The Annals of Mathematical Statistics
1969, Vol. 40, No. 3, 1106-1108

MONOTONICITY OF THE VARIANCE UNDER TRUNCATION AND
VARIATIONS OF JENSEN’S INEQUALITY!

By Y. S. Cuow axp W. J. STuDDEN
Purdue University

Let X be a random variable and ¥ = X1z for —o < b < . Then it is
easy to construct examples for which o’X < o*Y; e.g. take X = b £ e with
probability ¥ where ¢ < b. However if ¥ = min (X, b) then we always have
o’X = o'Y. The essential difference is that we are now replacing any value
X > b by b instead of 0. Similarly if ¥ = max (@, X) or max (@, min(X, b))
then ¢*X = ¢”Y. The main result in this note is Theorem 2 and Corollary 4 which
contains a proof of a conditional version of the above result which was used in
[2]. We will prove the above facts and some of their generalizations which provide
intermediate terms in Jensen’s inequality; see Corollary 1. The results and the
methods of proof given below are actually special cases or slight modifications
of more general inequalities involving duals of cones of generalized convex
functions. See for example Karlin and Novikoff [3], Karlin and Studden [4],
Ziegler [5], Barlow, Marshall and Proschan [1] and references therein. The
methods used below are quite elementary and produce the desired results without
recourse to dual cones.

TareorEM 1. Let h and g be two Baire functions on the real line and X a random
variable such that (a) g is nondecreasing, (b) Eg(X) and Eh(X) exist and
Eg(X) = Eh(X), (c) the function h — g has one sign change from negative to
positive, i.e., there exists ty such that (h(t) — g(t))(t — &) = O for every t. If
Eo(h(X)) and Ep(g(X)) exist, then

(1) Eo(h(X)) 2 Ee(9(X))

for all continuous, convex ¢ on (— o, o).
Proor. By the convexity of ¢,

(2) e(h(1)) — e(g(t)) Z ¢ (9(1))(h(t) — g(1)),

where ¢’ denotes the right (or left) derivative of . If ¢ > £, then h(¢) — g(¢) = 0
and ¢'(g(t)) = ¢'(9(t)), so that

(3) o(h(t)) — e(g(t)) = ¢ (g(to))(h(t) — g(t)).

The above equation also holds for ¢ < ¢, since A(t) — g(t) < 0 and o (g(t)) <

¢ (g(t)). Therefore (3) holds for all ¢. (1) follows immediately from (3).
CoroLLARY 1. Suppose that f is nondecreasing, ¢ s continuous, convex and for a

random variable X, EX and Ef(X) exist, and t — f(t) + Ef(X) — EX has one
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sign change from negative to positive. Then
(4) Eo(X — EX) 2 Eo(f(X) — Ef(X)),
(5) Eo(X) 2 Bo(f(X) — Ef(X) + EX) 2 ¢(EX),

provided that all the expectations tnvolved in (4) and (5) exist.

All of the inequalities in (4) and (5) follow from (1) by taking the obvious
choices of ¢ and A in Theorem 1. The last inequality in (5) also follows from
Jensen’s inequality ; however, if we apply (1) by taking A(¢) = f(¢) — Ef(X) +
EX and g(t) = EX then the two extremes Ep(X ) and ¢(EX) result in Jensen’s
inequality. The interesting aspect of (5) is that it produces intermediate terms
between the two extremes. Note that ¢(EX) is attained for f(¢) = constant and
Eo(X) results if f(t) = t + constant. Useful particular. cases of (4) and (5) are
provided by:

CoroLLARY 2. Equations (4) and (5) hold for

f(¢) = fa,b(t) = b, t=b

(6) =t a<t<b,
=a  t=aq

where —0 S @ =<b=< x,(a =0 x)or

(7) f@&) =f(t) =¢ct, O0=c=1

Moreover, Eo(fop(X) — Efsp(X) + EX) is nonincreasing in a, nondecreasing
in b, and continuous in both variables; while Eo(f.(X) — Ef(X) 4+ EX) s
nondecreasing and continuous in c.

CoroLLARY 3. If E|X|* < o for some a = 1, then

(8) E|X — EX]" 2 Elfos(X) — Efas(X)[%

where f, 5 18 given by (6).

As mentioned earlier the motivation for this note was in proving a conditional
version of (8). This is the content of the following theorem. Various other exten-
sions can be established by the same methods.

TuroreM 2. Let G be a o-field of measurable sets and a, b be G-measurable random
variables. Define X, = max (a, min (X, b)). If E|X| < o, E|X,3| < « and
Eo(X) exists for a continuous, convex function ¢ on (— o, o), then almost every-
where

(9) E(p(X)|G) 2 E(e(Xap — E(Xap|G) + E(X[G))]9),
(10) E(o(X —E(X19))]9) Z E(e(Xap — E(Xap|9))19).
Proor. By (3),
(X —E(X|G)) —e(Xap — E(Xap|G))
2 o' (V)X — B(X|G) — Xap + E(Xan | 9)),
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where
Y =a+ EX|G) — E(Xap|G), if EX|G)=EXup|9),
b+ E(X|[G) — E(Xepl|g), if E(X|G)>E(X.s|G).

Put 4 = [|Y]| < M]for0 < M < . Then A ¢ G and on 4, (10) holds; letting
M — oo, we have (10). The proof of (9) is similar.
CoroLLARY 4. Under the assumptions of Theorem 2,

E(X —E(X[9))19) 2 E((Xap — E(Xap [G))]6),  ae.
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