sample problem, where the group G acts differently on
the first m and remaining n-m coordinates of .

4. Stein’s Theorem. In this section, we present a decision-theoretic version of
Stein’s condition, [5] p. 225, for the equivalence of invariance and almost-in-
variance. In this context, it is actually equivariance that is being considered and
we continue with this terminology. Let (4o, @) be a measurable action space, @
being generated by the countable field @ . A (randomized) decision rule is a
mapping, 6, of & into the set of probability measures on @ so that for every 4
in @, + — 6(x)A is ®-measurable. Suppose that to each g in G corresponds an
@-measurable transformation ¢* of 4, onto itself. Given any §, we may construct
another decision rule, g5, where gé(z)A = 8(gx)g"A. We say that § is equivariant
if g6 = §; it is almost equivariant if g6(X) = §(X) [®]. (Note that for two de-
cision rules 6 and v, the set

[6(X) = v(X)] = n{[6(X)4 = v(X)A]: A£G} £ ®.)

(5) TueorREM. Suppose there is a measurable structure G for G and a o-finile
measure v on G such that

(i) (g, z) > gris G x ® — ® measurable.

(i) (g,a) =g *ais G x @ — @ measurable, (g~ * = ¢

(iii) (g, h) — ghis G x G — G measurable.

Condition (iii) permits us to define vg : for H ¢ G, vg(H) = v(Hg).

(iv) For every g in G, vg = ».

Then if there exists an equivariant decision rule &, every almost-equivariont
decision rule is ®-equivalent to an equivariant rule.

ReEMARK. There need not exist equivariant decision rules; see [3]. Without
loss of generality, we take » to be a probability measure.

(8) LEMMA. For given & and D € G » @, with D, denoting the cross-section of
Datg, Ap: (g, z) = 8(x)D, is § x @ measurable.

ProoF. Immediate if D is a measurable rectangle. Also, if D; T (] )D,
Ap; T (l)Ap ; hence {DegG X @: Apis § x @ measurable} is a o-field. []

(7) CoroLLARY. For given § and A ¢ @, conditions (i) and (ii) imply that
(g, ) — gd(z)A 15 G % ® measurable.

Proor. Let D = {(g, a) : g “ae A}. By (ii), Deg x @. By (i), (g, z) —
(g, gx) is measurable, hence (g, ) — (g, gr) — An(g, gr) = gé(x)A is measur-
able. []

Proor oF TaeoREM. Let N(4) = {(g, z) : gd6(x)A # 6(z)A} G x & by
Corollary 7. Then N = {(g, z) : g6(z) # 8(z)} = U{N(A) : Ae@o} G x B
The almost-equivariance condition may be expressed as: for every ¢ in G, the
cross-section N, is ®-null. By Fubini, N, = {z : »N, > 0} is ®-null. Set &, =

*—1).
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Jegddv. Then [6,(X) = 8(X)] D {x:6(z) = go(z)[»]}] = £ — N, and &, is
equivariant on {z : 861(z) = gé(z) v} = X — N¢ = G(X — N,), where GB =
{gz : ge G, z £ B}. (Note that forh e G, héy = [¢ghé dv = [¢gd dvh™".) Finally,
let 8, be any equivariant rule and set 8* = 8, on Ng and = & on & — Ng . Then
6* is equivariant and §(X) = §*(X) [®].

In [7], Wesler presents an argument similar to the above. However, his con-
struction involves setting 8* = 0 on N¢ ([7], p. 16 (iii)) which presumably is not
an allowable decision rule. He also fails to mention condition (ii), so he appears
to have measurability difficulties throughout. (For example, the statement on
p- 15, line 3 seems unjustified.) The conditions in the present theorem are slightly
more general.

If 6 is non-randomized, thereis a ¢ : X — A4, so that for all zin &, 6(x) {¢x} =
1.Ifz e X — N, , 8:(x) = 6(x), hence 81 is non-randomized on X — N¢ . Choosing
80 to be non-randomized yields a non-randomized §*. (It is easy to see that the
conditions given in [3] for the existence of measurable equivariant rules applies
equally for randomized and non-randomized rules.)
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