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FURTHER REMARKS ON TOPOLOGY AND CONVERGENCE IN
SOME ORDERED FAMILIES OF DISTRIBUTIONS

By J. PraNzacGL
Unversitit zu Koln

0. Introduction. In [3] three different types of order relations between dis-
tribution functions on the real line were discussed:

(1) Fi £ Fyiff Fo(t) = Fu(2) for all ¢;
(2) F1 £ F,iff both
(2") Fy(t)/Fy(t) is nondecreasing in ¢, and
(2") (1 — Fa(t))/(1 — Fy(t)) is nondecreasing in ¢;
(3) Fi £ Fyiff Fi(t) = 0 implies Fa(t) = 0 and [Fa(t") — Fo(t))/[Fu(t")
— Fi(¢)] is nondecreasing in both variables ¢ and t” whenever Fi(t') < Fy(t").

It was shown that the order relations (1), (2), (3) are of increasing strin-
gency.

The study of families which are ordered (1) or (2) or (3) is justified by the
prominent role which monotone likelihood ratio families play in statistical
theory and the fact that monotonicity of likelihood ratios is equivalent to order
(3).

Let two distance functions d’, d” be defined by

d'(Fy, F;) = sup {|Fi(t) — Fa(t)|: — 0 < t < oo},
d"(Fy, Fy) = sup {|Pi(B) — Py(B)|:B ¢ B},

where 9 is the Borel-algebra over the real line and P; the p-measures pertaining
to F Qe

In [3] it was shown that d'(Fy, F;) < d"(F1, F2) < 2(d'(Fy, Fo))}if Fy <
Fyor F; £ F;in the sense of order (2).

Hence the topologies pertaining to these two metrics are equivalent in this
case. In view of Lemma (3.1) this immediately implies that the strong and the
uniform topology are identical for families which are ordered (2) (Proposition
1.1). It is the purpose of the first part of this paper to extend this result to other
topologies. It will be shown that for any family which is ordered (2), the weak
and strong neighborhood systems of any nondegenerate distribution are identical
(Theorem 1.3). Furthermore it will be shown that for any family of distributions
which is ordered (1), the weak topology is equivalent to the induced interval
topology. The section concludes with some propositions on connected families.

In the second part of this paper it will be shown that for a dominated family
of distributions which is ordered (2), there exists a system of densities such that
strong convergence of measures implies convergence of the densities everywhere
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52 J. PFANZAGL

with the possible exception of the two boundary points of the convex support
of the limit measure (Theorem 2.1). Moreover, for monotone likelihood ratio
families by an appropriate choice of densities we may achieve that the likelihood
ratios are nondecreasing everywhere (Theorem 2.10). Finally it is shown that
for a family of mutually absolutely continuous distributions which is ordered
(2), having continuous densities with respect to a nonatomic o-finite measure
which is positive on each interval, strong convergence implies pointwise con-
vergence of the continuous densities (Theorem 2.12).

The basic concepts of [3] will be assumed to be known. We remark that for
any pair of functions f/R and g/R we consider the quotient f(t)/g(¢) as unde-
fined if f(¢) = g(t) = 0. We put f(t)/g(t) = « if f(t) > 0 and g(¢) = 0.

1. Strong, weak and order topologies. Let F be a distribution function and P
the pertaining p-measure: F(t) = P(— «, t]. In the following it will be con-
venient to use also the function F*(t) = P[t, «). The properties of F* are dual
to the properties of F. Using F and F*, the properties specifying “order (2)” can
be brought into the following convenient form:

e st ey [Fa(f)F(t") £ Fu(f)Fa(t") (2"

F, s F.ifft <t lmpheS{Fz*(t,)Fl*(t”) < Fl*(t,)Fz*(t”) (2//).
(That the second line is equivalent to (2”) as defined above follows easily from
continuity considerations.)

Let Q be the family of all distribution functions. The order relation (k) de-
fines a partial order on Q. Furthermore, let § C X be a linearly ordered (k)
subset, where k is one of the numbers 1, 2, 3.

We define two strong topologies:

Let 3’ be the topology generated in & by the subbase {{F ¢ F:a < F(t) < b},
(FeFic <F*(t) <d}:—w <t < o, a, b, c, deR and 3 the topology
generated by the subbase

{{(Fes:P(B) <a):Be®B,0<axl.

Let furthermore 3, and Jg» be the topologies pertaining to the metrics d’ and
d”, respectively.

From these definitions together with Lemma 3.1. we obtain for arbitrary
families &

0 =3 3 C B4

For families which are ordered (2) we have 35 = 34~ ([3], p. 1220, Theorem

1). This proves the following
(1.1) ProrosiTioN. If a family of distribution functions is ordered (2), we
have 34 = 57 =13 = T .
Now we define the weak topology 3w on & by the following local subbase for
F 0 & F:

CMHF e F:|F(t) — Fo(t)| < ¢:e > 0,1t e R with Poft} = 0}.
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An equivalent subbase may be defined using F* instead of F. We remark that
3w is metrizable by the Lévy-metric

(1.2) p(F1, Fo) = inf {h e R:F*(t + h) — h £ Fo*(t)
< F*(t — h) + hiorallteR}.
(1.3) Remark. If § is ordered (1), p is monotone in the following sense:
F, £ Fy £ Fsimplies p(F1, Fy) < p(F1, F3)

and o(Fy, F3) < p(Fy, Fs).

