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DISTRIBUTIONS DETERMINED BY CUTTING A
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By A. P. DEmMPSTER AND ROBERT M. KLEYLE
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1. Introduction and summary. Suppose that X;, X, , ..., X, are random
variables uniformly distributed over the simplex of points 1, 2, -+ , z, such
that #; = 0 for ¢ = 1,2, ---,n and Y.ra: = 1. The distribution of

X = > 7 ¢:X; for constants c; satisfying ¢; > ¢ > - -+ > ¢, > 0 is easily seen
to be given by

(11) P(X < z)

I

1 — 25 (s — @) eI Tini (c5 — e)]™
" Iaed™ — 27ia (@ — ¢)™es]Lins (ci — e)1™

for 0 = z = c1, where 7 is the largest positive integer such that z < ¢, . A geo-
metric derivation is given in Section 2 which relies on a principle of inclusion and
exclusion and identifies the terms in (1.1) as volumes of various simplices. It is
remarked in Section 3 that the argument of Section 2 extends in principle to
give the joint distribution of a set of different linear combinations of X1, X, , - - -,
X.. . Finally, the relations to the theory of order statistics from a uniform distribu-
tion and to the theory of serial correlation are noted.

A simple derivation of (1.1) will now be sketched. Suppose that Z,, Z,, -- -,
Zn+1aren + 1independent random variables each with the standard exponential
density function exp (—z) for 0 < 2z < . By a well-known argument involving
the partial fraction expansion of the characteristic function (cf, Box (1954)
Theorem 2.4), the density of Z = .7 ¢;Z; is found to be D1 (w;/c;) exp
(—z/c;) where

(1.2) w; = ¢;" Loy (c; — €)™
Now a set of random variables X;, X, - - - X, uniformly distributed over the
simplex as described above may be represented as X; = Z;/Y forj = 1,2, --- ,n

where Y = 2.7 Z;, and the set X;, X,, --- , X, thus created is distributed
independently of ¥. Thus X = 2 7 ¢;,X; may be represented as

(1.3) X =2/Y

where X and Y are independent. In a relation like (1.3) the marginal distribu-
tions of Z and Y together with the fact of independence of X and Y are sufficient
to determine uniquely the distribution of X. To see this, note that cf (log X)-cf
(log Y) = ef (log Z), where cf denotes the characteristic function. Thus, the
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characteristic function of log X is determined by those of log ¥ and log Z.
Now if Z were known to have the scaled exponential density ¢ exp (—z/c)
for z = 0 while Y had the gamma density y" exp (—y)/n! for y = 0, it would
follow that X had the scaled beta density nc (1 — z/c)" ™ for 0 < 2 < c. But
the density of Z is, in fact, a mixture of scaled exponentials. Thus, the density
of X is the same mixture of scaled betas and is given by D7 w;f;(z), where
the w,’s are defined by (1.2) and

(1.4) fi(z) = ne; (1 — z/c;)"™ for 0 Sz Z ¢
=0 otherwise.

The result just given yields immediately the first line of (1.1). To derive the
second line of (1.1), set X,1 = 1 — D_1 X, and note that ¢; — X = ¢;Xnp1 +
(e1 — e)Xn 4+ -+ 4+ (a1 — €)X, has a distribution of the same type as X.
Applying the first line of (1.1) to ¢; — X yields the second line of (1.1).

The distribution of Y % d:X; is also given by (1.1), where X1, Xa, ---,

X4 are uniformly distributed over the simplex z; = Ofor< =1,2,--- ,n 4+ 1
and X1 * g; = 1, and where constants d; satisfy the condition
(1.5) di>d>--->dZzc>dua> > di.

To see this, let ¢; = di: — d,41 and notice that Z{‘“ diXi=X 4+ dyy1.

