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MIXED FACTORIALS
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1. Summary. This paper extends and unifies the use of Galois or finite fields
in mixed factorials utilizing concepts of ring and ideal theory. A method of com-
bining elements from % distinct prime fields is presented and its use indicated in
formulating properties of treatment combinations and effects in a mixed factorial.

2. Introduction. White and Hultquist (1965) have given a technique to com-
bine elements from distinct finite fields. Their method consists essentially in
defining addition and multiplication of elements from two distinct finite fields by
mapping these into a finite commutative ring containing subrings isomorphic to
each of the fields in question. It was indicated that their method could be gen-
eralized but no general approach was presented in their paper. The aim of this
paper is:

1. To provide a new and equivalent theoretical basis for the results obtained
by White and Hultquist (1965).

2. To generalize the technique of combining elements from two fields to &
finite fields.

3. To illustrate the use of the technique under point 2 in deriving properties of
the general mixed factorial.

3. Combining elements from distinct prime fields. Let pi, p2, -+, px be k
distinet primes and GF(p1), GF(ps), -+, GF(p:) the corresponding Galois
fields, i.e. each GF (p;) consists of the residue classes of integers modulo the prime
p;. Alsolet p = [ %=1 p; and R(p) be the ring of residue classes of integers modulo
p and I(w) be an ideal generated by an arbitrary element w of R(p). We are now
ready to prove the following:

LemMa 3.1. The elemenis of the form a; = H',;jpi — p; = ¢; — p;, (where
¢; = 1154 ps), in the ring R(p) are prime to the number p and hence a; " exists in
R(p) forj = 1,2, --- , k. In other words the a;’s belong to the multiplicative group
of mon-zero divisors in R(p).

Proor. By inspection a; and p have no common factor, hence a; is prime to
p, which implies the existence of a;, "inR(p) forj =1,2, -, k.

Levma 3.2. The elements of the form b; = ci-a; " = 1 + pyra; ,j = 1,2,
<o+, k, in R(p) are idempotent.

Proor. We must show that b = b; + r-p, i.e., b’ — b; = r-p, where r is an
element of R(p). Now, b — b; = b;- (b; — 1) = b (pjra; ") = (1 + vj-0,")-
pira; = (a5 + p)-a; piait = ¢rpira; = a7 -p = r-p. where r = a;
exists in R(p) by Lemma 3.1.
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LemMA 3.3. The product b;-by« = 0 in the ring R(p) if 7 = 5%, 7 and 7* taking on
the values 1, 2, - - , k.

Proor. Without loss of generality let p; = p; and p;+ = ps, since they can be
brought in those positions, then: by-by = ¢-as *-ca-as ' = cr-ar - (pr- | Lfs i) -
a = prar=rp=0,wherer = a; "-ay " [ [Fs i

LemMA 3.4. The element b; of Lemma 3.2 generates the tdeal 1(b;) in the ring
R(p), which annihilates the ideal I(bjs) if § # 7, 7 and §* taking on the values
1,2, -,k

Proor. An element of the ideal I(b;) in R(p) is of the form 7-b;, where
r & R(p); similarly any element of I(b;s) is of the form r* b+, 7* ¢ R(p). Hence
the product (7-b;) - (#*-bje) = 7-7*-b,;-b;» = 0, by Lemma 3.3.

Lemma 3.5. The ideal generated by the element p; in R(p) annihilates the ideal
I<b1))j = 1) 2: ) k.

Proor. The proof follows directly from the fact that p;-b; = pj-c;-a; | =
p-a; ' = 0in R(p).

Lemma 3.6. The multiplicative identity element of the ideal I(b;) of Lemma 3.4 is
bi)j = 1)2) )k'

Proor. Let d = 7-b; be an arbitrary element of I(b;), where r ¢ R(p), then
bj-d = bj-r-b; = r-b/ = r-b; = d, by Lemma 3.2.

LemMa 3.7. The multiplicative identity element 1 of the ring R(p) is the sum of the
multiplicative identities of the I1(b;)’s, ie. 1 = 2 5ab;.

