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EFFICIENT ESTIMATION OF A PROBABILITY DENSITY FUNCTION

By James Pickanps II1
Virginia Polytechnic Institute

1. Introduction. The problem of estimating a probability density function
has received a considerable amount of attention in recent years. In particular,
there has been extensive interest in estimators based on weight functions.
Specifically, let

(1.1) fa@) = 07 Xia V@ — X;),

where for each n, ¥, (z) is a square integrable function,and X;, 1 < j < n, are
the sample values. See, for example, Parzen [6], and Watson and Leadbetter [7].
To evaluate an estimator a “figure of merit” is needed. The usual one is 1,2
where

L} = 2rE [2,|fu(x) — f(x)] de.

If f(x) & Ly, then I, is necessarily finite, since f,(2) ¢ Ly, by the assumption
that the functions ¥, (z) ¢ L, . By the Parseval Identity,

L) = B [Za]$.(t) — @) dt,
where ¢, (¢) and ¢ (t) are the Fourier transforms of f, (z) and f(z) respectively.

For this reason in studying the asymptotic efficiency, it is convenient to work
with Fourier transforms. But

qgn (t) = A, (t)ﬁsn (t)
where
Bat) = 17 Tl o™

and A, (¢) is the Fourier transform of ¥, (z). We call this the empirical charac-
teristic function. Since &, (t) is not necessarily positive definite, f,(z) is not
necessarily non-negative. Observe, though, that I,” can be reduced by replacing
fu () with 0, whenever it is negative.

If lim,.e I,* = 0, we say that the estimator sequence is consistent, or more
explicitly, that it is consistent in mean square. Conditions for consistency are
well known for those estimators which are commonly used. See [7].

For any given characteristic function ¢ (¢), the function A, (¢) can be so chosen
as to minimize I,’, as shown in [7]. We define

J.' = min I,
where the minimum is taken over all possible functions 4, (¢). This makes possible
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a definition of efficiency. Specifically
eff. = limp.oJ. /10

where I, is the integrated squared error of the given estimator, and J, is, of
course, as defined above.

The efficiency problem is much more difficult for the problem of estimating a
probability density function, than it is for the common problem of estimating a
vector-valued parameter. In the latter case, it is usually possible to find estimator
sequences which are simultaneously efficient for all possible true values of the
parameter often excepting a subset which has Lebesgue measure zero. See, for
example, Bahadur [1]. Examples are Maximum Likelihood, and BLUE esti-
mators. In the former case, an estimator sequence, which is efficient for one
density function, may very well have zero efficiency for another one. Obviously,
this complicates substantially the problem of choosing an estimator. The same
problem arises in estimating a spectral density function. See, for example, Parzen
[4] and [5], and Lomnicki and Zaremba, [3].

In Section 4, we consider a family of estimator sequences in which the choice
of function 4., (¢) is allowed to depend upon the sample values. Its members have
a weaker form of efficiency than mean-square efficiency, although this efficiency
holds simultaneously for all density functions belonging to a wide class. In par-
ticular, for such a sequence, and for any characteristic function in the class,

(1.2) Ve< o, limg.eF min (¢, X,2/J,0) £ 1,

where
an = *:w Irﬁn(t) - ¢0(t)l2 dt.

Sections 2 and 3 contain a reformulation and extension of the study of the
efficiency of estimators, wherein the function 4, (¢) is not dependent upon the
sample values. The results are needed for the development of Section 4.

2. Minimum mean squared error. In this section we examine the asymptotic
behavior of J,%, the infemum of all possible values of I,>. This is called the
MISE (Mean Integrated Squared Error) by Watson and Leadbetter [7]. They
have shown that

(2.1) Jid = [Za (1 = le@®Ple@dt/ (1 + @ — Dle@)).

We begin by defining the following classes of characteristic functions.

DerinrrioN. The characteristic function ¢ (¢) is said to belong to the class
Couy 1 < @ £ o, iff limiw 9 log o (t)|*/0t = —a.