2. The geometric derivation. The event whose probability is expressed in
(1.1) may be described as { D_1 a;X; < 1} where

(2.1) a,~=c,~/x
forj=1,2,---,nand
(2.2) G >a>>az2l1>a0> - >a >0

Consider the following half-spaces of the ordinary Euclidean n-dimensional
space with typical point (21, &2, + -+ Za):

Hit:2;20, H;:2;<0, for j=1,2---,n,

(2.3) AT D tam; 1, A7 : D tam; > 1,

IT: > Pz; <1, and I : 2 .ta;> 1.
Since X1, Xz, - -+ , X, are uniformly distributed over the simplex
(2.4) S=I"anH'"nH, 'n-- - nH,"

the desired probability (1.1) may be described as (S n A™)/(S) where (---)
denotes n-dimensional Euclidean volume. Since

(2.5) (8) = (n1)7,
it remains only to find
(2.6) SndANY =@ 'al"nH  aH,"n---nH™.
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The following three lemmas provide the desired volume as a linear expression
in terms of the volumes of simplices.
LemMa 1. The regions

(2.7) A nI"NiaH N HT
forg =12 .- r—1and
(2.8) At I NG HY N i Hi

forj =1,2,---,n —r — 1 are nonempty.
Proor. From (2.2) we may pick p such that

(2.9) 0<p < (a1 — 1)(a1 — aj41)”

for given j selected from 1 < j < r — 1. Since (2.9) implies that (1 4+ pa1)/aj1 <
1 4+ p, we may further pick ¢ such that

(2.10) (I HFpa)/ain<g<1l+4op.
Now let

z; = —pfj for 2=1,2,---,7,
(2.11) Tjiy = ¢, and

zi =0 for t=74+2,---,m.

It is easily checked that the point (2.11) belongs to the region (2.7), as required.
The second part of the lemma may be proved similarly.
LeMMA 2. The regions

(2.12) A" I*'NimH Nimpn HY
and

(2.13) AT a I Nia H Niwp H
are empty.

Proor. To satisfy (2.12), the point (21, 2, - -+, €,) must have z; < 0 for
i=1,2, ---,r which together with (2.2) yields D i a: < D 1 ;. Similarly
(2.12) yields z; = 0 for ¢ = r 4+ 1, --- , n which together with (2.2) yields
doram: < > mazi. Combining we find > Pawi £ 2.tz which contra-

diets A~ n I'*. The result for (2.13) follows similarly.
LemMma 3.

Arn "N HT = IO H

(2.14) + 2ia(=D¥A" a I'NIZH N HY)
= (A N HY)

+ 23S (—D) AT a M AE A N s HO).

Proor. The region ITM{ H;* is the union of the disjoint regions
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ATnI™NT H: and A~ n ITAT H.i¥, so that
(215) ATal"NiaHS = TN HT) — A n It HY.
Similarly,
(216) A nITNImH ) = A al"NmH) — @ nl'nH NimH,
and from (2.15) and (2.16)
(217) A@TalI"NLHT) = ITAMHT) — @ n TN H™Y
+ A7 n I' n HT N H.
Continuing by induction, it can be shown that for any k& = r,
ArnI'NiaH) = TN HY
(2.18) + 2 (-1)%AT n I'NIDHIALm HY
+ (=) A a I'N H N e HY.
Now from Lemmas 1 and 2, it is clear that the first time
A nI* nlf=1 HiNisnH
is empty occurs when k. = r. Therefore, the summation stops at r, and the first
line of (2.14) holds.
The proof of the second line of (2.14) follows in a completely analogous way.
The two lines of (1.1) follow term by term from the two lines of (2.14) after
dividing through by n!. It remains only to identify the vertices of the simplices
whose volumes appear in (2.14) and then to check that the expressions in (1.1)

are essentially the volumes of these simplices. This computation is left to the
reader.