Proor. First of all we have

Tiwa; = (=)™ 275 ¢ and
Skl (Il ad] = (=1 (& — 1)- 25 e

Hence

Il

2ha(l4ap) = k4 2iaa

[P EY RGP BING § LR )

EA (=D (= 1)- 2506 (=D 25 e
=4 (k=1 (=1)=k—Fk+1=1 QI.D.

25 b

TureorReEM 3.1. The ring R(p) s the direct sum of the ideals I1(b;)’s, i.e.
R(p) = D @ Iby).

Proor. By Lemmas 3.2, 3.3 and 3.7 we have respectively b = b;,b;-be =0,
j#55 and1 = >t b, . Hence it follows immediately from van der Waerden
[(1950), page 147], that the theorem is true.

Lemma 3.8. The field GF (p;) 1s isomorphic to the ideal I(b;),j = 1,2,---, k.

Proor. For z ¢ GF (p;) and y € I(b;) define the mapping o:GF (p;) — I(b;) by
o(z) = b,-z. Obviously ¢ is 1:1 and onto and for @; and x» ¢ GF (p;) and y and
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y2 € I(b;) we have
o + @) = by (w1 + 22) = bjoa1 + bj 22 = (1) + o(x2)
=%+ h;
o(z @) = bj(zr-a) = b (ar-a) = (bj-a1)- (b2

a(x1) () = y1°ys.

Hence ¢ is an isomorphism and GF (p;) is isomorphic to I(b;).
DeriniTioN 3.1. Define addition and multiplication of elements from distinct
Galois fields z ¢ GF (p;) and z* ¢ GF (p;) by the rules

z+2¥ = o(z) + a(x*),‘
-zt = o(z) o(z").

DEerintTION 3.2. If r ¢ R(p) and z ¢ GF(p,) then we define the addition and
multiplication of z and r by

x4+ r=9dx) +r, zr = oa(z) .

TueorEm 3.2. The ring R(p) s the direct sum of the GF(p;)’s, i.e.
R(p) = 251 ® GF(p;).

Proor. The proof follows directly from Theorem 3.1, Lemma 3.8 and Defi-
nitions 3.1 and 3.2.

4. Applications to mixed factorials. Consider the mixed factorial 22 X 3 X 5,
i.e.two factors at two levels, one factor at 3 levels, one factor at five levels. In this
example, three finite fields are involved, namely GF(2), GF(3) and GF(5). The
b;’s of Lemma 3.2 are calculated as follows:

by =35(35—2)"=15-13)"" = 157 = 105 = 15 (mod. 30),
by = 2:5(2:5 —3)"" =10- (7)™ = 10-13 = 130 = 10 (mod. 30),
by =23(23—-5"= 6-(1)" = 61 =6 (mod. 30).

The ideals generated by the b;’s and the mapping of the GF(p;)’s into these
ideals are found using Lemma 3.8.

GF(2) I(15) GF(3) 1(10) GF(5) 1(6)
0 . Jo 0 0 0 0
1 7 s 1 2 {10 1 6
2 20 2t % {12

3 18

4 24

Using Theorem 3.2 we see that the ring R (30) = GF (2) @ GF (3) ® GF
(5),i.e.
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GF(2) + GF(3) + GF(5) =1I(15)+ I(10) + I(6) = R(30)

0 + 0 + 0 = ¢(0) + ¢(0) + ¢(0) = O

1 + 1 + 1 =¢(1) + (1) + o(1) = 1

0o + 2 + 2 =090 +a2) + 2 = 2
etc. ete.

The classical way of writing out the set T' of treatment combinations in any
mixed [ % p/"7 factorial is using (D_j— m;)-tuples z = (zu, 212, *** , 2im;
Za1, Ro2, ", Rumgs REL, RR2, "°° zkmk)? ZjiSGF(})j), .7 =1, 2,---, k’
i=1,2,---,m;. Using Lemma 3.8 and Theorem 3.2 we can equivalently work
with a new set of treatment combinations consisting of (>_%_1 m;)-tuples of the
form Yy = (y117 Yz, * s Yimy s Yo, Yoo, " 5 Yome s * 00y Ykt Yk2 "7 ykmk)y
where y;; ¢ I(b;),7 = 1,2, -+, k, ¢ =1,2,---,m;. Thus in our 2?X3X5

mixed factorial the two equivalent representations are

T ={2= (2u,22,2,2n)} N ={y= (yu, 92, yn, y)}
0 0 0 0 0 0 0 0
0 1 0 0 0 15 0 0
1 0 0 0 15 0 0 0
1 1 0 0 15 15 0 0
0 0 1 0 0 0 10 0
0 1 1 0 0 15 10 0
ete. ete.