For finite «, the class of characteristic functions of algebraic decrease is
defined in [7] to be the class of all of those characteristic functions, which are
such that |¢ (¢t)* ~ C£ %, ast — . Provided also that d¢ (t)*/0t ~ —aCt™ ™,
as t — o, such a characteristic function also belongs to the class C,. On the
other hand, the class C, also contains some characteristic functions which are
not of algebraic decrease. For example, ¢ (¢) € Cy if |0 (t)]> ~ C¢* log ¢, and
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e @)|* /ot ~ —aCt ™ log ¢, as t — o, where 0 < C < . The distinction
between the two classes for a finite value of « is from a practical point of view a
very slight one, however.

The class C, is very general, including, for example, characteristic functions
for which |¢ (¢)[* ~ Cyexp (—Cyt*), as t — «, where0 < C: ,Ceya< o o) ~
Crexp (—Cot* — Ct’), ast — o, where 0 < C; ,Ce, Cyya,8< o, or o) ~
Cit" exp (—Cyt’), ast — o, where 0 < Ci, C; ,a, 8 < « and the derivatives have
the obvious corresponding relations. Some of these cases might arise from
convolutions.

TrEOREM 2.1. If ¢(t) £Cay, 1 < a £ o, then,
2.2) Ik~ 0" Ry as n— «,

where
R, = [Zods/(1 + |s]*), 1< a< o Re = limgse Re = 2,
and t, 18 the solution to the equation
(2.3) lo @) = (n — 1)7.
Before proceeding to the proof of this theorem, two lemmas are given.

Lemma 2.1. If the Lebesgue measure of the set {t:¢ (t) 5= 0} is infinite, then, for
any real finite nonnegative ¢, ,

Tl ~2[Gle®Fdt/(L+ (n — Dle@®)’) as n— .
Proor. Clearly,
24) limuwn [2 1 = le@Mle@f dt/ (1 + 0 — L)e@)*)
= [2% (L= le@®")B() dt,

where B(¢) = 1,if ¢(t) # 0, = 0, if ¢ (t) = 0. Since the integral on the right
side of (2.4) diverges as & — o, it follows that

2.5) im0 nd,’ = .

By (24), then, it clearly follows that for any real finite non-negative #,,
Jat ~ 2[5 (1 = le@e®Fdt/A + (0 — V@), as n — . Let
K= [Zole@)dt/ 1 + (n — 1)]e(¢)[?). By the same reasoning, for any real,
finite, non-negative ¢, K> ~ 2 [%, o @) dt/(1 + (n — D)|e@®)*), as n — .
Let € > 0 be arbitrarily chosen. Since the distribution is absolutely continuous,
it clearly follows that lim;.., ¢ (t) = 0. So there exists a # which is such that, for
allt =2 1,1 —e = 1 — |p@t)[* < 1. It follows that lim inf.., J,2/K,2 = 1 — ¢,
lim $UPnaw Jo/Ka' < 1. Since € was arbitrarily chosen, the lemma is proved.
Lemma 2.2. Let ¢(t) e Ca. If 1 < a < oo, then, for any ¢ > 0, there exists a
to, such that if o >t > t, (/) < le@)/le@) = (/0)"0. If
¢ (t) € Cw then, for any e > 0, there exists a to, such that if t, > t > &,

le @)/le(@)]* £ /t)™".
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Proor. First, assume 1 < a < o, and let ¢ > 0 be arbitrarily chosen. Clearly
there exists a ¢y, which is such that for all ¢ = #, — (a + €)f ' = dlog | (¢)|*/0t
< —(a — e)t\. It follows, by integration, that if &, > & > to,

— (e +¢)(logt, — logh) <log e (&)]* — log o (t1)]* < — (@ — €) (log &2 — log 1),
or equivalently, (4/6) ~*" = L@/l £ /6y .