3. Multivariate extensions. Suppose that X;, X, , - - - , X, are distributed as
in Section 1, and consider the problem of computing P(X W< gV X® g
z®, --.) where X = > 7 ¢.®X; fork = 1,2, --- . In principle, such prob-

abilities follow easily from the geometric approach of Section 2, and numerically
they may be easily found. Consider the case of X W and X®. Formulas (1.1)
or (2.14) may be used to find P(X® = 2®). The additional condition X®* < 2®
partitions each simplex in (2.14) into 2 pieces (one of which may be empty).
Finding the corresponding partitions of volume may be reduced in each case to
an application of (2.14). Continuing in this way, it is clear that repeated appli-
cations of (2.14) yield bivariate, trivariate, etc., extensions of (1.1).

Explicit formulas for P(X® = 2@, X® < 2®, ---) do not appear to be il-
luminating, due to the multitude of cases created by the relative orders of the

¢;'® and z%. Some special cases are given by Kleyle (1967).

4. Relation to order statistics. Suppose that Uy, Us, - - - , Un are independent
and identically distributed on the interval (0, 1) and suppose that Uy =
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Ug = -++ £ Ug denote the ordered values of Uy, Uz, ---, U, . Then X; =
U(1) , X, = U(z) - U @y "y X, = U(n) - U (n—1) have the distribution treated
in Section 1. Thus it is clear that

(4-1) X = (01 - Cz)U(l) + (02 - 03) U(z) + -+ CnU(n) s

and formula (1.1) gives directly the distribution of > 1 diU with each di > 0.
Actually, by simple reordering and shifting one can handle the general case if
d: # 0. In principle, therefore, the joint distribution function of several linear
combinations of order statistics may be directly written down.

Note also that since Uy = X1+ Xo+ -+ X forz = 1,2, ---, n

(4.2) 2iUi=21Un =21 (n—1i+ 1)X:.

Olds (1952) has given the distribution of D7 ¢;U:, and in the special case
where ¢; = ¢ > O for ¢ = 1, 2, - -+ n, the edf given by Olds can be written in
the form

(4.3) Fu(z) = (¢")7 250 (1)) (= — &))",

where ¢cr < = ¢(r + 1). Thus, whenc¢; = ¢(n — i+ 1) fori = 1,2, --- n,
the distribution of X is given by (4.3). This result can be easily checked by
setting ¢; = ¢(n — 7 4+ 1) in the second line of (1.1).

When the ¢;’s are not all the same for ¢ = 1, 2, --- | m, it is no longer clear
that > 7 ¢;Us can be written as a linear combination of Xy, Xz, -+, Xa.
Thus, in general, the cdf given by (1.1) and that given by Olds are not equiva-

lent.

5. Relation to serial correlation. The circular serial correlation coefficient with
lag L is given by

(5.1) By = 20 (X; = D) (X — X)/ 20X, = X%,

where Xny.; = X; and L < sample size N. It has been shown that if N is odd,
and if X3, X,, -+, X» are assumed to be independent normal variates with
zero means and unit variances,

(5:2) By = 20 N2 21,

wheren + 1 = (N — 1)/2, 1A1, e, -+ -, thay1 are the distinet latent roots of
the matrix of the quadratic form in the numerator of (5.1), and Z1, Z,, - - -,

Z.41 are the independent, exponentially distributed random variables of Section
1. Thus it is clear that if ;C; denotes the jth largest latent root, the marginal
distribution of Ry is given by (1.1) with ¢; replaced by :C; — 1.Crs1 and x by
2z — 1Cuy1 . Furthermore, by applying the method discussed in Section 3, the
joint distribution of 1Ry , 2:Rwx, - -+, 1By, L < n 4 1, can be found.

Anderson (1942) has given the marginal distributions of the circular serial
correlation coefficient, while the joint distribution has been derived by Watson
(1956). The method used by Watson is a generalization of the derivation given
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in Section 1. Although Watson does point out some of the geometrical implica-
tions of his proof, neither he nor Anderson attempt a direct geometrical argument.

The authors of this paper are indebted to J. Durbin for pointing out the re-
lationship between their results and the distributions of the serial correlation
coefficients.
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