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1. Introduction. In an earlier paper [3] an asymptotic deseription of the
optimal sequential testing regions for separated hypotheses was given. It in-
volved an asymptotic formula for curves of constant posterior risk. The need for
a second-order correction term for this formula was demonstrated by Fushimi
[1], who found such a term for normal and binomial sampling distributions, with
their conjugate a prior: distributions, and a truncated linear loss function. In
this paper we find the general correction term. While it does not depend on the
sampling distributions as long as the latter form an exponential family, it does
vary with the loss funetion, and depends also on some properties of the a prior:
distribution which carry over into the a posterior: distributions: the locations of
its atoms and the zeros of its density.

2. Preliminaries and statement. We assume a sampling distribution with
density f(z, 6) = ¢ *® with respect to some measure. The parameter § ranges
over the interior ® of the natural parameter space. There b(8) has all derivatives,
and since b'(8) and b”(ﬂ) are the expectation and variance of the sampling
variable, b(8) is a convex function. For expository convenience we assume
“one sided’” hypotheses Ho: § < M ' Hy:0 = M > M and an a priors distribu-
tion W that dominates Lebesgue measure on ©. The local behaviour of W at 6 is
described by a number —1 = 7(8) < o, as follows:

(a) if W ({6}) > 0, 7(60) = —1;

(b) if, in a neighbourhood of 6, , W has a density of the form [§ — 6|* g(8)
with g(6) bounded away from 0 and «, 7(6) = a.

We assume the 7 is defined at every 6 £ © either by (a) or by (b). This re-
stricts the generality of the a prior: distributions somewhat, but it seems general
enough for any conceivable application.

The loss for deciding “H,” when the true parameter value is 6, is given on
H;byl(8) = (§ — M)"d(8) with d bounded away from 0 and . If 7(M) > —1,
we assume 7 + 7(M) > —1, to avoid infinite Bayes risks; if 7(M) = —1 any
bounded loss function would do, but we assume in this case that it is positive at
M, and define n = 0 independently of the behaviour of I(8) near M.

The posterior risk of deciding “H,” after having made n observations with
sum S, = kn is

() Ro(n, 8n) = [oza 1(8) e® @™ dW (8)/fo e™ " aW (6).
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We shall study the asymptotic behaviour of Ry as n and S, tend to infinity and

= n '8, is fixed and less then b'(M), and obtain:

THEOREM. For k < b (M) and r — 0, the solution of the equation Ro(n, kn) = r
1s gien by

n= (logr— — (3 +n+ (M) — 37(6(k))) loglog ™) log M(k) + O(1),

where 6(k) is defined by b’ (6(k)) = k, and No(k) s the generalized likelihood ratio
statistic
(supe /supx, )eko_m)-
3. Proof of the theorem. We first state and prove some lemmas, essentially
about the asymptotic behaviour of L, norms as p — .
LemMA 1. Let h be a bounded integrable function on a measure space. If K s the
essential supremum of h, and L < K, then, as n — o

f hn/fh>L hn — 1.

Proo¥. As is well known ([2], p. 160), when n — «, ([s>zh™)"" — K and
(fagz B™Y™ — L' < L; hence ([acz b/ [1>2 ™))" — L'/K < 1 and
[hge B/ [ssB® — 0. Now [ A"/ [iszh” = 1 4+ [a<zh”/[1>2 k" implies the
statement of the lemma.

LemMa 2. If f'(6) is negative for M < 00O, and p > —1, then, as n — o,
log fozu (6 — M)%e”® do = nf(M) — (p + 1) logn + O(1).