Suppose | @)|* € Cw . Let ¢ > 0 be arbitrarily chosen. There exists a ¢, such
that if ¢ > &, 9 log |e@)|’/8t = —e 't . By integration, it follows that if
th > bt > to, log le®)] — log o) < —e¢*(log & — log &). Equivalently,
le @)/ |le @) = (&/t)™. The lemma is proved.

Proor or TaEOREM 2.1. Let

(2.6) g@) =y@+y)

Since ¢’ () = A+ y)" —yA +y) " = A +y)" > 0,g() is a strictly
increasing function for all y. Let s = ¢/¢, . By definition (2.3) of ¢&n, (n — 1)[e @
= (0 — Dle@t)” = le(sta)’/]¢ (ta)[*. First suppose that 1 < a < . Let
¢ > 0 be arbitrarily chosen. By Lemma 2.2, there exists a f, such that if ¢ > #
and t, > b, s @9 = n — D@ = s @™, fors < 1, and s <
(n — Dle@)) < s, for s > 1. Recalling Lemma 2.1, and the fact that
g(y) given by (2.6) is strictly increasing, for all sufficiently large =,

@7) 20 — &) [Lle@ld/(1+ @ — De@))
sJS =204 o) [Lle@®Fd/A+ @ — De@®).

Consequently, 2(1 — ¢) (n — 1), (ﬂ,,/,n s s/ (1 + s+ [T s @9 gs/
1+ @) s T2=20 + )@ — D74 (35 ds/(1 + ) +
I s 9ds/(1 + s“?)). Since ¢ was arbitrarily chosen, the result (2.2)
holds, when 1 < a < .

Now suppose ¢(t) ¢ Cw, and again let ¢ > 0 be arbitrarily chosen. Clearly
forally, g(y) < 1.80, whens < 1, s /* < (n — 1)|p(t)|* £ . Whens = 1,
0= n— D) = s So, recalling Lemma 2.1,

2(L — ) — 1) %y [Tore, 8 Veds/ (1 + s

<J2 =20+ )@ — 1) (fbds + [TV ds/ (1 + s77)).
Since ¢ > 0 was arbitrarily chosen, the result (2.2) holds when a = . The
theorem is proved.

3. A common class of estimator sequences. In this section, we consider es-
timators wherein '

(3.1) ¥V, () = a.¥ (a.2),

¥ (z) is a square integrable function not depending upon 7, and a. is a sequence
which is such that lim,.« @, = . Then, the function
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where 2 (x) is a square integrable function symmetric about the origin. We can
write I, = V,” + B,%, where

Vil = E [2,]6.(t) — Eda(t)|* dt
is the variance term, and

B’ = [Z,|E¢u(t) — o ()" dt
is the bias term.
TaEOREM 3.1. The variance term

(3.3) Vii~nTla, 2R () dt as m— o,

Proor. Clearly B [Z, |6, (t) — Ed. () dt = n" [Zu W (t/as) (1 — |o(t)[*) dt
~n7 [Zo B (t/a,) dt asn— . Let s = t/a, . The result (3.3) follows by change
of variable.

TuEOREM 3.2. Let ¢(t) € Cy, and assume that for any real finite positive con-
stant ¢,

(34) limsw [0° (1 — R (s))*ds/le )] = 0.

Then, if 1 < a < o,

35) it B /anlo @) = [Z (1 = k()™ ds(s ).
Ifa= o,

36)  limaw Ba/ane (@) = limpeay [1 (1 — h(s))}ds(S ).