As any of the subbase elements belongs to 5, we have 35 7.

(1.4) TaeoreM. If a family of distribution § is ordered (2) and Foe & is
nondegenerate, we have 3w(Fo) = 3 (Fo) where 3w(Fo) and 3 (Fo)
are the neighborhood systems of Fo with respect to 3w and 3, respec-
tively.

PRrooF. As 37 C 3 we have 35(Fy) C 5 (F,). In order to prove the inverse
conclusion, it suffices to show that to each

Uel{{F ¢F:|F(t) — Fo(t)| < a},
{F e G |F*(t) — Fo*(t)| < b}:teR,a,be Ry}

(the local subbase of Fy with respect to 3') there exists V & 3y such that Fy ¢

Vcrl.
If Pofte} = 0, this is trivial, for then U ¢ 3w . If Po{ts} > 0, we also have

Fo(ty) > 0. Let

U = {F ¢5F:|F(t) — Fo(t)| < a}.

(1) If there exists s < &, with Fy(s) > 0, there also exists s; < &, with Po{s;} =0
and Fo(81) > 0. Let

Vi={F eF:|F(s1) — Fo(s1)| < a-Fo(s1)/Fo(to)}.

We have V; € 3w . It remains to show that V, < U.
IfFeVy,F> F,y,order (2') implies

= F(t)/Fo(t) = F(s1)/Fo(s1) > 1 — a/Fo(t)

and therefore Fo(ta) = F(i) > Fo(ty) — a,ie. FeU.
If Fe Vi, F < F,,order (2") implies

1 = F(t)/Fo(t) £ F(s1)/Fo(s1) <1+ a/Fo(t)

and therefore Fo(t) < F(t) < Fo(ts) + a,ie. F e U.

(i1) If Fo(s) = 0 for all s < f, we have Fy(fy) < 1 (for otherwise F, were
degenerate). As Fy is right contmuous, there exists s; > 5, Polss} = 0, such
that F0(82) < 1 which implies Fo*(sz) > 0. Let

Vo= {F e F:|F*(s2) — Fo*(s2)] < 2a-Fo*(s2)}.
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We have V2 & 3y . It remains to show that Vo C U. If F e V,, F > F, , order
(2") implies for each ¢ & (t, )

F*(8)/Fo*(t) £ F*(s3)/Fs*(s2) < 1 + a/2
=14 a/2:-F* (k) <1+ a/2-F*(¢).

Hence F*(t) — Fo*(t) = Fo(t — 0) — F(t —0) < a/2forallte (t, s;) and
therefore Fo(t) — F(fh) =< a/2,i.e. Fe U.
It FeVy, F < Fy, order (2”) implies for each t & (t), s5)

F*(t)/Fo*(t) = F*(82)/Fo*(82) >1—a/2
=1 — a/2-F* (k) > 1 — a/2-Fs*(1).

Hence Fy*(t) — F*(t) < a/2 for all ¢ & (f, sz) which 1mphes F(to) — Fo(te) £
a/2. Therefore F & U. For U = {F e §:|F*(ty) — Fy*(t)| < a} the assertion
follows similarly.

RemArk. The following example shows that the assumption of F, being non-
degenerate cannot be dispensed with: For n ¢ N, let

Fa(t) =0, t=0,
= {", 0<t<1,
=1, t = 1.
Let furthermore
Fo(t) =0, t <1,

=1, t=z1.
The family § = {F,, Fy, ---, Fy} is ordered (2) by Fi1<F;, <+ < F,
We have {F & &:|F*(1) — Fo (1)| <Y = {Fy} ¢ 3(Fy), but {Fy} 2 35(Fo),

for otherw1se {FeS:p(F, Fo) < ¢ = {Fo} for some ¢ > 0, which contradicts
the fact that (F.)..y converges to Fy pointwise and hence also with respect to
the metric p.

In the following we shall give two theorems on the existence of infima and
suprema for ordered families of distribution.

(1.5) ProprosITION. Let § be a family of distribution functions which is or-
dered (1). If there exists a distribution function Fy (Fs) such that F <
Fy (F > F;) for all F ¢, then there exists a distribution function
G1 (Gz), which is the 3w-supremum (3w-infimum) of &.

Proor. For all ¢ ¢ R, let G1(t) = inf {F(¢):F ¢ F}. G, is the infimum of non-
decreasing and upper semicontinuous functions and therefore nondecreasing
and upper semicontinuous itself.

We have for allt e Rand all F ¢ &:

Fi(t) = Gi(t) = F(1).
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Hence lim., ., G1(t) = 0, lim,, . G1(t) = 1. This implies the existence of some
p-measure, say P; , such that G1(t) = Py(— o, t]forallt ¢ R.
To establish that G, belongs to the Jw-closure of &, it suffices to show that for

any e > 0,anyn ¢ Nand any ¢, e R,7 = 1, - - - , m, there exists F ¢ & such that
|F(t:) — Gi(t:)] < efor¢ =1, -+, n. By definition of Gy, to any ¢ = 1, - - -,
n, there exists F; ¢ § such that 0 < F.(f;) — Gi(t;) < e. The assertion now
holds with F = max {F,, --- , F.}.