Proor. By the definition of derivative, if 4, > —f (M) > A; > 0, then
—A; < (f(8) — f(M))/(6 — M) < —A,, and consequently

(0 _ M)Pen(/(M)—Al(ﬂ—M)) < (0 _ M)penf(o) < (0 _ M)pen(f(M)—Az(o—M),

for 6 in some interval (M, M + ¢]. Integrating the left and right sides of the last
inequality from M to «, we obtain (4:n) "I (p + 1)e™”™, i = 1, 2, which
has the form stated by the lemma. According to Lemma 1, applied to the function
¢ and the measure (6 — M)* df, the behaviour of f outside (M, M + ¢], where
f(8) < f(M + €) < f(M) by f(8) < 0, does not affect the conclusion.

Lemma 3. IF f7(6) < 0 on ©, and f attains its maximum at 6 = m ¢ ©, then
forp > —1,

log [0 — m|%e™”® do = nf(m) — %(p + 1)logn + O(1).

Proor. Wemusthave f (m) = 0, and therefore, when 4; > —f"(m) > A; > 0,
Taylor’s theorem implies —4; < 2(f(8) — f(m))/(6 — M)™ < —B,, and
consequently|0 _ mlpen(f(m)—fAl(ﬂ—m)z) < |0 _ mlpenf(ﬂ) < |0 _ mlpen(f(m)—'}Az(ﬂ—m)z)
for 6 in some interval [m — ¢, m + €]. Integration of the left and right terms over
the real line yields (nd:/2)7*™1((p + 1)/2)e™™, ¢ = 1, 2, and since f de-
creases as 6 moves away from m in either direction, Lemma 1 can be applied to
obtain the statement of Lemma 3.

LemMma 4. If f achieves its maximum at m, and W({m}) > O, then, as n —

log [ e”® dW = nf(m) + O(1).
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Proor. From f(9) < f(m), we obtain nf(6) < nf(m) + (f(8) — f(m)), and
therefore

W({m})e”™ < [ &M@ aw < ™ [ O™ gy,

which implies the statement of the lemma.

To prove the theorem, we note that k6 — b(8) is strictly convex, and attains
its maximum at 6 = 6(k). Fork < b (M), 6(k) < M holds, and k8§ — b(8) has
a negative derivative for M < ¢ ®. We now apply Lemma 2 with f(8) =
k8 — b(6) and p = 9 + 7(M) to the numerator of (%), and Lemma 3 with the
same f and p = 7(6(k)) to the denominator. If 7(8(k)) = —1 we apply Lemma 4
instead of 3. This way we obtain

log Ro(n, kn) = —nlog M(k) — (5 + n + 7(M) — 37(6(k)))log n + O(1),

and the equation B, = r yields, after some manipulation, the statement of the
theorem.

4. Remarks and conclusion. (a) All calculations were made for the lower
boundary. A formula for the upper boundary, valid for k& > b'(M’), is completely
analogous. In the overlap region b’ (M) < k < b'(M’) the boundary closer to
the origin is the one used.

(b) For r = 0,7 = 1 and b(6) = 1/26" or b(8) = log (1 + ¢’) the theorem
reproduces Fushimi’s correction term [1].

(¢) In the first-order approximation [3], all the continuation regions were
convex. For the second order approximation this is only true for r = 0. In the
directions k corresponding to atoms or “zeros” of the a prior: distributions, the
continuation regions have “cusps” of length O(log log "), pointing in or out,
respectively.

(d) The first case for which the asymptotic shape was found is that of a three-
point parameter space, with each hypothesis containing one point; it turned out
to be a pentagon. In this, as in any case where W is discrete, Lemma 4 shows that
the log log-term is zero: the pentagon is unaffected by the correction!

(e) According to Theorem I in [3], the Bayes regions are enclosed between
constant-posterior-risk regions with risks ¢ and oc log ¢, where ¢ is the cost of
an observation, and ¢ is a positive constant. Now log (¢ clogc ™)™ = logc™*
— loglog ¢™ — log o. Consequently, the bottle-neck of the search for approxi-
mations to the Bayes regions is now shifted from the problem of finding asymp-
totic formulas for the constant-risk regions, to the problem of improving Theorem
I of [3], by finding closer constant-risk approximations to the Bayes regions.
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