‘Proor. Clearly B,” = B}, + B;,,where B , = [2, (1 — h(t/a.)) e @) dt,
and Bi, = 2 [7, (1 — h(t/a,)) e t)] dt, and t is an arbitrary real positive
finite constant. Let us first consider the term Bi,.. Let s = t/a,. Then
B, = an [Um 1 — h(s))e(ams) ds £ an [2l%n (1 — h(s))*ds. By the
condition (3.4), it follows that lim,.« B »/a.)e (@,)|° = 0, for any ¢ . Obviously
B = 20,00 (@n)[" [osan (1 = ()" (¢ (@n$)[*/ I (@2)[") ds. Assume 1 < @ < oo,
and let ¢ > 0 be arbitrarily chosen. By Lemma 2.2, there exists a £ such that if
an > toand ¢ > fo, then s 79 < |o(ans8)|*/ (0 (@) = s provided s =< 1,
and s < o (a,,s)]z/lqo(a,,)[2 =< s provided s = 1. For ¢, so chosen

,o,a" a - h(s)) “eT0ds + [T A — h(s))sT"ds £ Bj./2le ()] <

Yot (1 — R(3))’s™ 9 ds + [T (1 — h(s))’s “ ds. Since ¢ was arbitrarily
chosen, the result (3.5) follows, when 1 < a < .

Now, assume ¢ (¢) € C , and again let ¢ > 0 be arbitrarily chosen. By Lemma
2.2, 5 ' < |p(ans)"/|e(an)[* = o provided s = 1, and 0 = [ (ans)[*/|e (an)"
< sV provided s = 1. So

tofan (1 = R(s))'s " ds = B} a/2a.le(an)["
= lityows Y [, (1= h(5))" ds + [T (1 = h(s))’s™"" ds.

Since e was arbitrarily chosen, the result (3.6) follows, when @ = . The theorem
is proved.
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TrEOREM 3.3. Among all estimator sequences, for which ¥, (x) has the form
(3.1), and equivalently A, (¢) has the form (3.2), the most efficient is the one, wherein

4 () = 1/A + [t/t]%), 0<t< o,
where t, 1s given by (2.3), if () eCa, 1 < a < . If o(t) £ Cop,
A, () =1, 0<|t]|<tn,
= 0, otherwise.

In both cases the efficiency s 1.
Proor. Let

3.7) D)= L/2n7",.
Clearly by Theorems 3.1 and 3.2,if 1 < a < o,
D, ~ yu [o B (t) dt + vanle(an)]* [T (1 — h(t)) " dt,
asn — o, where v, = a,/t,, provided that the second mtegral is finite, and the

condltlon (3 4) is satisfied. But nle (@) ~ (n — Do @) = |o(as)|>/e @)
= le(rta)l/le )" ~ va %, as m — e. So

D~y [CR () dt + v [T (L — R@))dt, asn — o.

If as n — o, either v, — 0, or v, — o, then D,’ — o, and the estimator has
zero efficiency. So we can define ¥y = lim,.« ., where ¥ must be positive real
and finite. The problem then becomes scale invariant, since, if we define s = ¢,

g(s) = h(s/v), then
limp.w Do’ = [0g°(s)ds + [5 (1 — g(s))’s*ds

To minimize this expression, for each fixed s, we differentiate the integrand with
respect to g (s) and set the result equal to zero. Then, weget g(s) = s /(1 + s %)
=1/(1 4+ s*), and

(3.8) D win = R./2.

Now recall the condition (3.4). For any e no matter how small there exists
aty < o,and aC,0 < C < o, such that if t > &, |e @) = CT . But
et — h(s)) ds = 0@ **), as t — . So the condition (3.4) is satisfied,
and the result (3.5) holds provided that 1 < @ < . By Theorem 2.1, the
definition (3.7) of D,’, and (3.8), it follows that the efficiency is 1.

Now assume a = . The reasoning is the same, except that if (3.4) is satisfied,

limg, e D f ?(s)ds + Iim,,_,wyﬂ) (A — g(s))ds.

This term is finite if and only if g(s) = 1foralls,0 < s < 1, and it is minimal if
and only if g(s) = 0,foralls,1 < s < . Then D% ..;n = 1. That the condition
(3.4) is satisfied is immediate. So the result holds when & = o, and by Theorem
2.1, the efficiency is again 1. The theorem is proved.
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The efficient estimates given in this section are not everywhere non negative,
if 2 < a £ =, since the functions ¢ (s) are not positive definite.