The proof for the existence of G, runs similarly, starting from the definition
Ge(t) = inf {F*(t):F ¢ 5.

If the family is ordered (2), the assertion of Proposition (1.5) can be sharp-
ened as follows:

(1.6) ProrosITION. Let & be a set of distribution functions which is ordered
(2)1[(2")). Then we have either inf {F(t):F ¢5} = 0 [sup {F(t):
F e3} = 1] for all ¢t € R or there exists a distribution function Gy [Gs]
which is the 3w-supremum (3Iw-infimum) of 5.

Proor. For all ¢ ¢ R, let Gi(t): = inf {F(t):F ¢ F}. The proof is the same as
that for Proposition (1.5) with the following exception: We have to show that
the existence of #) ¢ R with inf {F({,):F €5} > 0 implies lim,., Gi(¢) = 1.
Let € > 0 and choose F. ¢ & such that (1 — ¢/3)F.(t) < Gi(t). Furthermore,
we choose t. > t such that F(t) = 1 — ¢/3 and G, ¢ § such that F. £ G. and
(1 — ¢/3)G(te) £ Gi(t.). Then

1 — ¢/3 £ Gi(t)/Fe(t) £ G(h)/Fe(t) S Ge(te)/Fe(te)
= [Gi()/(1 — ¢/3)]/(1 — ¢/3).

Hence 1 — ¢ < (1 — ¢/3)® < Gu(t:). As € > 0 was arbitrary, this completes
the proof.

The proof for the second assertion proceeds correspondingly.

In addition to the topologies studied so far we shall consider the interval topol-
ogy, say 3r, induced in §. This topology is defined by the subbase

(1.7) ({(FeS:F>F),Fe5:F <F}:F:eQ, i=12).

We remark that this topology is in general finer than the interval topology of &
(which is defined with the additional restriction F; ¢ , ¢ = 1, 2.)
(1.8) PROPOSITION: 3; = 3y for any family of distributions which is ordered (1).
ProoF. 3r C 3w : We have to show that for any Foe &, F; e there exists
Ue3y with Foe U C {F eF:F < Fy}. As p is monotone (see Remark (1.3)),
this holds true with U = {F e F:p(Fo, F) < p(F,, F1)}.
3w C 3r: We have to show that Fy ¢ U ¢ 3 implies the existence of V ¢ 3;
such that Foe V C U. Let .

51={F€€F:FZU,F§F0}, §2={F€€F:F8U,F;Fo}.

If 5, = 5, = &, the assertion holds with V = . If §, % &, by Proposition (1.5)
there exists a distribution function G; which is Jp-infimum of &, .
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(1.9) ProrosrtiON. If a family of distributions is ordered (1) and connected
with respect to a locally connected topology 3 D 31, then 3 = J;.
Proor. To any U ¢ 3 with Fy e U there exists a connected set U, ¢ 3 with
Foe Uy © U. Hence it suffices to show that to any connected set U, e 3 with
Fo e Uy there exists V ¢ 3; such that Foe V < U,.
If § = {F, the assertion holds with V = &. Without loss of generality we
may assume §; = {(FeF:F < Fo} # . U FinUs = &, thenF = F + Fis
a partition into two disjoint 3-open sets: §; & 3; C 3. F; ¢ 3, for to any element
of 5, there exists a 3-neighborhood contained in F; : For Fj this is the neighbor-
hood Uy, for any F > F, the neighborhood {F £ §: F > Fy} £3; C 3. Hence
%1 # & implies the existence of F1eF1n Uy . If Fo = {F e F:F > Fo} = J, the
assertion holds with V. = {FeF:F > Fi}. AsV = {FeF:F1 < F £ F¢} and
F1, Fo € Uy, the local connectedness of U, implies V < U, . If F2 # &, there
exists Fz ¢ Ugn &, and the assertion holds with V = {F ¢ 5:F, < F < F}.
(1.10) ReMARK. If p is a ‘monotone’ metric such as p and d' (see (1.3) and
[3], Lemmma 6, p. 1223), any connected family of distributions is also
locally connected. Furthermore, monotony of p implies 3, D 3; .

(1.11) ProposiTiON. If a family of p-measures s ordered (2) and ¥ -connected,
then it s dominated.

Proor. We shall show that any %'-connected family B of p-measures
contains at most a countable number of degenerate p-measures. The as-
sertion then follows from [3], p. 1220, Theorem 3. Assume that P, is degenerate:
Pofte} = 1. If P = {Po} the assertion is trivial. Hence we may assume without
loss of generality that {PeB:P < Pg} # . For all P < P,, we have
P(—w,t) > 0 (for P(—,t) = 0 together with P(f,, ©) < Py(fy, ©») = 0
implies P{t} = 1 whence P = P,). If there exists a monotone sequence P, ¢
3'-converging to Py the relation P,( — ,t) | Po(— =, t;) implies the existence
of no & N such that 0 < P,,(— =, ty) < 1. Therefore the convex support of ng is
a nondegenerate interval containing ¢, (as P is ordered, no degenerate p-measure
of P can have its support in the interior of this interval). If P is connected, this
is the only possibility.