The following lemma relates to the algebraic structure of N.

Lemva 4.1. The set N of (D 5-1m;)-tuples y = (yu Yz, *** » Yimy, Y21
Yoo, cy Yomgy "y Yk, Yk2y " ykmk) with yji€I<bj), .7 = -l-) 2) ) k;
2 =1,2 ---,m;, form a submodule N of the module G consisting of (D% my)-
tuples over the ring R(p).

This lemma enables us to carry out operations with the new treatment combina-
tions within the submodule N or the larger module G. After having performed the
desired operations, the results can always be brought back in the context of the
classical treatment set T

The usual way of writing out the effects in a mixed factorial is done utilizing a
subset of (2_%5_1 m;)-tuples from 7. An effect in classical notation is of the form

* * * * * * * * *
A4 - AfnllmlBlan;w . Bfrf{” oo KPR KyRe e Kfrfkmk,

where the (D_5_y m;)-tuplez” # 0is an element of T with the understanding that
2" represents the class {(pl-zfl P, pl-zfml , P2-2a1, p2-Zae, s pz-z’gk,,,2 ,
e pEeZEL, PkZhe, pk~zfmk)}, p; being a non-zero mark of GF(p;).

Thus in our 2° X 3 X 5 factorial the effect A14,B = A,'4,'B'C° represents the
class {A4,'4,'B'C°, 4,"4,'B*C°} = {A:A,B, A:A,B%.

Now denote the set of superseripts of the classical effects by the letter E and
denote the subset in N corresponding to E by the set F, then clearly F is a new
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and equivalent representation of the effects in the mixed factorial. An element in

F now r(ipresents the*CIaSS {fy*} = {p'y;kl) P'yTZ y "t p'y;kﬂn ’ P'Z/;kl ) P'y;kz,
e D Ymmg sttt P Yk, P Yk2, " 5 P Yimy)}, Where pis an element of the multi-

plicative group of ¢(p) non-zero divisors in R(p), ¢ being Euler’s function. This
last statement follows directly from the following lemma.

LeMMA 4.2. The ideal I(b;) is mapped into itself when all its elements are multi-
plied by a fized element of the multiplicative group of non-zero davisors. (In other
words, the multiplication produces an automorphism of I(b;)).

In the mixed factorial 2° X 3 X 5 we now have the following explicit corre-
spondence between the effects in classical notation (i.e. the set F) and the new
notation given by F.

E={= (211, 212, 2ot 231) F={y* = (11, y’fz ) .7/31 , Ya1)}
A; = 4,'4,°B°C° A = 4,°4,"°B°C°
A, = A,°4,B°C° 4" = 4,°4,°B°C°
A4, = AVA'BC A4° = 4,°4,°B°C°
B = A, 4,’B'C° B = A4,°4,’B°C°
A,B = A/A,B'C° A®B® = A4,°4,B"C°
A,B = A A,'B'C° A°BY = A,°4,°B"°C°
ete. ete.