4. The main result. Let us introduce the following subeclasses of the class
C, of characteristic functions.
DreriniTioN. The characteristic function ¢(() e D,, 0 < vy < oo, iff

(1) —log o ()" ~ C¥,
(4.2) —3 log lp (t)[*/0t ~ Cyt™,

ast — ©,0 < C' < o, and |¢(t)|” is monotonically decreasing from all sufficiently
large ¢. Let Do, = Upcy<oD, . In this section a class of estimator sequences is
presented, such that for each estimator in the class, (1.2) holds, provided
¢(t) e Dy
THEOREM 4.1. Let ¢(t) e D.,. Let t, be a sample quantzty, such that

4.3) limpow P{f, < t.} =0,
and for all ¢ > 0,

(4.4) limpse Pify > ta(1 + €)} =
Let

) =du(t), O0<| =t
= O’ fn < |t| < 0,

Then for all ¢ < , lim,.e E min (¢, X,2/J,’) = 1
where

X = [Za|da(t) — (@) dt.
Proor. Let ¢ be any fixed real number, and let e > 0 be arbitrarily chosen. Let
M,=1, if t,<f <t.(1+e),
= 0, otherwise.

Clearly E min (¢, X,.'/J.}) < E(X.'M,/J.}) + E min (¢, X,” A — M,)/J.}).
By definition, X, M, < B [5550016.0) — 0P dt + 2 [2 o (t)] dt. But,
let € > 0 be arbitrarily chosen and let s = #/t, . By Lemma 2.2, there exists a
to, such that if £, > 4, and s > 1, then |o (st,)| /](p(tn)l2 <sV So t ]go(t)] dt
= tlo )]’ [T (o (sta)] /|¢>(tn)| )ds = -1 f1 ¢ ds. Since € was
arbitrarily chosen, [, ¢ (t)[*dt = o((n — 1)™t,) asm — oo. Thus, by Theorem
2.1, im SUPnso EXfM,,/J,,“’ < 1 + e Clearly E min (c, X,f (1 — M.)/J2)
< ¢P, , where P, = P{t, < t,} + P{t, > t.(1 + €)} =0, asn — «, by assump-
tion. But e was arbitrarily chosen. The theorem is proved.

THEOREM 4.2. Let o (t) e D,,0 < v < oo. Let &, = 8,(1 + f.), where 8, is the
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Lebesgue measure of the set {t:|@, @) = a. , 0 = ¢ < ba},

(4.5) an=mnexp — (logn)’, 0<6<1,
b, = exp (log n)’,

and f, s a sequence, such that

4.6) limgsewfn = 0,

@.7) lim inf,.. (log 7).

Then &, satisfies the conditions of Theorem 4.1.

Before proceeding to the proof of this theorem, a series of lemmas is proved.

Lemma 4.1. If o(t) € D, then t, ~ C " (log n)"", asm — .

Proor. Obviously —log |e(t.)> = log (n — 1). By (2.3), for any e > 0,
(C — et <log m — 1) = (C + €)t,", provided 7 is sufficiently large. Con-
sequently (C + ) log (n — )" =St = (C — ) (log (n — 1))
It follows, therefore, that £, ~ C" YT (log (n — 1)) ~ ¢ (logn)"" asn — oo.
The lemma is proved.

Lemma 4.2. Let s, be given by the equation |¢ (s,)|° = a.*. Then, if ¢(¢) € Dy,
0< v < ©, liMpseo Su/ts = 1 where t, is given by (2.3).

Proor. By analogy with Lemma 4.1, it follows that s, ~ C " (log a,), as
n — o, where a, is given by (4.5). The result is immediate.