Hence, t belongs to a nondegenerate interval whose interior does not contain
the support of a degenerate element of . This implies that the number of
degenerate elements of P is countable.

2. Convergence and lifting of densities. It is well known (see e.g. [2], p. 352)
that a.e.-convergence of densities implies convergence in the first mean and
therefore J34--convergence of the pertaining p-measures. The converse is not true
in general. For sequences of p-measures which are ordered (2), however, 3,--con-
vergence implies a.e.-convergence of the densities. Even more can be asserted:
It is possible to choose a coherent system of densities in such a way that 34--con-
vergence implies convergence of densities everywhere except on the boundary of
the convex support of the limit measure. If the measures are mutually absolutely
continuous convergence of densities without any restriction can be obtained. For
monotone likelihood ratio families the densities may be chosen such that, in
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addition, the likelihood ratios are monotone whenever defined. This is the content
of the following Theorems 2.1 and 2.10 and the pertaining Corollaries.

Furthermore, it is shown that for an ordered (2) family of mutually abso-
lutely continuous distributions having continuous densities with respect to a
nonatomic o-finite measure which is positive on each interval, Jz--convergence
implies pointwise convergence of the continuous densities (Theorem 2.12).

We remark that it is impossible in general to describe a.e.-convergence of
densities by a topology. Each sequence of densities converging in measure to a
density contains a subsequence converging a.e. to the same limit. Hence whenever
convergence a.e. can be described by a topology, it coincides with convergence
in measure. This coincidence does, however, not hold true in general.

For any p-measure P/ we define P~ = {teR:F(t) = 0} and PT =
{te R:F*(t) = 0}. The set P* = P~ n PT is the convex support as defined in
[3], p. 1219, (12). If P is ordered (1), P < Q implies P~ € Q™ and P* D Q™.
We denote

tp~ = inf P* and tr" = sup P*.

(We shall write ?,”, ¢, " instead of {7, , tr, ,if no confusion is possible). The convex
support P* is the interval between ¢, and t»*. The boundary points belong to
P* iff they are of positive probability.

If B/ is an ordered family of p-measures endowed with a topology 3, we say
that a sequence (Pp)ny © P 3-converges from below (above) to Poe B, if
(Pr)new 3-converges to Py and P, < Py (P, = Py) for alln ¢ N.

(2.1) THaEOREM. Let /B be a family of p-measures which is ordered (2) and
dominated by a o-finite measure u/B. Then it is possible to determine
for each P &€ P a u-density p such that

(i) p(t) = 0 forte P~u P,

(ii) for any sequence (Pn)ney © B Jar-converging from below (above) to Pye P
we have liMaey pa(t) = po(t) for all ¢t £ty (t # t,*) and for all te R if
pits} > 0 (u{ta™} > 0).

If the members of B are mutually absolutely continuous, (i) holds for all t ¢ R.
(2.2) CoroLLARY. If P, is nondegenerate, Theorem (2.1) is even valid under

the weaker assumption that (Py)nexy 3u-converges from below (above) to Py .

Corollary (2.2) follows immediately from Theorem (2.1) together with
Theorem (1.4) and Proposition (1.1).

Proor. A. As P/9B is dominated and B is separable, there exists a countable
subset Q = {Q1, @z, ---} C P which is dense in P with respect to Jz» (see e.g.
Lehmann (1959), p. 352). For each @, , n ¢ IV, we determine a finite u-density Gn
such that ¢.(¢) = 0 forte¢Q,”uQ,". By Lemma 3.3 Qn < Q. implies

(2.3) Ga(1)/Gn(t) = gu(t)/qm(t) < G*(1)/Gn*(2)

for p-a.a. t ¢ R for which the expressions are defined. (G,/R is the distribution
function pertaining to @, ,n ¢ N.)
The set for which (2.3) is violated for some pair m, n ¢ N is the countable
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union of u-null sets and hence a u-null set itself. Hence we may put ¢.(¢) = 0
for all ¢ of this set and all n ¢ N. In other words: Without loss of generality we
may assume that (2.3) holds for all ¢ ¢ R for which the occurring expressions are
defined.

For any P ¢ P we define

Ay =P —U{Q:QePB and Q < P} and
T=pP*—-U{Q":QeP and Q > Pl.

There are three possibilities: (a) As" = &, (b) Ap* = {t»"}, (¢) Ap" is a non-
degenerate interval, ¥ = —, +. For P  Q we have Ap* n Ag* = . Hence the
set of all P& for which A,~ or Ar" is a nondegenerate interval is at most
countable.