Also implicit here is the fact that for example the effect A1°A4,"°B" in F represents
the class {A;°4,°B"C°, A,°4,°B®}. All operations with the elements of /" can
now be carried out conveniently within the treatment module N or within the
larger module & and if desirable one can always go back to the classical notation
after obtaining the results. An operation of fundamental importance in our ex-
ample is the concept of generalized interaction of two effects in F. Thisis given by
the product:

A4 EBRCYE X At gt

Aewt e w4 Aputohewts phivk Fho-vd vl e vl
= {All 11 21’11[]_21?112 Y1 B 1Yy TAZ Y (YR 31}

where )\, and \; are elements of the multiplicative group of non-zero divisors in
R(30), i.e. \; and \; take on the values 1, 7, 11, 13, 17,19, 23, 29. As an example,
consider the generalized interaction

Allf)CG X A115A2IEBIO — {A215BIOCG, A215B2006, A215BIOCI2, A215B2OCI2, A215B10018.
15 7520 18 15 110 ~24 15 1520 24
A°B®C”, A,"B7C”, 4,°B7C™}
— {A2p~lﬁBpo100p~6} — A2ISBIOCG,

since 4,°BC" represents the class {4, °B*°C*"*}.
Before we extend the usual definition of the level of an effect of the symmetrical
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factorial [e.g. see Federer (1955)] to the mixed factorial, consider the set of ideals
{I(b1), I(bs), -+, I(bx)} and all possible direct sums of subsets of this. We know
(e.g. see van der Waerden (1950), that these direct sums are ideals in R(p). A
direct sum of a subset of r ideals I(b;,) ® I(b:,) @ --- @ I(b;,) is generated by
the greatest common divisor of the elements b;, , by, , - -+ , bs, . Some examples for
the 2° X 3 X 5 factorial are the following:

I(15) @ I(15) = I(15) = {0, 15},
I(15) @ I(10) = I(5) = {0, 5, 10, --- , 25},
1(15) @ I(15) & I(10) ® I(6) = I(1) = R(p)
= {0’ ]_, 2’ e 29},

ete.

In the mixed factorial 2° X 3 X 5 the number of levels of factors A; and A4, is
two, each level being an element of the ideal I(15). Similarly the factors B and C
have three and five levels, the levels being defined as the elements of the ideals
I(10) and I(6) respectively. A product of factors has its levels defined in the
direct sum of the corresponding ideals and the number of its levels is equal to the
order of the direct sum ideal. For example the number of levels of the product
A4; X B is equal to six, each level being an element of I(15) + I(10) = I(5).

The zth level of an effect in F consists of a set of treatment combinations in N
defined by the module equation:

(Al”'“A;"” ~~-A1’,:l“"xB1"*“B2”'” . Bg;;mz v KYTREY L Kg:kkmk)i
= {?/11,2/12, oy Yimg s Yor, Yoo, 0ty Yomg s 5 Yk, Yrey c 0, ykmk)I
?/11'2/’1':1 -+ .7/12'.1/?2 + -+ ylmk'yfml + y21'?/;k2 + ?/22‘?/:2 + -+ yZmz'y;kmg
+ -+ ykl'yltl + %2'2/:2 + -0+ ykmk'y;:mk = 1}
where 7 is an element of the direct sum of the ideals corresponding to the factors
with non-zero yfi’s,j =12 ---,ki=1,2,---,m;.
For example the 10 treatment combinations comprising the 5th level of the
effect 4:"°B° = (4:°B)s = {(yu, Y12, Y1, Y1)t 15yn + 10yn = 5}
= {(150200), (151520 0), (15020 6), (151520 6), (15 0 20 12),
(15 15 20 12), (15 0 20 18), (15 15 20 18), (15 0 20 24), (15 15 20 24)}.

In classical notation this set corresponds to {(1020), (1120), (1021),
(1121),(1022),(1122),(1023),(1123), (1024), (1124)}.
In the same way levels of other effects can be found and rewritten in classical

notation.

5. Discussion. All the results in this paper are a consequence of Dedekinds theo-
rem [mentioned in van der Waerden (1950), page 149], which states that “Every
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commutative ring without radical satisfying the minimal condition is a direct sum of
commutative fields, which mutually annihilate one another.” The principal contribu-
tion of this paper was the identification of the b;’s, which led to the mutually an-
nihilating finite fields. The ideas developed in Section 4 are straight forward ex-
tensions of concepts encountered in symmetrical factorials. Hence the theory of
mixed factorials has been unified with the theory of symmetrical factorials, this
last one being now a special case.

Finally, confounding plans and fractional replicates of the mixed factorial and
also “mixed” lattices can now be easily constructed utilizing the results of the

paper.
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