LemMa 4.3. Let €, be a sequence such that lim,..e, = 0. If o(t)eD,,
0< v < ,then

log (Jo(sn(1 — e))/le(sa)’) ~ ven logm, as n — «.

I
8

Proor. First, observe that
— $u6n (Infor1—ey 00 0 10g Jo (1)[/0) < log lo(sa(1 — &))" — log le(sa)l”
S —Su6n (SUPs, e 550, 0 log |0 (8)[*/00).
But for any € > 0, and all sufficiently large n,
(C — e)ys" ' min (1, (1 — &)™)
< inf,qmep st 0, 9 108 [0 (F/dE S SUDs,a—ep si50, 0 10g o (8)[*/08
= (C+ ey max (1, (1 — &)™),

by (4.2), since the function Cy#™" is monotonically increasing or constant.
Consequently log |¢(s.(1 — &)’ — loglo(sa)]? ~ Cysalen = veu log an ~
ven log m, as n — . The lemma is proved.

LemMa 4.4. Let ¢, be a sequence of real numbers, such that

(4.8) limn-»o €, = O,

and for all v,0 < v < 0,
4.9) lima,e (Ye, logn + log e,) = .
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Then
(4.10) limpsw Pf{8s < $a(l — &)} = 0.

Proor: Let & be so chosen that ¢ (¢)|” is monotonic for all ¢ = £, and let e,
be a sequence, satisfying (4.8) and (4.9). Let

“.11) Al = [ ga(t) — o)) at.
If§, = (1 — €n)sn, then
(4.12) An2 P .ﬁ:g:::;” Ian—é - ﬁo(t),z dt = Sn(en/z)an—an:

where B, = | (¢(sn(1 — €/2))/¢(s2)) — 1[°. The inequality is valid provided
that » is so large that s,(1 — €,) > fo. Note that

(4.13) EA,? < ba/n.
By (4.13) and the Chebycheff inequality,
P{8 £ (1 — en)sa} < P{A" Z su(en/2)an B}
1 0u/5n (en/2)0n "Bn = (@n/7)b0/83Br (€n/2).
But, by the definitions (4.5) of a, and b,, it clearly follows that
(4.14) (an/n)b, = 1.

By the condition (4.9) and Lemma 4.3, it follows that lim, . .8, = . But,
also limy.e 8, = . The lemma is proved.
LemmMa 4.5. Let € > 0 be arbitrarily chosen. Then

litpse P{&s > sa(1 + €)} = 0.

Proor. For any ¢ > 0, b, > (1 + e)s, for all sufficiently large n. Suppose
8a > 8a(1 + ). Then 4,7 = [28T95) [an"” — o(O)° dt Z sa(e/2)an’ Cn, where
Co=|(e(a(1 + ¢/2))/0(s4)) — 1" > 1, a8 n— =, and A, is given by (4.11).
Again using the Chebycheff inequality, and recalling (4.13), P{8, > (1 + €)si}
< P{AZ $.(¢/2)a, 'Cu} = (@n/M)bn/$a(e/2)Cn, which approaches 0 as
n— o, by (4.14) and the fact that lims.c s, = . The lemma is proved.

LemMA 4.6. The sequences s, and t, satisfy the relationship

(4.15) (tn — 8n)/Sn~ (tn — Sn)/tn ~ vy logn)™ as n— .

Il

Proor. Clearly, for any ¢ > 0,
(C — )y (ta — ) min ("5 &™)