For « = —, 4+ let $* be the set of all elements P ¢ P for which there exists
an infinite subset Np* C N such that (Q,,)MN; d” -converges to P from

below} for {* ~ 7 and such that {Q” <P for all n & Np*.
above * =+ n

For P & B*, let p*(¢) = limneys, ga(¢). According to Lemma (3.6) p*(¢) is
deﬁned for allt ¢ R and is a u- densﬂ;y of P. Th.lS implies p*(t) = 0 for u — a.a.
t e Ap". According to Corollary 3.7 the limit p *(t) is independent of the approxi-

Qn <
mating sequence (Q,,)MN; as long as {Qn > P for all n & Np*.

For P& B* » = —, +, let
Ap® = {te As:p"(8) > O},

Let A* be the union of all A,*, P & $*, for which A»* is a nondegenerate interval.
A* is the countable union of w-null sets and hence a u-null set itself.

AsQ is dense in P withrespect to 34 , wehave P = P~ u BT uQ. ForQ, ¢ Q
we define

(24) Ga(t) = 0, te ATUAT,
= g.(t), elsewhere.
For P ¢ B —Q, we have P ¢ B* for x = — and/or +. We define
(2.5) p(t) =0, te P~u PT,
= lim,,eN; Ga(2), elsewhere.

We remark that on account of Lemma (3.6), definition (2.5) is unique also
for Pe (B n PH) — Q.
B. We shall show that for P ¢ P*, x = —, +, we have

(2.8) P(¢) = limpy, §a(¢) for all ¢ # 2" and for all ¢ if u{ts*} > 0.
We shall give a proof for “—" only.
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(a) t € P*: Order (2) implies @," D P for all n ¢ N»~ whence ¢.(t) = $(2)
=O0forallne Np .

(b) te P*: If P &P — Q the assertion follows immediately from definition
(2.5). Therefore, let P ¢ Q. As t ¢ P* implies Fp(¢) > 0 and F»*(t) > 0 and
hence G,(t) > 0 and G,*(t) > 0 for all n ¢ N~ with n = n(t), say, we have
by (2.3)

(2.7) Fp(1)/Ga(t) S P(1)/4a(t) S F2*(8)/Ga™(1)

foralln ¢ Ny, n = n(t) for which $(t)/§.(¢) is defined. As 0 < Fp(1)/Go(t) <
w and 0 < Fp*(t)/Gn*(t) < « for all n e Np~, n = n(t), p(¢) = O implies
G.(t) = 0 and p(t) > O implies §,(¢) > 0 for all n e Np , n = n(t). Hence
(2.7) implies for n — 0 :p(?) = limayz ¢a(?).

()t <tp: I te U{Q:Q e P and Q < P} we have t ¢ Q,~ and therefore
n(t) = 0'for all sufficiently large n ¢ N» (see [3], p. 1223, Lemma 6, and p.
1220, Theorem 1). As $(¢) = 0, this implies the assertion.

Ift <t and te U{Q:Q e P and Q < P}, we have t £ Ap and Ap is a
nondegenerate interval. If t ¢ A~ u A the assertion is trivial. If tz A" u A™
we have limpey ¢a(f) = 0. As ga(t) = §.(1) for alln ¢ Np according to (2.4),
this implies the assertion.

(a), (b) and (c) together establish assertion (2.6) for ¢ = t . If u{tr"} > 0
we obtain furthermore that lima.y= ¢a(t»") = P(¢¢") from the fact that

litnar 4a()

is a u-density of P (see Lemma 3.6).

C. Now we shall show that the system of densities defined by (2.4) and (2.5)
fulfills assumptions (i) and (ii) of Lemma (3.6).

While (i) is trivial, (ii) may be proved by distinguishing a number of cases.
We shall give a proof for the first inequality and for P ¢ $7,Q ¢ B, P < Q, only.

If te A”uA™, the assertion is void. Let now t 24" u A™. If Fp(t) = 0,
we have Fqo(t) = 0 and the assertion is void either. (F» and Fq denote the dis-
tribution functions pertaining to P and @, respectively.) Let now Fp(t) > 0.
If $(t) = 0, the assertion is void or obvious. Therefore we may assume 5(t) > 0
which implies ¢ # P~ u P*. As P* © Q*, we also have t £ Q™.

For each n ¢ No© we have G.(t)/Fp(t) < Fo(t)/Fs(t). As (Qn)newg
d"-converges to Q, limneygy (Ga (t)/Fp(t)) = Fqo(t)/Fp(t). Therefore to an ar-
bitrary e > 0 there exists n(e) & No" such that

(2.8) Fo(t)/Fp(t) < Gu(t)/Fp(t) + ¢/2 for all ne No© with n = n(e).

Let n = n(e), ne No© be fixed. As lim ey Gn(t) = Fp(t) and Fp(t) > 0,
we may assume Gn(t) > 0 for all m & Np . "For all m ¢ N~ we have G, (t)/

Gu(t) £ Go(t)/Fp(t) and limmeys (Ga ()/Gu(t)) = Gu(t)/Fp(t). Therefore
there exists m(e, n) € Np such that

(2.9) G.(1)/Fp(t) = Gu(t)/Gn(t) + ¢/2for allm ¢ Np withm = m(e, n).
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As for each m ¢ N~ and each n ¢ No* we have Qn < Q. , (2.8) and (2.9)
together with (2.3) imply

Fo(t)/Fp(t) £ Gu(t)/Gm(t) + € £ §a(t)/Gm(t) + €

for alln &€ No* withn = n(e) and all m & N~ with m = m(e, n). According to
(2.6) we obtain for m — « and n — o

Fo(t)/Fe(t) < G(t)/p(t) + e

As ¢ > 0 was arbitrary, this implies the assertion.

D. Finally we shall show that for any sequence (Pn)mey C B d’-converging
from below to Py ¢ B, we have limpey Pn(t) = Po(t) for all ¢ % o and for all ¢ if
p{ts } > 0. (The proof for sequences converging from above runs similarly.)

As it suffices to consider those elements P, for which P,, < Py, we may
agsume without loss of generality that P, < P, for all m ¢ N. Furthermore
(Pm) meyy contains an increasing subsequence, determined by the subset Ny C N,
say. As limmey Pm(t) = limmey, Pm(f) by Lemma 3.6, we may assume that
(Pm)mey is increasing without loss of generality. Now we define a sequence
(Qnimy)mey € QO as follows: We have Pn < Ppy < Po. If Ppyae B, there
exists Q eQ such that P, < Q < Ppy1. If Ppyie B, there exists Q eQ
such that Pny < @ < Po. Hence there always exists Qu.m £€Q such that
Pm < Quimy < Py As (Pp)mey and (Qnimy) mew are both d”-converging to P,
from below and P, < Py, Qum < P for all m ¢ N, we have limu.y pn(t) =
liMmey Gn(my(f) by Lemma (3.6). As by (2.6) limmey Gumy = Do(t) for all ¢ = &,
and for all ¢ if u{t; } > 0, this implies the assertion,

If the members of P are mutually absolutely continuous, we have P~ = Q~
and Pt = Q" for all P, Q ¢ . This implies that limu.y $n(t) = Po(¢) holds
without any restriction: If, for instance, u{ts } = 0, we have &y ¢ Py = P,

for all n ¢ N and therefore po(ty ) = 0 = Pa(to ).

(2.10) TuEOREM. Let B/B be a monotone likelihood ratio family of p-meas-
ures whach is dominated by a o-finite measure u/B. Then it s possible
to determine for each P & P a density p such that

(i) p(t) = O forte P~ u P™,

(ii) for any sequence (Pp)ney © B d” -converging from below (above) to Py & B,
we have limp. po(t) = po(t) for all t £ tg~ (¢t # ty*) and for all t & R, if u{te} >
0 (uf{ts} > 0),

(iil) 4 P < Q, q(t)/p(t) is a nondecreasing function on the set of all t ¢ R
for which this ratio is defined.

If the members of B are mutually absolutely continuous, (ii) holds for all t ¢ R.

(2.11) CoroLLARY. If P, 7s mondegenerate, assertion (ii) of Theorem 2.9
holds even under the weaker assumption that (Pn)ney Ju-converges from
below (above) to Py .

We remark that Theorem (2.10) generalizes the lemma in [4].

Proor. For each P ¢ P we choose a u-density p such that the properties (i)
and (ii) of Theorem (2.1) are fulfilled. Let Q = {@:, @2, - - -} be a countable
subset of P which is dense in P with respect to Ja» . As P has monotone likeli-
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hood ratios (i.e. P is ordered (3)), to any pair Qm , @, £ Q with @ < @, there
exists a nondecreasing function Hn,.:R — [0, «] such that ¢.(¢)/qn(t) =
Hpn(t) p-ace. if g.(t)/gm(t) is defined.

Let

B = {t € Riqa(t)/qm(t) is defined and ¢a(t)/gm(t) # Hma(t)}.

Then B = U{Bn :m,n & N, Qm < Qu} is a u-null set and we may put p(t) = 0
for all t ¢ B, P ¢ P. The modified densities (which again will be denoted by p),
still have the properties (i) and (ii) of Theorem (2.1).

Let (@ )ney and (Qn" )new be subsequences of Q d"-converging to P and Q,
respectively. If P < @, we have Q. < Q," for all sufficiently large n. Hence
monotonicity of ¢.” (¢)/¢a. (t) (for sufficiently large n) and property (i) of
Theorem (2.1) together imply the monotonicity of ¢(¢)/p(t) on R — {tz7, o™,
to, te} whenever the ratio is defined. An easy discussion shows that the mono-
tonicity assertion holds on all of R.

ReMARK. That lim,.y p.(f) = po(t) for all ¢ ¢ R cannot be achieved in general
may be seen by an analysis of the following trivial example:

Let P = {Ps :9 ¢ [0, 1]}, where P is defined by its density with respect to
the Lebesgue-measure:

ps(t) = 0, if t=dort=149,
=1, if d<t<l+09.

In the situations met within statistics, dominated families of p-measures are
usually given by their densities. One among the possible families of densities is
usually distinguished: The author never saw the family of all normal distribu-
tions with variance 1 given by densities other than (2w)  exp [—i(z — )’ ],
—ow < u < . Hence the question usually is whether for a given family d’-
convergence implies pointwise convergence. The general result of Theorem (2.1)
that there always exists a family of densities for which d” -convergence 1mphes
pointwise convergence (everywhere with the possible exception of ¢z, t» )
does not help to answer this question. Hence it might be useful to have the
following theorem available.