= log | (tn)lz — log | ‘P(Sn)|2 = (log n)o = (C+ e)y(tn — sa) max (sn‘y_ly tn‘y_l)y
for all sufficiently large n, by (4.2), and the fact that for all sufficiently large ¢,
a log |¢ (t)|*/0t is monotonic. Equivalently (log 1)’/ (C + )y max (5,7, ta,7 ")
< t,— s» < (logn)’/(C — €)y min (5,7, t," ). By Lemma 4.2, since e was
arbitrarily chosen, (t, — s.) ~ (log n)’/Cys,"!, as n-— o, and the result
(4.15) holds. The lemma is proved.
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Proor or THEOREM 4.2. For arbitrary e > 0 and sufficiently large n
(4.16) (= $u)/tn < du = 7" (logn) (1 + ¢).
Thatis 1 — dn = 8,/ts.S0 8, = t,(1 — d,). Clearly,
Plly <t} = P8, < ta(1 + f)7)
S Plgy < sa(l = d)7 A+ £)7) = P8 < sa(1 — &)@},

where @, = (1 — &))" + £)7 (A — &) =1 4+ do + & — fu +
0(dn + € — fn), asm — . S0 by Lemma 4.4, the condition (4.4) is satisfied,
provided that @, =< 1 for all sufficiently large n. The conditions (4.6) and (4.7)
are satisfied if for some 8 > 1, e, = (log log 7)"/log n. In this case, clearly,
& = 0(dn), asn — . S0 @, = 1, for all sufficiently large n, provided (4.4)
holds, and the condition (4.3) is satisfied.

By Lemma 4.5, and the condition (4.6), the condition (4.4) is satisfied. The
theorem is proved.

Now, let us investigate the properties of the present class of estimator se-
quences, when ¢ (() e Co, 1 < a < o0,

LemMma 4.7. If o (t) € Cay 1 < @ < o, then 8,/s, — 1 in probability asn — .

Proor. Let ¢ > 0 be arbitrarily chosen. Clearly, if §, < s,(1 — €), then
Al = [0Z9P lan — (@)’ dt > suBa(e/2)a, ", where

B, = |(p@.(1 — ¢/2))/0(sn)) — 11 2 1 — &) (A — ¢/2)™ — 1) > 0,

for sufficiently large n. Recalling (4.13) and (4.14), by the Chebycheff inequality,
P{8, < s.(1 — €)} = P{A.’ > 8,Ba(¢/2)an '} = EA,Y/$.Bu(e/2)a, " =
(@n/1)bs/5,Bs(e/2) — 0, as m — oo, since s, — . To prove that for all e > 0,
limy . P{8, > s, (1 + €)} = 0, we proceed as in Lemma, 4.5, with the exception
that lim inf,.e €2 = (1 — €) (1 — (14 €¢/2)™*) > 0. The lemma is proved.

Let us assume that ¢(¢) decreases algebraically. That is we assume that
lo@)|* ~ Ct* ast— . Let ¢ > 0 be arbitrarily chosen. Then for sufficiently
large n, (C — &)ty * < lota)]’ = (n — 1) = (C + €)t,* Equivalently,
C — " m — D" = ¢, = (C+ )"*(n — 1)" Since ¢ > 0 was arbi-
trarily chosen,

(4.17) b ~ C"%(m — 1)V ~ (Cn)"® as n — o,
LemMa 4.8. If ¢(t) decreases algebraically of order a/2, then
limy e 82/t = 0.

The result is immediate, following from the definitions, and from (4.17). That
the efficiency of the given estimator sequence is zero follows by the reasoning in
Section 2.

6. Discussion. The class D« contains many density function, including the
Normal, Cauchy, and double exponential ones. It does not include the Gamma,
density functions, unfortunately.
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In a recent report by Woodroofe [8] a similar, though different, approach is
taken. His method has zero efficiency, if ¢ (¢) € D , but it is clearly more efficient
than some of those methods currently in use. It appears to be considerably
easier to compute than the present one.

For the problem of estimating a spectral density function, Leppink [2] has
given an estimator sequence, wherein the “truncation point” depends on the
observations. His method is different from both ours and Woodroofe’s. Although
under very general conditions it has zero efficiency, in the opinion of the author
it is probably better than most of those now generally in use.

6. Acknowledgements. The author is indebted to the referee and the associate
editor for comments which have led to an improvement in the organization of
the paper.
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