(2.12) TuEOREM. Let B/B be a family of mutually absolutely continuous p-
measures which is ordered (2) and dominated by a o-finite measure
u/B, with the following properties:
(i) w{a} = 0forall a e R,

(ii) u(a,b) > O0foralla,be Rwitha <b.

If for each P & P there exists a continuous p-density, then d” -convergence implies
convergence of the continuous densities everywhere.

Proor. For P ¢ P let p be a continuous p-density. By continuity and assump-
tion (ii) p(t) = Oforp — a.a.te P u P*implies p(t) = Oforallte P~ u P*.
Furthermore, order (2) implies for P < @ (see Lemma (3.3.)):

(2.13) Fo(t)/Fe(t) < q(8)/p(t) < Fo*(1)/F2*(1)
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for p-a.a. ¢ ¢ R for which these expressions are defined. We shall show that (2.13)
holds for all ¢ £ R, for which these expressions are defined. Assume that Fo()/
Fe(ty) > q(t)/p(t) for some & & R (for which both expressions are defined).
Assumption (i) implies continuity of Fr and Fo . Hence there exists an open
interval, say (a, b), such that Fqo(¢)/Fs(t) > q(t)/p(t) for allt e (a,b). Because
of assumption (ii), this contradicts (2.13).

If (Pa)ney © P is a sequence d”-converging to Py ¢ B from below, we shall
show that limg.xy pn(t) = po(t) for all ¢ ¢ R. Without loss of generality we may
assume that P, < P, for all n ¢ N. As the elements of B are mutually abso-
lutely continuous, we have Py~ = P,~ and P,t = P, for all n ¢ N and there-
fore po(t) = pa(t) = Oforallte Py uPy" and alln e N. For ¢ € Po*, limpey pa(t)
= po(t) is a consequence of (2.13). (This can be shown in exactly the same
manner as in the proof of Theorem (2.1), Part B, (b).)

If (Pa)sew © P is a sequence d”-converging to Pq from above, it similarly
follows that lima.y p.(t) = po(¢) for all ¢ ¢ R. Hence for any sequence (P, )ncx
in B d”-converging to Py we have lim,.y pa(t) = po(t) for all ¢ & R.

3. A few lemmata.
(8.1) Lemma. 3o = 3 for any family of distribution functions.

Proor. The relation 3’ C 34 is an immediate consequence of the definitions
and the fact that d'(F1, F2) = d'(F,*, F,*). It remains to show that to each
FoeF and each V = {F e 5: d'(F, F,) < € there exists U ¢ 3’ such that

(3.2) FeUcCV.
Let agp = — and define aryy = sup {a e R:Po(ar, a) < ¢/3}, k =0, 1,
2, -+ . We have Po(ax, ar+1) = ¢/3 and Po(ar , ax1a] = ¢/3. As Po(ao, ai] =

Z,:l Po(a,_l , 0] = k-¢/3 there exists K ¢ N such that agy = «.
We shall show that (3.2) holds with

U={Fe5:|F(a) — Fo(ax)| < ¢/3 and
|F*(ar) — Fo*(a)| < ¢/3 for k =

K}.
For any ¢ ¢ R there exists k ¢ {0, - -+ , K} such thata; < t < apq1 . If F’o(t) =<
F(t), FeU 1mphes 0= FQ1) — Fo(t) S P(—o, arp) — Po(—x, a] =
Fo*(ar41) — F*(ars1) + Po(ar, ars1) < 2-¢/3. If F(t) < Fo(t) and F ¢ U, we
similarly obtain 0 < Fo(t) — F(t) £ 2-¢/3. Hence F ¢ U implies |F(t) —
Fo(t)] < 2-¢/3 for all t ¢ R whence d'(F, Fo) < 2-¢/3 < .
(3.3) Lemwma. Let P/B and Q/B be p-measures with P < Q in the sense of
order (2). Let p and g be densities of these measures with respect to a
dominating o-finite measure u. Then we have

Fo(t)/Fe(t) = q(8)/p(t) < Fo*(8)/Fp*(t)

for p-a.a. t € R for which these expressions are defined.
Proor. We shall give a proof for the first inequality only. Without loss of
generality we may assume that u(a, b) > 0 for all a, b ¢ R with a < b. (For
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otherwise p may be substituted by a dominating measure with this property,
say ». If the v-densities have the asserted property »-a.e., the u-densities have
the asserted property up-a.e.). Let p and ¢ be u-densities of P and @, respectively.
Then we have

(34) limp,o P[t, t + h)/ult,t + k) = p(t) u — ae.,
limp.o QI ¢ + A)/ult, t + h) = q(t) w — ae.
From [3], p. 1221, Lemma 3 we obtain
(3.5) Fo(t)Plt,t + h) < Fe(t)Q[t,t + h) for all t ¢ R and all A > 0.

(Lemma 3 immediately implies (3.5) for the case P[t,t + ~) + Q[¢, ¢t + h) > O.
If Plt,t + h) = Qt, t + k) = 0, the assertion is trivial.)
As plt, t 4+ h) >0 for all te¢ R and all » > 0, (3.5) together with (3.4)
implies
Fo()p(t) = Fr(t)q(t) u-ae.

(3.6) LumwmA. Let B/B be a family of p-measures which is ordered (2) and
dominated by a o-finite measure p/B. Let Bo C P be a subfamily such
that it s possible to determine for each P & Py a p-density p with the
following properties:

(i) p(t) = Oforallte P~ u P™,
(ii) P < Q, P, Q £ By, implies

Fo(t)/Fp(t) < q(t)/p(t) < Fo*(8)/F5*(t)

for all t € R for which these expressions are defined.

Let (Py)new and (P )nex be subsequences of Bo which d” -converge to Py e P
from below and above, respectively, such that P, < Pyand P,” > Pyforalln ¢ N.
Then the corresponding sequences of densities, (Pn )ney and (Pn Ynew comverge for
all t € R and both limit functions are densities of Py . Furthermore limaey p’ (1) =
liMney pa” (t) for all t & Po*.

(8.7) CoroLLARY. The limit of the sequence of densities is the same for all
sequences (Pp)new 0f PBo d’ -converging to Py from below (above) with
P, < Py(P, > Py) for allm ¢ N.

Proor. (1) Convergence will be proved for (p, )ey only, as the proof for
(pa" Ynew is dual. For reasons of notational convenience, we shall omit the dash
in this and the following section (2).

(a) t & Py~ u Py*: In this case, Fo*(t) > 0 and therefore F,*(t) > 0 for all
n = n(t), say. Therefore we also have F,*(7) > 0 for all n = n(t) and all
T =t

According to [3], p. 1220, Theorem 1, and p. 1223, Lemma 6, to any m ¢ N
there exists N(m) = m such that P, < P, < P, for all n = N(m). Hence
m = n(t),n = N(m), 7 =t together with assumption (ii) implies

(388)  pa(n)/Pn(r) S FN(7)/Fu’ (1) S Fu*(1)/Fa" (1)
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whenever p,(7)/pm(7) is defined. From (3.8) we obtain for n — «
(3.9) FX(t) im suppey pa(7) < Fo () pm(7).

(If pm(7) =0, (3.8) implies p,(7) = 0 for all » = N(m) and (3.9) holds
trivially.)
Form — o and 7 = ¢, (3.9) implies

Fo*(t) im supney pa(t) < Fo'(t) lim infrey pa(t).

As Fo*(t) > 0, this implies the existence of limuey pa(t).
(b) ¢t £ Po™: As P, < Py for all n ¢ N, we have P,™ < P," and therefore ac-
cording to assumption (i) p.(¢) = O for all n ¢ N. Hence limacy pa(t) exists.
(2) Now we shall show that lim,.y p. is a density of Ps .
(a) t € Po~ u Po*: (3.9) implies

Fo* (1) [ o liney pa(r)u(dr) £ Fo*(O)Fm(t) < Fo*(1).
Form — « we obtain from Fo*(t) > 0:
J o, liManew pa(7)u(dr) < 1.
This relation holds for all t ¢ Pq~ u P,* whence
(3.10) Jpomupyr limaey pa(r)u(dr) = 1.

On the other hand, if p, is any density of Py, we have from Lemma (3.3)
for p-a.a. t e Py u Po* and all sufficiently large n:

po(8)/pa(t) = Fo'(8)/F"(1),  or  po(t) = pa(t) = 0.

In both cases we obtain

po(t) £ limgey pa(t) for p-a.a. t e Po~ u Py,
and therefore

1 = [p-upye Po(T)u(dr) £ [p-ype* lidney pa(7)n(dr).

Together with (3.10) this implies

limaey pa(t) = po(t) for u-a.a.te Pg” u Py’

(b) t e Py*: The relation P,™ D P," implies p.(t) = O for all n & N. As

po(t) = 0 for p-a.a. t &€ Py", we therefore have

limuey pa(t) = po(t) for p-a.a. t e P,".

(3) Finally we shall show that limuey pa (£) = limgey pa” (£) for all ¢ & Po*.
If ¢t ¢ Py* we have Fo(t) > 0 and Fo*(t) > 0. Hence for all sufficiently large
m, n we have F,. (t)-F." (4) -Fu'*(t)-F,"*(t) > 0 and therefore by assumption
(ii)

(3.11)  FS(O/Fa () < p (8)/pw (t) S Fu"*(£)/F*(t)



TOPOLOGY AND CONVERGENCE IN FAMILIES OF DISTRIBUTIONS 65

whenever pn"(t)/pm'(t) is defined. If p,,"(t) > 0 and p, () > 0 for all suf-
ficiently large n and m, we may take the limit forn — « and m — o in (3.11).
Using the result of (1) we immediately obtain the assertion. If p,”(¢) = 0 or
P (t) = 0 for infinitely many n or m, respectively, F, (¢)-F."(£)-Fn *(t)-
F."*(t) > 0 for all sufficiently large m and n together with (3.11) imply p." (¢)
= pn (t) = 0 for almost all n and m and the assertion is void.
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